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Abstract. We present theoretical and experimental results on the generation and
detection of pulsed, relative-intensity squeezed light in a hot 87Rb vapor. The
intensity noise correlations between a pulsed probe beam and its conjugate, generated
through nearly-degenerate four-wave mixing in a double-lambda system, are studied
numerically and measured experimentally via time-resolved balanced detection. We
predict and observe about -1 dB of time-resolved relative intensity squeezing with 50
nanosecond pulses at 1 MHz repetition rate. (-1.34 dB corrected for loss).
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1. Introduction

Squeezed light is a valuable resource in the fields of continuous-variable quantum
information and quantum optics. These quantum states have been used as a
resource in modern quantum cryptography protocols, in entanglement generation,
and in universal quantum computation ( [1, 2] and references therein). Moreover,
nonclassical states of light are highly desirable for applications in atom-based
quantum memories [3], as preserving the quantum properties of the state of light
is the signature of such a storage system. A quantum memory, such as that based
on the long-lived coherence of an atomic system [4], is a vital component for the
implementation of a quantum repeater, which allows for the extension of the range
of quantum communication networks [5].

These quantum states of light have been a subject of intense research since the
mid 1980s, starting with the pioneering experiment by Slusher et al. [6]. While that
experiment was performed in a cavity geometry, later experiments [7–9] succeeded
in generating squeezed light in a single pass geometry through the process of
parametric amplification of ultra-short pico and femto-second pulses in nonlinear χ(2)

crystals. Later, parametric processes in optical fibers were also employed successfully
in generating squeezed light in an optical fiber via its χ(3) nonlinearity [10]. More
recently, the χ(3) optical nonlinearity of cold atomic ensembles was employed as a
mean of generating squeezed light [11, 12] under continuous-wave excitation.

The use of pulsed excitation in the generation of squeezed light carries several
advantages over continuous-wave excitation. There is a potential for pulse-shaping
[13] (e.g. via phase modulators, filters, gratings) that might prove useful for
interactions with atomic and molecular systems. Moreover, recent experiments
have demonstrated that pulsed squeezed light can be de-Gaussified (via projective
measurements) to produce exotic nonclassical states of light [14] (e.g. cat states) that
allow for fundamental tests of quantum mechanics as well as continuous-variable
quantum computing. One additional benefit of generating pulsed squeezed light is
that it can be more easily stored and retrieved from atom-based memories [3,4], hence
demonstrating their capacity as quantum storage systems. Finally, let us note that the
absence of an optical cavity (usually present in continuous wave experiments) allows
for the generation of spatially multimode quantum states involved, for example, in
quantum imaging [15, 16].

Until recently, the generation of squeezed vacuum in a single pass geometry
has mainly relied on ultra-short pulses in off-resonant systems ( χ(2) crystals and
optical fibers) which renders the bandwidth incompatible with the narrow linewidths
of atomic and ionic systems. As such systems allow for deterministic quantum
optical operations as well as serving as quantum memories, it is highly desirable
to produce squeezed light over a narrow bandwidth as well as close to an atomic
resonance. One option is to produce the squeezed light in the atomic system
itself. Recently, an experiment by McCormick et al. [17] showed that squeezed
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light can be produced in an atomic system, relying on the process of off-resonance
parametric four-wave mixing in a rubidium vapour. That experiment employed
continuous-wave excitation and frequency-domain detection (though later a slow-
light experiment in the same group demonstrated the viability of pulsed excitation
[18] in the classical regime). While the bandwidth was compatible with atomic-based
memories (a few MHz), continuous-wave squeezing does not lend itself inherently
to storage and retrieval from quantum memories. In particular, continuous-wave
excitation necessitates the use of optical cavities in order to define temporal modes in
the process of de-Gaussification of squeezed states of light which renders the process
more complicated than the case of pulsed excitation.

In this letter, we propose and implement a system capable of producing pulsed
squeezed light based on the same principles as in Refs. [17, 19]. By employing a
pulsed input, we produce nanosecond relative-intensity squeezed pulses and employ
time-resolved detection to measure the degree of squeezing obtained. This work
serves as an extension of recent squeezing experiments [20] in atomic vapors towards
time-domain detection. It offers an alternative path towards quantum memory
experiments requiring pulsed non-classical states of light, as well as other quantum
information application that require pulsed resonant non-Gaussian states of light.

2. Basic principles

The basic idea behind the generation of relative-intensity squeezed light as presented
in this work relies on off-resonant four-wave mixing in a double lambda-system (Fig.
1) [17]. A pump ωp, blue-detuned from the F = 1 → F� = 2 transition of the 87Rb
D1 line by the one-photon detuning ∆1 = ωp − ωe,g1 (ωe,g1 is the F = 1 → F� = 2
excited state transition frequency), interacts with a pulsed probe beam, ωs, which is
offset from the pump by approximately the hyperfine ground state separation. This
offest defines the two-photon detuning δ = ωp −ωh f −ωs , whereby ωh f is the ground
state hyperfine splitting. Under suitable conditions, this energy level structure allows
for the parametric amplification of the probe beam while simultaneously creating
its conjugate through the two-photon resonance enhanced χ(3) nonlinearity. The
proble and conjugate beams created in four-photon scattering are correlated within
the bandwidth of the process, and, quantum-mechanically, carry sub-shot noise
quantum correlations [21, 22].

At steady-state, and assuming no probe present, the system is optically pumped
into the F = 2 ground state via the strong pump, which allows the following recycling
process to take place : F = 2 → F = 1 → F = 2 via a double Raman transition
while spontaneously creating a conjugate and probe photons. On the other hand,
optical pumping into F = 2 allows for the process of stimulated absorption on the
F = 2 → F = 1 Raman transition. Consequently, we conclude that, in steady state,
the net amplification/absorption of the probe beam and hence the creation of the
conjugate beam come from a competition between the four-wave mixing process
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Figure 1. Two equivalent representations of the energy-level diagram of the four-
photon process. (Left) the double-lambda system showing the annihilation of two
pump (P) photons, creating a probe (S ) and an conjugate (I) photon. (Right)
“unfolded” diagram showing explicitly the two-photon resonance and the two-
photon detuning.

and stimulated Raman absorption. The interplay between four-wave mixing gain
and Raman absorption leads to extremely complicated dynamics that are difficult
to analyze analytically. However, recent experimental results demonstrate that the
four-wave mixing process can be optimized at the expense of the Raman process
by adjusting the two-photon and single photon detunings of the probe and pump
beams, respectively.

A numerical investigation based upon the solution of the Heisenberg-Langevin
equations of motion for both the classical fields as well as the quantum fluctuations
is presented in this section. When the parameters of the simulation are close to our
experimental conditions (cell length, temperature, detector bandwidth, pump power,
etc..), the results serve as a measure of the disparity between the optimal results
expected theoretically, and the experimentally obtained ones, with respect to both
the classical amplification as well as quantum correlations (squeezing).

The numerical investigation follows closely the techniques described in Ref.
[22]. The model solves the coupled Heisenberg-Langevin and wave-evolution
equations of motion for the proble/conjugate beams in the presence of a strong
pump in a double-lambda system (we note here that the model described in [22]
assumes an atomic medium without velocity distribution, though it has been verified
numerically that this contribution is negligible in our system). While the system
was envisioned for continuous-wave excitation and frequency-resolved detection,
we adapt the model to pulsed squeezed light by integrating the spectra over both
the input pulse width as well as the detection bandwidth of the pulsed homodyne
detectors. The parameters of the simulation follow closely the experimental
conditions to be discussed later in the paper. The simulation is run at a pump power
of 750 mW, pump beam width (rad.) of 650 µm, vapor cell temperature of 140◦C, cell
length of 5 mm, and pump one-photon detuning of 1.8 GHz.
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Figure 2. Theoretical predictions of probe parametric amplification vs. pulse width.

One parameter that is of interest to this experiment is the shortest pulse that
can be amplified via the four-wave mixing process. Qualitatively, the shortest pulse
width and consequently the largest bandwidth over which amplification takes place
is given by the time interval over which the emission of the probe and conjugate
photons is phase-coherent. As shown in Ref. [22], the four-wave mixing gain is
spectrally very narrow (a few MHz) and the spectrum is largely dominated by
stimulated Raman absorption, leading to loss on the probe and thus absence of
conjugate creation. Numerically, the gain is averaged over the probe pulse spectral
components to model the amplification of pulsed light (Fig. 2). The results lead us
to conclude that, under our experimental conditions (mainly dictated by the laser
power as well as the necessity of a wide beam to avoid transit-time broadening
effects), the shortest pulse width that we can amplify is on the order of 30-50 ns.

Having theoretically demonstrated the possibility of parametrically amplifying
nanosecond pulses, we next move to demonstrate the possibility of measuring
sub-shot noise quantum correlations between the amplified probe and generated
conjugate pulses. As detailed in Ref. [22], this is done by solving the Heisenberg-
Langeving equations for the small-signal quantum fields associated with the probe
and conjugate, then calculating the noise correlations between the two quantum
fields. For this calculation, we employ the parameters as above and a detection
bandwidth for the time-resolved homodyne detection of 8 MHz. Fig. 3 shows the
results for narrow-band (frequency-resolved) detection, which clearly demonstrate
that, for the best uniformity of squeezing vs. detection frequency, which is necessary
for our time-resolved pulsed homodyne detection (which naturally integrates over
the pulse spectral components and detection bandwidth), we need to set the two-
photon detuning to about 20 MHz. Integrating the noise spectrum over our
detection bandwidth (8 MHz), we obtain a prediction of the measurable time-resoved
reduction of variance. As the two-photon detuning range for squeezing is quite
narrow, [22], we keep the one-photon detuning fixed at 1.8 GHz and sweep the two-
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photon detuning to optimize the squeezing. Fig. 4 shows the results, whereby the
expected time-resolved squeezing is on the order of -1.6 dB for a 20 MHz two-photon
detuning.
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Figure 3. Frequency-resolved noise power for the probe-conjugate intensity
difference as a function of detection frequency for various two-photon detunings.
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Figure 4. Intensity fluctuations (time-resolved noise variance) of the probe-conjugate
photon numbers for a 50 ns pulse and an 8 MHz detection bandwidth, as a function
of the two-photon detuning δ.

3. Experiment

The experiment follows closely the procedure described in Refs. [17,19]. A titanium-
sapphire laser is blue-detuned by 1.8 GHz from the F = 1 → F� = 2 transition of the
D1 line of 87Rb. Part of the laser beam (few mW) is coupled into an optical fiber, while
the rest (750 mW) is used as a pump. The fiber-coupled beam is phase modulated via
an integrated Mach-Zehnder electro-optic modulator to generate sidebands at ±6.83
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GHz from the pump beam frequency, which is close to the ground-state hyperfine
splitting. The use of an intensity modulator to generate sidebands allows for a
high ( ≈ 90 %) extinction of the carrier frequency and places most of the output
power in the sidebands. The excess noise at detection frequencies of interest (1-8
MHz) was measured on a spectrum analyzer showing about 1 dB of added noise,
which compares favorably with side-band generation via acousto-optic modulation
[17]. The residual carrier (pump) and one of the sidebands are attenuated via a
combination of a free-space Mach-Zehnder interferometer and a Fabry-Perot cavity
locked via the Pound-Drever-Hall method [23] and a home-built PID controller,
allowing us to generate a pure tone at the probe frequency of Fig. 1. (detuned from
the pump by the hyperfine splitting). The probe next passes through a free-space
electro-optic modulator (LINOS 0202) producing 50 nanosecond pulses at a 1 MHz
repetition rate. Experimentally, we observed that this repetition rate minimizes the
excess noise due to the intensity modulation, which was measured at about 1 to 2 dB
over the detection bandwidth of a few MHz.

The pulsed probe power is controlled via a half-wave plate and a beam splitter
and is next focused down to 300 µm inside a 0.5 cm 87Rb vapor cell. The glass cell
was placed inside a copper oven with thermo-coaxial wires wrapped around to heat
the cell uniformly to 140 ◦C. The cell and oven are then placed inside a mu-metal
magnetic shield and data is only acquired outside the heating cycle (in the absence
of an external magnetic field). The pump is focused to 650 µm and overlapped with
the probe (the pump beam waist is chosen to be larger than the probe to allow for a
uniform amplification across the probe’s beam profile) inside the cell at a small angle
(≈ 1◦) via a polarizing beam splitter (PBS). The angle plays a crucial role in both
the Raman (velocity selectivity) as well as the four-wave mixing (phase-matching)
processes.

At the output of the cell, the pump is blocked by a polarizing beam splitter that
passes the probe and generated conjugate. The probe and conjugate are picked off
by half mirrors while the remainder of the pump passes through and is consequently
blocked. Flip-mirrors are used to alternate between classical power measurements on
photodiodes and quantum correlation measurements on a balanced detector. While
the conjugate beam falls unattenuated unto the balanced detector, the probe beam
is further attenuated by a λ/2 and PBS combination as to perfectly equilibrate the
power on the two channels of the balanced detector, which is a requirement for the
best common-mode rejection in a homodyne detection measurement. In addition,
splitting the probe beam 50:50 allows for the measurement of the shot noise quantum
limit at a specific input power when the probe is far detuned from any rubidium
resonances.
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Figure 5. Experimental setup for generating pulsed squeezed light in rubidium vapor.
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experimental values
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3.1. Classical results

In a four-wave mixing χ(3) parametric amplifier, the bandwidth of the amplifier and
consequently the shortest pulses that can be amplified are limited by the response
time of the χ(3) nonlinearity [24]. Considering that the coherence time between the
probe and pconjugate photons is on the order of 50 ns (Fig. 2), we vary the pulse
width between 30 and 100 ns and record the gain (at optimal parameters) on the
probe. As the results of Fig. 6 show, the gain as a function of pulse width indicates
a bandwidth of a few MHz, compatible with the theoretical model given above.
The agreement between the theory and experiment further confirms the validity of
the theoretical model employed to predict the temporal dynamics of the four-wave
mixing process.

Hence, in our nearly-resonant system and at the optical powers we employ, we
are limited by the recycling rate setting a lower limit of about 50 ns for our probe
pulse beyond which we observe a decrease in the gain. With the pump detuned by
1.8 GHz from the F = 1 → F� = 2 transition and the two-photon detuning set close
to resonance, the gain on the probe pulse is measured and plotted in Fig. 7(a), and is
estimated at 4.2±0.1. Simultaneously, a conjugate beam is generated in the four-wave
mixing process at the opposite angle with respect to the pump, as required by phase-
matching considerations. Its power is measured on a separate photodiode and the
ratio of the probe/conjugate powers is plotted in Fig. 7(b). In the ideal case of no re-
absorption, which is satisfied in our far-detuned case, we expect a ratio of conjugate
to probe of (G − 1)/G [21]. From the slope of the probe-conjugate curve, we calculate
a gain G of 4.3 ± 0.2, in agreement with the results of Fig. 7(a). This indicates that
the parameters chosen favor parametric four-wave mixing at the expense of Raman
absorption, as desired.

3.2. Quantum measurements

In order to measure the intensity correlations between the probe and conjugate beams
and compare against the standard quantum limit, we optimize the classical gain, then
we direct the probe and conjugate beams to a balanced detector in subtraction mode,
which is followed by a charge-sensitive amplifier (Amtek-250) with a response time
that is longer than the pulse width (≈ 150 ns). Data is collected over samples of
10,000 points with rolling-average subtraction to compensate for long-term drifts of
the detector circuitry. This procedure allows for the integration of the photoelectron
number difference yielding an electronic pulse with a height proportional to the
photon number difference between the probe and conjugate pulses. The electronic
pulse is consequently read by a data-acquisition card triggered at the same repetition
rate as the EOM generating the pulsed input probe. This procedure has been proven
to allow for direct estimation of the photon statistics of the input light beam [25]
(quadrature variance in a homodyne detection, intensity correlations), which implies
that what we record is a direct measure of the intensity fluctuations of the light
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Figure 7. (a) Classical gain on the probe indicating a gain of about 4.2. (b) Produced
conjugate power vs. amplified probe power.

field rather than the noise power at a certain detection frequency [26]. The variance
associated with the shot noise is first measured at various input powers by splitting
the probe at a far off-resonance frequency (to avoid the rubidium resonances) 50:50
and directing it into the two arms of the balanced detector. Fig. 8 shows a plot of the
intensity noise variance as a function of input power, with the linear slope indicating
a shot-noise limited measurement.
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Figure 8. The shot-noise quantum limit as a function of input power; the linear
behaviour indicates shot-noise statistics.
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Next, with one laser and the two-photon detunings optimized for maximum
gain, we record the noise variance of the probe-conjugate intensity difference after
equilibrating the two arms by attenuating the probe channel. The fluctuations of the
amplified output are first minimized by carefully equilibrating the probe-conjugate
channels, and also, as we observed, by adjusting the two-photon detuning to about
20 MHz (as predicted by the theory). The integrated intensity difference is then
recorded through the data acquisition card for both the shot-noise limit and for the
probe-conjugate intensity difference (Fig. 9).
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Figure 9. Relative intensity noise for a 50/50 split probe (*) and probe-conjugate
under four-wave mixing conditions (+) as a function of the total input power on the
detectors. The ratio between the two variance curves at the same power yields the
squeezing level.

The results show relative intensity squeezing amounting to -0.96 dB, or -1.34 dB
when corrected for the losses on the mirrors, lenses and when taking into account
the estimated quantum efficiency of the detectors. Several factors contribute to the
reduced levels measured as compared to the results of earlier experiments [17, 19]
via frequency-resolved detection. First, as the measurement is done in the time
domain, the total noise is ’integrated’ over the entire detection bandwidth (8 MHz),
as shown in the theoretical section, which requires us to use a two-photon detuning
that best optimizes the pulsed squeezing rather than the single-frequency noise level
and which consequently leads to a lower level of squeezing. Second, as the input
probe is not a shot-noise limited state, but rather carries excess noise of about 2 dB
due to the electro-optic modulation, this may degrade the squeezing [19] and explain
the slightly lower degree of squeezing than that predicted theoretically (-1.34 vs. -1.6
dB).

However, whereas earlier experiments showed the zero-bandwidth single
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frequency noise level, our results confirm the presence of squeezed light via the full
photon statistics of the pulsed light. In other words, in a phase-sensitive homodyne
measurement (rather than a relative intensity measurement), time-domain detection
allows for a straight-forward measurement of the quadrature variances of the
squeezed light. Moreover, in the context of information transfer and encoding,
generating squeezed pulsed light (and temporally detecting it) allows for envisioning
future experiments that harness the reduced noise levels for optical communications.
In the context of quantum communications, squeezed pulsed light and its time-
domain detection are a basic building block for several protocols for the generation of
non-Gaussian states of light [27] as well as for the encoding and secure transmission
of quantum information [2].

4. Conclusion

In conclusion, we have numerically shown the possibility of generating, via the
process of nearly-degenerate off-resonance four-wave mixing in a hot rubidium
vapor, nanosecond pulsed relative-intensity squeezed light. We have also measured
the degree of squeezing experimentally by employing time-domain balanced
detection, leading to -0.96 dB (-1.34 dB corrected) of relative-intensity squeezed 50
ns pulses at 1 MHz repetition rate. Our proof-of-principle experiment opens the
door to future rubidium-based quantum memory demonstrations that require MHz
repetition-rate rubidium-compatible squeezed light, and are a vital component in
future quantum repeater protocols. Moreover, by employing time-domain detection
of squeezed light, this experiment paves the way towards the de-Gaussification of
the squeezed pulses and the generation of atom-compatible non-classical states that
will be an important ingredient in atom-based quantum information processing.
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