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Abstract. We seek for a realistic implementation of multimode Gaussian entangled states that can
realize the optimal encoding for quantum bosonic Gaussian channels with memory. For a Gaussian
channel with classical additive Markovian correlated noise and a lossy channel with non-Markovian
correlated noise, we demonstrate the usefulness using Gaussian matrix-product states (GMPS).
These states can be generated sequentially, and may, in principle, approximate well any Gaussian
state. We show that we can achieve up to 99.9% of the classical Gaussian capacity with GMPS
requiring squeezing parameters that are reachable with current technology. This may offer a way
towards an experimental realization.
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A central problem of information theory is to determine the maximal rate of infor-
mation transmission via communication channels. The achievable upper bound on the
classical information transmission rates via quantum channels is called classical capac-
ity. Recently, much interest has been attracted by quantum channels with memory. The
reason is that the classical information transmission rate for these channels may be in-
creased by encoding information into entangled states. A widely used channel memory
model is given by correlated noise over subsequent uses of the channel [1, 2, 3].

Among quantum channels, Gaussian bosonic channels have a particular interest be-
cause they rather well model common physical links, such as optical fibers or optical
communication channels in free space. However, finding the classical capacity of an
arbitrary quantum Gaussian channel is a difficult problem. A lower bound on the clas-
sical capacity of bosonic Gaussian channels is obtained with the help of optimization
schemes restricted to Gaussian encodings. This quantity is called Gaussian capacity.
The Gaussian encoding corresponds to the modulation of displacements in phase space
of a Gaussian input state with covariance matrix (CM) ¥, according to a multi-variate
Gaussian distribution with CM ¥p04-

The Gaussian capacity was studied in detail for the Gaussian channel with additive
correlated noise [2] and the lossy channel with a non-Markovian correlated noise [3].
The action of Gaussian channels on the CM of the input states reads You = K %n +
K Yenv, ¥ = Yout + K ¥Ymod> Where %y is the CM of the noise added by the channel, Yoy
and 7y are the CM of the output and modulated output state, respectively. The parameters
of the transformation are k = k¥’ = 1 for the channel with additive noise, and kK = 1,
k" = 1—n for the lossy channel with beamsplitter transmittance 1 € [0, 1]. The input
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FIGURE 1. (a) The optical scheme suggested in [5] modified for the sequential generation of a GMPS
with nearest-neighbor correlations. Two mode squeezed vacuum states (TMS) with squeezing parameter
rr are used for entangling subsequent channel modes with the help of a delay line. After two EPR
measurements (represented by curly brackets) involving the modes / and r of two different TMS and the
modes 1 and 1’ of an auxiliary three-mode building block 73, the mode 2 collapses into the GMPS mode
i. (b) Optical setup for the generation of the three-mode building block ¥z used in (a). Here |0) denotes
a vacuum mode, S(rg) is a one mode squeezer with squeezing parameter rz and the bold horizontal lines
represent 50 : 50 beamsplitters.

ensembles have to obey an energy constraint which, for optical modes of the same
frequency, may be expressed in terms of the mean photon number 7 of the modulated
input : ﬁTr(ym + Ymod) — % = 7. The noise CM is characterized by a pre-factor N, the
correlation parameter ¢ € [0, 1] for the Markovian correlated noise, and the parameter
s € R for the non-Markovian correlated noise. The Gaussian capacity in this formulation
is invariant under rotations in the phase space. If a rotation is found which unravels the
noise correlations, the channel in the new basis becomes a collection of n uncorrelated
single mode phase-sensitive Gaussian channels. Under the assumption of additivity the
optimal encoding is given by a quantum water-filling [2, 3]. This solution goes beyond
the water-filling solution for classical Gaussian channels, because in the quantum case
one has to take into account an additional energy cost for the creation of optimal quantum
input states which may be squeezed. We derived an input energy threshold, above which
the quantum water-filling solution holds and we restrict here our study to energies above
this threshold. In the original basis, the obtained optimal input states are in general
entangled. Therefore finding experimental means for the generation of such states is
a very challenging task.

As a candidate, we have chosen Gaussian matrix-product states (GMPS) [4, 5],
which have a known optical implementation (Fig. 1) and can be created sequen-
tially. The GMPS has a CM that can be written in terms of a circulant matrix 4 as
Yomps = %(%_1 @ ¢’). We determined the parameters of ¢ achieving the highest trans-
mission rate [6]. In a wide range of noise parameters, the GMPS can achieve more than
99.9% of the Gaussian capacity (see Fig. 2). The optical implementation of the GMPS
requires squeezing operations, but, the required squeezing strength is achievable within
present technology [7].

We have identified a class of channel noise models for which the GMPS is the exact
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FIGURE 2. Transmission rates vs. correlation parameters ¢ and s for 7 = 5. Plots of the Gaussian
capacity (solid line), the rate using the GMPS (x markers) and the rate using coherent states (dotted line).
(a) Channel with additive Markov noise, from top to bottom N = {0.5,0.7,1}. (b) Lossy channel with
non-Markovian noise, for N = 1 and from bottom to top 1 = {0.5,0.7,0.9}.

optimal input state. Its CM is given by a circulant matrix %" and an arbitrary matrix
ény Which commutes with €, i.e., Yeny = (Aenv D Aeny) %(Cg*] @ €). We emphasize
the fact that GMPS are known to be ground states of particular quadratic Hamiltonians
of harmonic lattices. In particular, the GMPS is the ground state of a bosonic n-partite
system described by the Hamiltonian # = (¥ p? + ¥, ;d:Vijd;), where §; and p; are
the position and momentum operators and the potential matrix is given by V = ©>. We
believe that this observation could serve as a starting point for finding useful connections
between quantum information theory and quantum statistical physics.
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