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We study the problem of simulating quantum correlations with the help of shared

randomness, supplemented with additional resources. More specifically, we fo-

cus on the case of local projective measurements on a qubit pair in a maximally

entangled state for which different protocols using different resources have been

proposed. We introduce a generic method to derive these protocols, which clar-

ifies the link between them and sheds new light on the problem.

INTRODUCTION

The main goal of quantum information theory is to quantify the power of quantum

resources. One of the basic resources useful in quantum information processes is en-

tanglement, which was first presented as a paradox in the gedanken experiment of Ein-

stein, Podolsky and Rosen [7]. In this experiment, two distant parties, Alice and Bob,

share a quantum entangled system and perform an arbitrary quantum measurement on

their part of the system. The special case of projective measurements on a qubit pair in

the singlet state will be the focus of our work. Bell showed that the correlations exhib-

ited by such a quantum system could not be reproduced by any model based on local

variables only, even with the help of an unlimited amount of shared randomness. This

establishes the non-locality of quantum mechanics. Nonetheless, Alice and Bob could

simulate the quantum correlations if, in addition to shared random variables, they are

given other resources. In order to gauge non-locality, it is interesting to identify and

quantify these resources. Several protocols have previously been proposed to simulate

these correlations, using different additional resources: classical communication be-

tween Alice and Bob [9, 2, 3, 6, 12], post-selection [8], and, finally, a resource called

a non-local box [4].

The purpose of this paper is to show that three of the main protocols can all be

derived from a basic local protocol, which in turn arises naturally from a protocol

which requires an infinite amount of communication [11]. Our method gives a coherent
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view of these different protocols and thus a better understanding of the relationship

between them.

QUANTUM CORRELATIONS

We consider the following EPR experiment (see Fig. 1): Alice and Bob share a

qubit pair in the singlet state � ���������
	��
��������	�������� � ; that is a maximally entangled

state of two qubits. Alice and Bob then each receive the classical description of a

projective measurement they have to perform on their respective qubit. These can be

represented by unit vectors ���� and
����

pointing in some direction on the Bloch sphere.

The result of Alice’s and Bob’s measurements, �! #"$�&%'�(�*) and +, -"$�*%'�.�/) , are

then distributed according to the following probabilities

0 �1�.%2+3�4� �5�6��+ �� �87 ����9 % (1)

so that their joint expectation value :;�<+3� is given by

:;�<+3����� ����=7 ��>��? (2)

If the marginal expectation values :;��� and :@+3� are 	 , which will always be the case in

this manuscript, Eq. (1) is equivalent to Eq. (2).

Alice Bob

���� ��>�� ���

� +
Figure 1: EPR experiment. Alice and Bob share a pair of qubits in the singlet state� ���A�,�2�
	B���5�C���'	��D��� � � . Both perform a measurement on their qubit, specified by

vectors E � or E � , and obtain results �8�8FG� or +-�HFG� .
SIMULATION OF QUANTUM CORRELATIONS

The problem is the following: Alice and Bob do not share an entangled state, but

want nevertheless to simulate the above experiment, that is, on inputs ���� and
�� �

, Alice

must output a value �I J"$�*%'�.�/) and Bob a value +K L"$�&%'�(�*) distributed according

to (1). It is well known that for appropriate measurement choices, the correlations

may violate the CHSH Bell inequality [5] and therefore are not reproducible by a local



classical model, even with an unlimited source of shared randomness. In the following

sections, we show how to solve this problem with additional resources.

Infinite amount of communication

Alice Bob

���� �� �����
� +

�� �

Figure 2: Schatten’s protocol. Alice and Bob may simulate the quantum correlations

with the help of one shared random vector E �  ���� if Alice sends her input E � to Bob.

It is clearly possible to solve this problem with protocols where Alice sends her

input ���� to Bob. Even though such protocols would not be efficient, as Alice needs

to send an infinite amount of information to communicate �� � to Bob, it is useful to

consider one of them here, proposed by Schatten [11].

This protocol makes use of one shared random variable
�� �

uniformly distributed

on the unit sphere ��� (see Fig. 2):� Alice sends �� � to Bob;� Alice outputs �8� sgn � �� �=7 �� � � ;� Bob outputs + � � sgn � ���� 7 � �� �	� �� � ��� sgn � �� � 7 �� � � ;
where sgn ��
 �4��� for 

� 	 and sgn ��
 �4� �(� for 

� 	 ��
  
��� .

The expectation value :;�<+3� then readily follows from the spherical integral������� �
sgn � ����H7 � �� ��� �� � ��� � ����87 �� � % (3)

where
�� � �-����� �"!$#&%'�)(�%*�+�,�-!$�+�,�.(�%*#�%/�0!&� and

� � �1��� �"! � ! � ( � � 9/2 � .
Four equivalent local protocols

We will now show that the most efficient known protocols can all be derived from four

equivalent local protocols. The initial idea is to start from a protocol that achieves the

quantum correlations up to a multiplicative constant, without using any communica-

tion (local protocol). Finding inspiration in Schatten’s protocol, we may define the



following protocol where, intuitively, Bob replaces �� � by a new random variable
�� � �

(Bob “guesses” �� � ):� Alice outputs �8� sgn � �� �=7 �� ��� � ;� Bob outputs + � � sgn � �����? � �� ��� � �� � � � � .
Using the following spherical integral� �&��� � � �� �87 �� � � sgn � �� � 7 �� � �4� �� �87 �� �

� % (4)

together with (3), it is straightforward to check that this protocol induces :;��+ � �� �� � 7 �� � �&� , that is, half of the quantity we need.

Let us now define the following notation:


��5� sgn � ����=7 �� � ��� and ���5� sgn � �� � 7 �� � �'� for �G�#�*%���% � %'�(% (5)

where
� �� � � �� ��� � �� � � and

� �� 	 � �� ��� � �� � � . In this protocol, � � 
 � and + � �
� � .

Applying symmetries ��� � �� ��� % �� � � �

� � �� � �
% �� ��� � , ����� � � �� � % � �� 	 ��
� � � �� 	 % � �� � � and ��� ���
to this protocol, we obtain four equivalent protocols ��� which all achieve� � ����� ��� � � �D�
�'+�� � � �

��� 7 ����
� ��� ��� ?'?'? % 9 % (6)

where the four output pairs �1���*%2+
�'� are given in the following table.

Protocol ��� � � � � ��� � �
Alice’s output ��� 
 � 
 � 
0� 
0�
Bob’s output +�� �
� � ��� 	 ��� � � 	

Non-local boxes

We now show how to obtain, from the four local protocols above, a protocol [4] that

achieves the full quantum correlations, :1��+3� �K� �� � 7 ����
, if we allow Alice and Bob

to share a new resource usually called non-local box.

A PR non-local box [10] is a device shared by Alice and Bob, that has two inputs
 %!�  ="$�&% �.�*) for Alice and Bob, respectively, and outputs
� % �  "$�&%'�(�*) for Alice

and Bob, respectively, according to the distribution

0 � � % � � 
 %!� � � " �� if
� 7 � ��# ��
 %!�B� %

	 otherwise,
(7)



where # ��
 %!�B��� � � � 
 � � � 
 � � �&� . This resource has been studied because of its

interesting properties. Firstly it is maximally non-local, in the sense that it maximally

violates the CHSH Bell inequality. Secondly it is causal, in the sense that Alice’s

output
�

is independent of Bob’s input � , 0 � � � 
 %!� � � 0 � � � 
 � (and vice-versa). Finally,

it is a strictly weaker resource than one bit of communication: due to the causality

property, it may not be used to communicate but, on the other hand, it may be shown

that one use of a non-local box may be simulated by one bit of communication [4].

First, let us note that summing Eq. (6) over the four protocols,

� �� �87 ���� � � � ����� ��� � � ��� �(�
� 
 � � � � 
 � � 	 � 
0� � � � 
0� � 	�
?

(8)

In this expression, 
 � ’s are known by Alice and � � ’s by Bob. If we could factor the

integrand, which takes values F3� , into a product �<+ where � � F3� depends only on
�� ’s and + �KF3� only on � � ’s, we would have a protocol that achieves the quantum

correlations. Of course, by Bell inequalities, this is not possible as is, so what can we

do? Trying to factor the expression, we could write for instance

� �� �87 ���� � � � �&��� ��� � � �
� �-
 � � � � � � � � � 	 � 
 � 
0��� 
 � 
0� � � � 	� (9)

� � � �&��� ��� � � �
� �-
 � � � � # � 
 � 
0��%!� � � 	 � ? (10)

If Alice and Bob could use a special resource that on input 
 outputs
�

to Alice,

and on input � outputs
�

to Bob, such that
� 7 � � # ��
 %!�B� , this would finish the job of

factoring expression (8). Surprinsingly, this is exactly what a PR non-local box [10]

does.

Therefore, if Alice and Bob share a non-local box, they may use it to simulate the

quantum correlations with the following protocol, as was proven by Cerf et al [4]:� Alice inputs 
 �1
 � 
0� into the box and gets back
�
;� Bob inputs �3� � � � 	 into the box and gets back

�
;� Alice outputs �8� � 
 � ;� Bob outputs + � � � � � .

By invariance under symmetries � , � � and � � ��� in Eq. (8), and choosing to include

the � �(�
� sign into the function # or not, we finally have
�

equivalent protocols that

make use of the
�

possible maximally non-local boxes [1], corresponding to functions#������B��
 %!�B� �	��# ��
 
 %
� �B� with 
�%�� %�� �8FG� .



One bit of communication

Toner and Bacon [12] were the first to give a protocol that simulates quantum correla-

tions with one bit of communication. Since a non-local box may always be simulated

by one bit of communication, another protocol can be derived from the protocol in the

previous section. Here, we show specifically how to derive Toner and Bacon’s protocol

in our setting.

Starting from expression (8), we may write

� �� �87 ���� � � � ����� ��� � � � � � �-
 � � � � � � � � � 	�
� � �"
0� � � � �5� � � � 	� � ? (11)

We see that the integrand takes value �-
 � � � when � � � 	 � � , and �-
 � � � when� � � 	 � �.� . Therefore, we can obtain a new protocol, where Bob always outputs� � , while Alice outputs �-
 � or �-
0� depending on the value of � � � � � 	 . As ini-

tially only Bob knows � , he must send its value to Alice, which requires one bit of

communication. Hence, we find Toner and Bacon’s protocol [12]:� Bob computes �3� � � � 	 and sends its value to Alice,� Bob outputs ��� � ,� Alice outputs 
 � if �3�#� or 
0� if �G���.� .
Let us note that reorganizing the terms of Eq. (11), we may find

�
different but equiv-

alent protocols,
9

where Bob sends a bit to Alice and
9

the other way around.

Detector inefficiency

In a real experiment, Alice’s and Bob’s detectors could be partially inefficient. Their

efficiency, parameterized by ��� � , is the probability of producing an output. By

exploiting this inefficiency (sometimes called detection loophole), we will derive a

protocol which reproduces the quantum correlations with post-selection, where Alice

or Bob are allowed to occasionally not produce an output [8].

Starting back from Eq. (6), we have

� ����=7 ���� � � � ���0� ��� � � �
� �-
 � � � � � � � � � � 	 � (12)

� � � ���0� ��� � � �
� �-
 � � � � 0 � �� ��� % �� � � ��% (13)



where 0 � �� ��� % �� � � �4� � � � � � 	 , that is,

0 � �� ��� % �� � � � � " � if sgn � �� � 7 � �� � �4� sgn � ���� 7 � �� 	 ��%	 otherwise
? (14)

It is easy to check that 0 � �� ��� % �� � � � � 	(� � �� ��� % �� � � � and ���
��� � ��� � � � 0 � �� ��� % �� � � � � � , and thus

that 0 � �� ��� % �� � � � may be considered as a density function. Therefore, Eq. (13) means that

Alice and Bob could reproduce the quantum correlations by outputting � � 
 � and+ �K��� � provided that they share random variables
�� ���

and
�� � � distributed according

to 0 � �� ��� % �� � � � . One way of generating this distribution follows directly from (14): start

from uniformly distributed
�� ���

and
�� � � , check whether sgn � ���� 7 � �� � �G� sgn � �� � 7 � �� 	 � ,

and discard the pair if it is not the case. However, only Bob can perform the test, so a

workaround is to allow him sometimes not to produce any output:� Alice outputs �8�	
 � ,� Bob checks whether � � � � 	 . If so, he outputs +K�K��� � . Otherwise, he does

not produce any output1.

Let us note that when Bob outputs, � � � � 	 , so we may rewrite +K�K� sgn � �� � 7� �� � � �K� sgn � �� � 7 � �� � � ���� 7 � �� 	 � �K� sgn � ���� 7 �� ��� � . Therefore, + depends on a single

random variable
�� ���

, just as Alice’s output �I� sgn � ���� 7 �� ��� � does. So our protocol is

equivalent to that of Gisin and Gisin [8] since the marginal distribution of
�� ���

is given

by 0 � �� ��� �.� � � �� � 7 �� ��� � . One advantage of our approach, in addition to clarifying the

relation of this protocol with the previous ones, is to give a nice method to generate0 � �� ��� � by starting from two uniform random vectors
�� ���

and
�� � � and performing a test.

CONCLUSION

In the particular problem of simulating a projective measurement on the bipartite

singlet state, we have shown that the most efficient protocols known using different

resources [8, 12, 4] can all be derived from a local protocol. This gives a new and

coherent approach for the problem, which could be helpful to solve generalized prob-

lems, such as the simulation of multiparty quantum correlations, or to improve the

known results for simulating general measurements.

1In this protocol, Bob’s detector efficiency is only �������
	�� , while Alice has a perfect detector,
�

���� . With a slight modification, we can get ��
����
��������� (see [8] for details).
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