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ABSTRACT

We study the transmission of classical information via optical Gaussian channels with a classical additive noise
under the physical assumption of a finite input energy including the energy of classical signal (modulation) and
the energy spent on squeezing the quantum states carrying information. Multiple uses of a certain class of memory
channels with correlated noise is equivalent to one use of parallel independent channels generally with a phase-
dependent noise. The calculation of the channels capacity implies finding the optimal distribution of the input
energy between the channels. Above a certain input energy threshold, the optimal energy distribution is given by
a solution known in the case of classical channels as water-filling. Below the threshold, the optimal distribution
of the input energy depends on the noise spectrum and on the input energy level, so that the channels fall into
three different classes: the first class corresponds to very noisy channels excluded from information transmission,
the second class is composed of channels in which only one quadrature (q or p) is modulated and the third
class corresponds to the water-filling solution. Although the non-modulated quadrature in the channels of the
second class is not used for information transmission, a part of the input energy is used for the squeezing the
quantum state which is a purely quantum effect. We present a complete solution to this problem for one mode
and analyze the influence of the noise phase dependence on the capacity. Contrary to our intuition, in the highly
phase-dependent noise limit, there exists a universal value of the capacity which neither depends on the input
energy nor on the value of noise temperature. In addition, similarly to the case of lossy channels for weak thermal
contribution of the noise, there exists an optimal squeezing of the noise, which maximizes the capacity.
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1. INTRODUCTION

One of the central problems of quantum communication is to determine the classical capacity of a quantum
channel, which is defined as the supremum of the rate of classical information that can be transmitted via the
channel.

The key question in finding the capacity is its additivity meaning that the maximum transmission rate
achieved when using several channels together does not exceed the sum of maxilmum transmission rates for each
of the channels used separately. The capacity of additive channels is achieved by encoding classical information
into product states. Intuitively, this conjecture is natural at least for channels, for which temporally separated
uses of the channel are independent. Although the additivity conjecture recently was shown to be not true in
general,1 for many memoryless channels additivity was established.2, 3 On the other hand, memory effects or
correlations may lead to the optimality of entangled input states achieving the classical capacity. This effect
was shown first for channels with discrete alphabets: a depolarizing channel4 and a quasiclassical depolarizing
channel.5 These results demonstrate the existence of a threshold value of the memory parameter above which
entangled states improve the transmission rate with respect to product states. Bounds on the classical and
quantum capacities of a qubit channel with finite memory were derived.6, 7 Classical and quantum capacities of
memory channels were discussed in a general framework.8 For general Pauli channels with memory it was also
shown9 that the optimal states are either product states or Bell states separated by a memory threshold. In the
case of higher dimensions, it has been shown that the capacity of qudit channels exhibits the same threshold
phenomenon as Pauli qubit channels.10, 11



For quantum memory channels with continuous alphabet, the first studies considered two uses correlated of an
additive optical channel and a lossy optical channel,12, 13 the classical capacity was achieved for input states with
some degree of entanglement. Later, lower and upper bounds on the classical capacity were derived for a lossy
optical memory channel.14–16 In a recent paper17 we have evaluated the classical capacity of certain Gaussian
channels with additive noise, in particular, Markov correlated noise, which introduces memory in the channel.
It was shown that for an input energy above a certain threshold, the optimal input states are entangled states
where the squeezing of the input has to match the anisotropy of the environment and the energy is uniformly
distributed between the channels which corresponds to the classical water-filling solution.18

In the present paper we study the optical Gaussian channel with additive phase-dependent noise, i.e. a noise
with different variance in the q and p-quadrature. For certain class of Gaussain memory channels with correlated
noise the capacity is equivalent to the capacity of a Gaussain channel with the noise, which is independent
between the modes but may be phase dependent within each mode.16, 17, 19 Additivity of Gaussian channels
under Gaussian inputs make this problem equivalent to the one of finding the “one-shot” capacity of one mode.
The solution of the one-mode problem may eventually help us to find the solution of the problem for arbitrary
number of modes and the limit of infinite number of modes, which is necessary to determine the capacity of
memory channels with correlated noise. However, in this paper we do not go beyond one-mode and consider
in addition another problem, which may have an applied interest. Usually the problem of capacity is posed for
some given channel, however, when designing optical connections one can think of the choice of the properties of
the channel itself. Recently, in Ref.16 such a question was posed for a lossy channel and it was shown that the
higher the asymmetry of the noise the higher is the channel capacity for a wide range of channel losses (modeled
by a beamsplitter). They have found that in the limit of infinite noise squeezing the capacity tends to some
universal value no matter which is the channel loss. In addition for channels with a high transmittivity there
exists a finite value of the noise squeezing which maximizes the capacity for given transmittivity. We study the
influence of the noise squeezing on the capacity of a Gaussian channel with lossless transmission and additive
noise and start our analysis for the one-mode case.

In section 2 we shortly sketch the formulation of the problem of finding classical capacity of quantum channels
and its application to to Gaussian channels with correlated noise. In section 3 we discuss the optimization problem
for the n-mode parallel channel which arises when one calculates channel capacity. Section 4 is devoted to the
detailed study for one-mode problem in different regimes depending on the asymmetry of the noise and the
available amount of the input energy. In section 5 we consider the influence of the properties of the channel noise
on the classical capacity. In section 6 we discuss the results and highlight the problems which are still open.

2. CLASSICAL CAPACITY OF QUANTUM GAUSSIAN CHANNELS

In order to use a channel to transmit classical information one has to choose an alphabet that contains letters
labeled by an index i. The use of a quantum channel requires furthermore, to associate each letter i to a quantum
state ρin

i . The input states ρin
i are sent through the channel, interact with the environment and thus are modified

at the output. The quantum channel T is a completely positive, trace-preserving map acting on the input “letter”
states:

ρout
i = T [ρin

i ]. (1)

In addition the letters i that form the messages appear with a certain probability pi so that the overall modulated
input state is given by a mixture ρin =

∑

i piρ
in
i . By linearity of T , Eq. (1) determines as well the action of

the channel on the overall modulated input ρ ≡ ∑

i piρ
out
i = T [ρin], where ρ will be referred to as the overall

modulated output. In order for ρ be physical it has to obey the energy constraint

∑

i

pi Tr(ρin
i a†a) ≤ n, (2)

where n is the maximum mean photon number per use of the channel and will be referred to as “input energy”
in the following.

The classical capacity C(T ) of the channel T represents the supremum on the amount of classical bits which
can be transmitted per invocation of the channel via quantum states in the limit of an infinite number of channel



uses. This quantity can be calculated with the help of the so-called one-shot capacity, defined as20

C1(T ) = sup
{ρin

i
,pi}

χ, (3)

where the Holevo χ-quantity reads

χ = S

(

∑

i

pi T [ρin
i ]

)

−
∑

i

pi S(T [ρin
i ]), (4)

with the von Neumann entropy S(ρ) = −Tr(ρ log ρ) where log denotes the logarithm to base 2. The supremum
in (3) is taken over all ensembles of {pi, ρ

in
i } of probability distributions pi and pure input “letter” states ρin

i .20

The term “one-shot” means that only one invocation of T is needed to calculate Eq. (3). Using this quantity
the capacity C(T ) defined as above may be evaluated in the following way. A number n of consecutive uses of
the channel T can be equivalently considered as one parallel n-mode channel T (n), which is used only one time.
Then the capacity C(T ) is evaluated in the limit:

C(T ) = lim
n→∞

1

n
C1(T

(n)). (5)

Let us now assume T (n) to be a n-mode optical additive channel with memory. In the following, the number
of modes of this channel corresponds to the number of mono-modal channel uses. Each mode j is associated
with the annihilation and creation operators aj , a

†
j , respectively, or equivalently to the quadrature operators

qj = (aj + a†
j)/

√
2, pj = i(aj − a†

j)/
√

2 which obey the canonical commutation relation [qi, pj ] = iδij , where δij

denotes the Kronecker-delta. By ordering the quadratures in a column vector R = (q1, ..., qn; p1, ..., pn)T, we can
define the displacement vector m and covariance matrix γ of an n-mode state ρ as

m = Tr[ ρR]

γ = Tr[(R − m) ρ (R − m)T] − 1

2
J, J = i

(

0 I
−I 0

)

,
(6)

where J is the symplectic or commutation matrix with the n × n identity matrix I. In this paper we focus
on Gaussian states, which are fully characterized by m and γ. Furthermore, without loss of generality, we set
the displacement of overall modulated states and the means of classical Gaussian distributions to zero, because
displacements do not change the entropy.

For the optical channel, the encoding of classical information is made according to a continuous alphabet,
where the previous discrete letter with index i is replaced by the real and imaginary part of a complex number
α. A message of length n is therefore encoded in a 2n real column vector
α = (ℜ{α1},ℜ{α2}, ...,ℜ{αn},ℑ{α1}, ...,ℑ{αn})T. Physically, this encoding corresponds to a displacement of
the n-partite Gaussian input state in the phase space by α and is denoted by ρin

α . The Wigner function of ρin
α

reads

W in
α (R) =

exp [− 1
2 (R −

√
2α)† γ−1

in (R −
√

2α)]

(2π)n
√

det (γin)
. (7)

Throughout this work, we do not question the conjecture that a coherent state minimizes the entropy of a
mono-modal Gaussian thermal channel and use the result that squeezed, pure states are optimal in the case of a
mono-modal Gaussian channel with anisotropic noise.17 Therefore, we only consider Gaussian distributions of the
letters in the messages so that the overall modulated input state sent through the channel is a Gaussian mixture
ρin =

∫

d2nαf(α)ρin
α , where d2nα = dℜ{α1}dℑ{α1}...dℜ{αn}dℑ{αn} with (classical) Gaussian distribution f(α)

with zero mean and covariance matrix γmod.

As we are no longer dealing with probability distributions pi but with probability densities f(α), the summa-
tions in the formulae above are replaced by proper integrations. The action of T (n) on an input state carrying a
message α reads as in12

T (n)[ρin
α ] = ρout

α =

∫

d2nβ fenv(β)D(βn) ⊗ ... ⊗ D(β1) ρin
α D†(β1) ⊗ ... ⊗ D†(βn), (8)



with d2nβ = dℜ{β1}dℑ{β1}...dℜ{βn}dℑ{βn}, β = (ℜ{β1}, ...,ℜ{βn},ℑ{β1}, ...,ℑ{βn})T and the displacement

operator D(βj) = eβj â
†
j
−β∗

j âj . The displacement is applied according to the (classical) Gaussian distribution of
the environment fenv(β) with zero mean and covariance matrix γenv. If this matrix is not diagonal, then the
environment introduces correlations between the successive uses of the channel. These correlations model the
memory of the channel.

Since we centered the distributions of the environment and modulation as well as the Wigner function of the
input state around zero, the covariance matrices of the state carrying the message α at the output of the channel
ρout

α and of the overall modulated output state ρ, read, respectively,

γout = γin + γenv

γ = γout + γmod.
(9)

The one-shot capacity of such a system is

C1(T
(n)) = sup

γin,γmod

χn, χn = S(ρ) − S(ρout
α ). (10)

In the case of a Gaussian state ρ, the von Neumann entropy can be expressed in terms of the symplectic
eigenvalues νj of its covariance matrix:

S(ρ) =
∑

j

g

(

|νj | −
1

2

)

(11)

g(x) =

{

(x + 1) log (x + 1) − x log x , x > 0
0 , x = 0.

In the following we analyze the case when all covariance matrixes (9) are diagonalized in the same basis.
For one mode channel the one-shot capacity is achieved in such case and we conjecture that this will hold for
n modes. Care should be taken to the diagonalization which has to be a symplectic transformation.17 In the
absence of q−p correlations the commutativity of transformation diagonalizing q and p blocks is sufficient for the
diagonalization transformation to be symplectic. Therefore, our consideration is restricted to the channels for
which the q and p blocks of the noise covariance matrix are diagonalized by the transformations which mutually
commute. Then the symplectic eigenvalues in this case are functions of the eigenvalues of the corresponding
covariance matrices:

ν̄i =

√

γq
i γp

i , γq,p
i = γq,p

in,i + γq,p
mod,i + γq,p

env,i ,

νout =
√

γq
out,iγ

p
out,i , γq,p

out,i = γq,p
in,i + γq,p

env,i . (12)

The energy (or mean photon number) constraint (2) can now be written as the sum of all input and modulation

eigenvalues

λ ≡
n
∑

i=1

(

γq
in,i + γp

in,i + γq
mod,i + γp

mod,i

)

= n (2n̄ + 1) (13)

The total energy λ̄ of the n-mode channel is the sum of the input energy λ and the energy of the noise λenv

(environment)

λ̄ = λ + λenv , λenv =
∑

i

(γq
env + γp

env) . (14)

The “one-shot” capacity of n parallel classical Gaussian channels is found by the so called water-filling

solution, which imposes the distribution of the input energy between the channels in such a way that the total
energy of all channels, which is the sum of the input energy and of the added noise, is equal for all channels
(the channels, which have the noise variance higher than this water-filling level, do not participate in the
transmission).18 This is a consequence of the fundamental fact that the Shannon entropy is maximal for uniform



distribution. In the classical case this directly translates into the equality of the total channel energies. It was
shown that in the quantum case the situation is similar.17 However, due to quantum nature of signals carrying
the information the quadratures cannot be considered as independent channels. As a result it appears that under
certain conditions one quadrature may be not involved in the information transmission but still consumes some
input energy necessary to create the quantum state required by the optimal solution. In the present paper we
extend the results obtained for Gaussian quantum channels with input energy satisfying the global water-filling

condition to input energies below the threshold and fully characterize the optimal solution for these channels for
all range of input energies for a finite number of modes.

3. OPTIMIZATION PROBLEM

Here we discuss n parallel independent one-mode channels. We will determine the maximum of the Holevo
quantity by the method of Lagrange multipliers under the condition of finite (fixed) input energy (13) and pure
input states implying

γq
in,iγ

p
in,i =

1

4
. (15)

Taking into account the constraints (13) and (15) we construct the Lagrange function in the form

L =

n
∑

i=1

(

g

(

ν̄ − 1

2

)

− g

(

νout −
1

2

))

−
n
∑

i=1

σi

(

γq
in,iγ

p
in,i −

1

4

)

− µ

(

n
∑

i=1

(

γq
in,i + γq

in,i + γq
mod,i + γq

mod,i)
)

− λ

)

with 4n independent eigenvalues γq,p
in,i and γq,p

mod,i, n multipliers σi, and one multiplier µ.

For the concave Lagrangian function the extremum is unique and is determined by the point in the space
of the 4n variables (the input and the modulation eigenvalues) where the gradient of the Lagrangian function
vanishes:

(

∇γ
q

in,i
,∇γ

p

in,i
,∇γ

q

mod,i
,∇γ

p

mod,i

)T

L = 0 (16)

where ∇γ
q,p

in,i
and ∇γ

q,p

mod,i
are derivatives with respect to γq,p

in,i, γ
q,p
mod,i with i = 1, . . . , n. By developing Eq. (16)

we obtain a system of 4n equations

g′
(

ν̄i − 1
2

)

2ν̄i

γp,q
i − g′

(

νout,i − 1
2

)

2νout,i
γp,q
out,i − µ − σiγ

p,q
in,i = 0 (17)

g′
(

ν̄i − 1
2

)

2ν̄i

γp,q
i − µ = 0 (18)

where we used a convention that indexes p, q imply two equations such that index p is applied in the the first
equation and index q is applied in the second one. The derivative of g(x) with respect to its argument is denoted
as g′ (x). In order to solve our system of equations we insert Eqs. (18) for q quadratures into Eqs. (17) for both
q and p quadratures with corresponding i. Then 2n equations (17) become

g′
(

νout,i − 1
2

)

2νout,i
γq
out,i + σiγ

q
in,i = 0 (19)

g′
(

ν̄i − 1
2

)

2ν̄i

(

γp
i − γq

i

)

− g′
(

νout,i − 1
2

)

2νout,i
γp
out,i − σiγ

p
in,i = 0 . (20)

We further express σi from Eq. (19) and insert it into Eq. (20) and arrive at n equations

g′
(

ν̄i − 1
2

)

2ν̄i

(

γp
i − γq

i

)

− g′
(

νout,i − 1
2

)

2νout,i

(

γp
out,i −

γp
in,i

γq
in,i

γq
out,i

)

= 0. (21)



We will not further consider Eq. (19) because it does not contribute to the evaluation of other unknown variables.
We will just remember that once all other unknown variables are determined, Eq. (19) may serve for determining
σi if necessary. If we add the n purity conditions (15) of the “letter” states and one on the input energy constraint
(13) to the system of 3n Eqs. (18,21), we get in total 4n+1 equations which determine 4n+1 unknown variables
including 4n input and modulation eigenvalues, one Lagrange multiplier µ, which links different modes.

As we will see below for some parameters of the problem the solution may lead to negative modulations
eigenvalues of some modes. This means that the extremum of the Lagrangian lays outside of the valid domain of
positive eigenvalues. In such cases the maximum which we are looking for lays at the border of the valid domain.
This border is a collection of hyperplanes with at least one vanishing modulation eigenvalue. Therefore, in the
solution different modes in general may contain different number of vanishing and non-vanishing modulation
eigenvalues. For each mode there exist only three possible cases:

1. Both (q and p) modulation eigenvalues vanish:

γq
mod,i = γp

mod,i = 0.

2. Only one modulation eigenvalue vanishes:

γq
mod,i = 0, γp

mod,i > 0.

We will always use this convention (and not vice versa) without loss of generality because for diagonal
covariance matrices relabeling q and p of any mode does neither change the input energy nor output
entropies.

3. Both modulation eigenvalues are non-vanishing:

γq
mod,i > 0, γp

mod,i > 0.

Then, the solution of our system of equations corresponds to a particular distribution of n modes into three
different sets corresponding to one of three cases realized for the modes. We denote the sets corresponding to
three cases by: N1, N2, and N3. We will use the same notations for three sets of integers defined such that if a
mode with index i belongs to one of the sets defined above then its index i belongs to the set of integers labelled
by the same symbol. Then we will call by set both, the sets of modes and the sets of indexes. We denote the
number of modes in the sets as n1, n2, and n3 respectively. Let us consider in the following the sets one by one.

3.1 Set N3: water-filling solution

We start our consideration with the set N3. First of all we note that due to Eq. (18) the Lagrange multiplier µ
makes a strong link between the quadratures of all modes: From this equation it is straightforward to conclude
that

γq,p
i = γq,p

j , ∀i, j ∈ N3 . (22)

This means that at the output of the channel each mode is in the same thermal state. The energy level that is
common for all quadratures reads

ν̄wf ≡ γq,p
i =

λ3

2n3
, ∀i ∈ N3 , (23)

and may be called the water-filling level as if the input and modulation energies “fill” the “vessel” formed by
the noise eigenvalues up to this level.18, 21 The total energy γq,p

i of the modes from the set N3 is given by ν̄wf

multiplied by the number of quadratures 2n3 belonging to N3. Due to Eq. (18), the water-filling level x is simply
related to the Lagrange multiplier µ by

g′
(

x − 1

2

)

= 2µ ⇒ ν̄wf =
1

2
coth(µ log(2)). (24)



We find the input eigenvalues by inserting Eq. (22) into Eq. (21), which leads to

γq
env,i

γp
env,i

=
γq
in,i

γp
in,i

, (25)

and with the help of the purity condition (15) finally obtain

γq,p
in,i =

1

2

√

γq
env,i

γp
env,i

(26)

γq,p
mod,i = ν̄wf − γq,p

env,i −
1

2

√

γq,p
env,i

γp,x
env,i

. (27)

Observing that this solution always leads to positive γq,p
in,i we have to make sure that the obtained γq,p

mod,i are also
non-negative. A simple reasoning based on the definition of the water-filling level (23) shows that non-negativity
of the modulation eigenvalues γq,p

mod,i (27) implies a lower bound on the input energy allocated to the mode, i.e.

λi ≥ λthr,i = γq
env,i − γp

env,i +

√

γq
env,i

γp
env,i

, (28)

were we assume without loss of generality that γq
env,i > γp

env,i. Therefore the input energy allocated to each mode
belonging to N3 must exceed its corresponding threshold value λthr,i.

If the input energy satisfies condition (28) for all quadratures of all modes then the whole n-mode channel
belongs to set N3 and we have

λ̄i = λ̄3, ∀i ∈ N3 . (29)

In this case, Eqs. (23), (26), and (27) determine the global water-filling solution.

If the condition (28) is not satisfied at least for one quadrature of some mode then this global water-filling

solution has no physical meaning because in this case the corresponding optimal modulation eigenvalue is neg-
ative. Then the global maximum is placed on the boundary of the domain. It means that we have to set the
corresponding modulation eigenvalues to zero. As we have already discussed we attribute a mode to the set N2

or N1 depending on whether one or both modulation eigenvalues of the mode vanish.

3.2 Set N2: single quadrature-modulated modes

In the case 2 only one quadrature has a vanishing modulation eigenvalue

γq
mod,i = 0. (30)

However, this already changes our system of equations because the assignment (30) eliminates the corresponding
partial derivative from Eq. 16. As a result Eq. (18) does not exist for the p quadrature of mode i and is effectively
replaced by Eq. (30). Then the corresponding quadrature becomes “detached” from all others that are connected
through the common multiplier µ.

The system of equations for this set includes n equations (18) with γq
i , and n equations (21), n purity

conditions and one energy constraint which determine 2n input eigenvalues γq,p
in,i, n modulation eigenvalues

γp
mod,i and one Lagrange multiplier µ.

3.3 Set N1: modes excluded from information transmission

Finally, if its modulation eigenvalues for both quadratures vanish (30) the mode does not contribute at all to
the Holevo quantity and consequently to the information transmission. The vanishing modulation eigenvalues
γq,p
mod,i = 0 imply

γq,p
i = γq,p

out,i. (31)
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Figure 1. Total energies of quadratures γq (above) and γp (below) for the one-mode channel as functions of the input
energy λ. The two eigenvalues coincide from λthr = 2nthr + 1 = 2.73, with noise eigenvalues γq

env = 1.5, γq

env = 0.5.

Therefore in order to satisfy Eq. (21) the input eigenvalues of both quadratures must be also equal: γq
in,i = γp

in,i.
Due to (26) this implies that the optimal input eigenvalues correspond to the vacuum or non-squeezed (and
non-displaced) coherent state

γq,p
in,i =

1

2
. (32)

4. ANALYSIS OF THE OPTIMAL SOLUTION FOR ONE MODE

If no input energy is devoted to the mode, the solution is trivial: the mode belongs to the set N1 and does not
contribute to the capacity. Given a positive input energy it easy to verify the existence of the local water-filling

solution for the mode by verifying the threshold condition (28). If the input energy is above the threshold, the
solution is also simple, i.e. given by Eqs. (26) and (27), and the mode belongs to N3.

If the input energy is below the threshold equation one has to solve Eq. (21). Although there is no explicit
solution of this transcendent equation, it provides an implicit function, which uniquely determines the optimal
value of γq

in,i for given input energy λi and as a consequence of all other eigenvalues. This corrersponds to a mode
in N2. By solving numerically Eq. (21) below the threshold λthr (28) and using Eq. (23) above the threshold we
plot in Fig. 1 the total energy of q- and p-quadratures of one mode as a function of the input energy λ for one
mode with noise eigenvalues γq

env > γp
env.

We see that for λ = 1 the mode belongs to set N1 and the total energies of the quadratures are sums of the
noise eigenvalues with the vacuum energy of the quadratures. With growing λ the mode passes to the set N2 and
the solution of Eq. (21) leads to an almost linear increase of γq

env = 2, γp
env = 1, suggesting that some simple and

at the same time rather good approximations of the exact solution may exist. When the input energy exceeds
the threshold λthr the mode belongs to the water-filling set N3 where γq and γp become equal.

In agreement with this picture, the analysis of Eq. (21) shows that the sets, N1 (λ = 1) and N3 (λ ≥ λthr)
correspond to limiting cases of this equation. Indeed, for the set N3, the input energy is enough for the water-

filling solution to hold. Therefore the left hand side of Eq. (21) vanish due to the equality of the total energies

of q- and p-quadratures, γp
i = γq

i . Simple algebra shows that the input eigenvalues given by Eq. (26) let also the
second term of Eq. (21) vanish. Note that the transition point λ = λthr is also described by this solution. In
the limit λ → 1 we easily recover the set N1 where the input energy is not used for modulation in both q- and
p-quadratures and the total energy of each quadrature is equal to its corresponding output energies, Eq. (31).
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Figure 2. Capacity of the one mode channel vs. s. The dashed curve shows the capacity with Nenv = 1
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values for Nenv (solid curves) read from top to bottom {10−5, 10−3, 0.01, 0.05, 0.1, 0.2, 0.4, 0.5}. The input energy is λ = 3.

5. OPTIMAL ENVIRONMENT FOR ONE MODE

Here we consider the problem of optimization of the Holevo quantity not only with respect to the input energy
distribution but also with respect to the noise variances.16 We parametrize the noise eigenvalues as

γq,p
env = Nenve

±s (33)

where Nenv =
√

γq
envγ

p
env is the symplectic eigenvalue (or temperature) of the noise and s is a parameter char-

acterizing the squeezing of the noise. In this parametrization we will look for the optimal value of s for fixed
Nenv.

First of all, numerically solving Eq. (21) we plot in Fig. 2 the capacity C as a function of s for various Nenv

and fixed input energy λ. Each point of this graph corresponds to the optimal choice of the input and modulation
eigenvalues. We emphasize the following properties:

1. All curves have the same asymptotics for large s.

2. There exist two types of curves: for small Nenv (upper curves) one finds a maximum of capacity at a
finite s which goes to larger s with increasing Nenv; for Nenv greater than certain value the curves become
monotonous such that C increases up to the maximum value attained asymptotically at infinite s.

3. At small s all curves have a positive curvature and start to grow with increasing s and then in each curve
there exists a discontinuous change of curvature from positive to negative.

The last observation is explained by the fact that at s = 0 both noise quadratures are equivalent and the
input energy is equally distributed among them. It is easy to see from Eq. (28) that in this case the threshold
value for the input energy corresponds to the vacuum and for any λ > 1 the channel belongs the set N2. With
increasing s the threshold value λthr starts to grow, however, by continuity in a certain interval of s the condition
(28) holds. When λthr exceeds our chosen λ, which is fixed, the channel passes to the set N3. At the transition
point the curvature changes its sign. The apparent discontinuity of the first derivative of C is in agreement with
the discontinuity of the first derivative of γq,p

i in Fig. 1 at the transition point.



In order to analyze further this behavior and to find the position of the maximum of C we have to modify our
optimization problem (16). We include in the gradient ∇ the partial derivative with respect to s (as we consider
only one mode we drop the index i). As a result we obtain one additional equation.

g′
(

ν̄i − 1
2

)

2ν̄i

(

esγp
i − e−sγq

i

)

− g′
(

νout,i − 1
2

)

2νout,i

(

esγp
out,i − e−sγq

out,i

)

= 0. (34)

In fact if Eq. (34) is satisfied then the partial derivative of the capacity with respect to s is zero: ∂C/∂s = 0.
This corresponds to both an extremum (maximum) of C as a function of s and the horizontal asymptotics of
C at large s. Together, Eq. (21) and Eq. (34) form a system of equation determining both the optimal input
energy distribution and optimal squeezing s∗ which achieve the maximal capacity. Although this system does
not have explicit solution we were able to find an exact expression for the optimal input energy distribution at
the extremal point s∗

γq
in =

1

2
λ , γp

in + γp
mod =

1

2
λ . (35)

Being inserted into Eq. (21) this condition results in a compact equation

g′
(

ν̄i − 1
2

)

2ν̄i

ez sinh(s) =
g′
(

νout,i − 1
2

)

2νout,i
sinh(s − r). (36)

whith the new notation γq,p
in = 1

2e±r

In order to find out when the finite maximum s∗ does exist we analyze Eq. (36) using the following expansion

g′
(

x − 1

2

)

=
1

x log 2

∞
∑

k=0

(2x)−2k

2k + 1
. (37)

The first two terms of the expansion (37) used in Eq. (34) result in the equation, which gives a unique value of
Nenv in the limit of large s where all positive powers of e−s can be neglected:

N lim
env =

1

2
√

3
. (38)

At this value the maximum of capacity C as function of s tends to the infinite squeezing of the noise. One
can see at Fig. 2 that this tendency takes place only for Nenv ≤ 1

2
√

3
because for higher values of the thermal

contribution to the noise there is no maximum in s and the capacity monotonously approaches the asymptotic
value from below. Therefore, we conclude that the value given by Eq. (38) is a critical value which separates two
regimes: one whith monotonous increase of the capacity with s and another with a maximum of the capacity at
a finite s. This can be further observed in Fig. 3, where the optimal squeezing of the environment s∗ is plotted
vs. Nenv. One confirms that the squeezing is highly diverging when Nenv → N lim

env.

Although Eq. (38) was obtained from first two terms of the expansion (37) we have shown that all other
terms do not contribute to the terms of zero order in e−s, which results in Eq. (38) in the limit of infinite s.

6. CONCLUSION

We studied the one-shot classical capacity of quantum optical Gaussian channels with additive phase-dependent
noise. For the case of a single mode, we described in detail the optimal energy distribution among the quadratures
as a function of the noise spectrum and of the amount of input energy allocated to the mode. We have shown that
in agreement with the previous results15–17 there is an input energy threshold above which the optimal energy
distribution corresponds to a thermal channel with equal total energy in both quadratures. This corresponds to
the water-filling solution known for classical Gaussian channels. In the quantum case, this implies a pure input
state with the squeezing parameter equal to the squeezing parameter of the noise. We have analyzed the solution
below the threshold, where only one quadrature (the one with lower value of the noise energy) is modulated.
We observed that with increasing input energy, the optimal quantum state evolves from a coherent state to a
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Figure 3. Optimal squeezing s∗ vs. “temperature” of the environment Nenv. From top to bottom the input energies were
fixed to λ = {5, 3, 2}.

squeezed state with a squeezing parameter growing from one at vacuum input to the squeezing parameter of
the noise at the threshold value of input energy. Curiously, the growth of input energy eigenvalues of both
quadratures is almost linear although the solution is given by a transcendent equation, which does not possess
any explicit solution.

We studied also in detail how the one-shot classical capacity of one mode depends on the squeezing parameter
of the noise for different noise “temperatures” given by the symplectic eigenvalue of the noise. Our result shows
that there exist a threshold value which splits the phase-dependent noise models in two types. In the modes with
the symplectic eigenvalue of the noise exceeding the threshold value, the capacity is increasing monotonously with
the noise squeezing and achieves an asymptotic value for infinite squeezing. This asymptotic value is universal as
it does not depend on the symplectic eigenvalue of the noise. In the modes with the symplectic eigenvalue of the
noise lower than the threshold value, the capacity attains a maximum at a finite squeezing of the noise and the
same universal asymptotic value of the capacity at infinite noise squeezing holds. We have exactly determined
the threshold value for the symplectic eigenvalue (or “temperature”) of the noise and the relation between the
given input energy and the optimal squeezing of the quantum input state.

We expect our results to be useful for the study of multimode phase-dependent channels and ultimately of the
capacity of such channels as well as for the study of the optimal environment (noise model) which provides the
maximal capacity for a given distribution of the noise “temperature”. This may be useful for the development
of optical connections of future “all-optical” information processing systems.
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