Quantum query complexity: Adversaries, polynomials and direct product theorems

Jérémie Roland

Université Libre de Bruxelles

NEC Laboratories America

Based on joint work with

Andris Ambainis Loïck Magnin

Troy Lee Martin Rötteler

[AMRR, CCC'11, arxiv:1012.2112] [LeeR, CCC'12, arxiv:1104.4468] [MagninR, STACS'13, arXiv:1209.2713]

Quantum Algorithms Day

Bristol, April 2013

Introduction

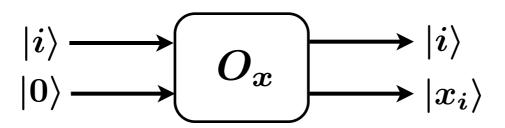
Classical query complexity

- **O** Function f(x), where $x = (x_1, \ldots, x_n)$
- **O** Oracle $O_x: i \to x_i$
- $lacebox{O}$ Goal: Compute f(x) given black-box access to O_x

Randomized query complexity $R_{\varepsilon}(f)$ Minimum # calls to O_x necessary to compute f(x) with success probability $(1 - \varepsilon)$

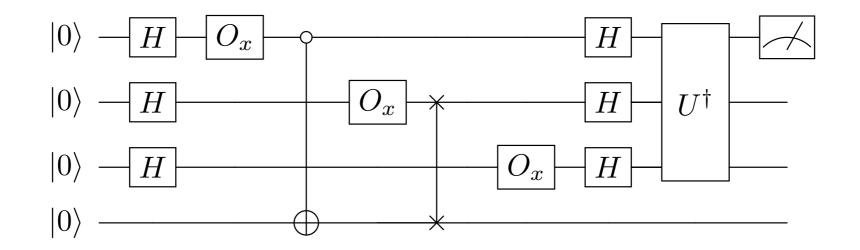
Quantum query complexity

* Quantum oracle:



***** Extra power:

Can query O_x in superposition $\Rightarrow Q_{\varepsilon}(f) \leq R_{\varepsilon}(f)$



Quantum Lower bounds

- st Query complexity: Compute f(x) given black-box access to $x = (x_1, \dots, x_n)$
- st Different lower bound methods for $Q_arepsilon(f)$:
 - Adversary methods:
 - Idea: bound the change in a progress function for each query
 - Different variations: additive, negative weights, multiplicative
 - Polynomial method:
 - Idea: bound the degree of polynomials approximating the function

Question I

* The different methods have different advantages:

- Additive adversary with negative weights:
 - Tight for bounded error
- Multiplicative adversary and polynomial:
 - Better bounds for low success probability
- Bounds for specific problems

Question II

* Suppose we want to evaluate f on k different inputs $x^{(1)},\ldots,x^{(k)}$

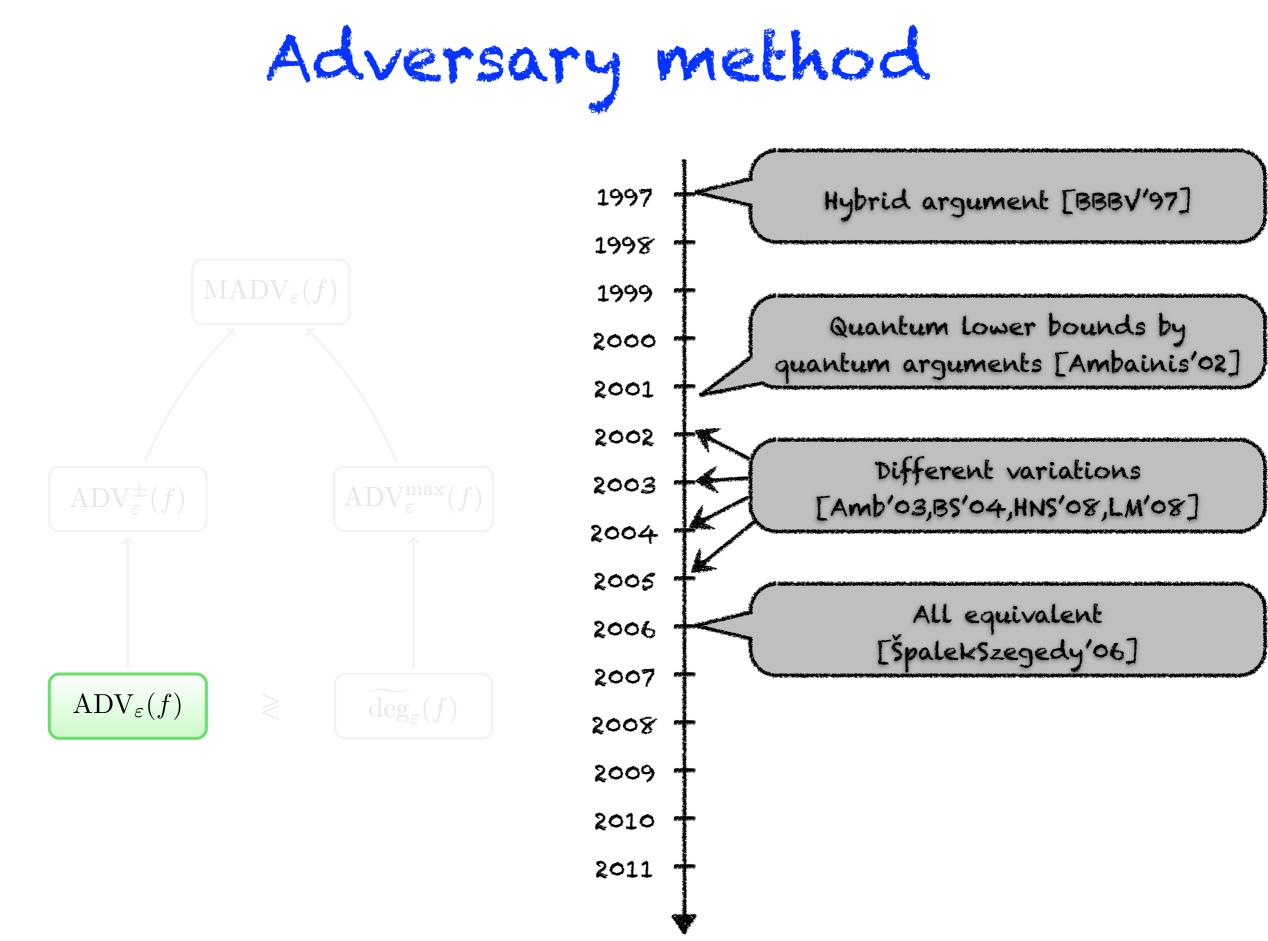
Question II Can we do much better than just applying k times the algorithm for f?

 \ast If not :"Strong direct product theorem" (SDPT) for f

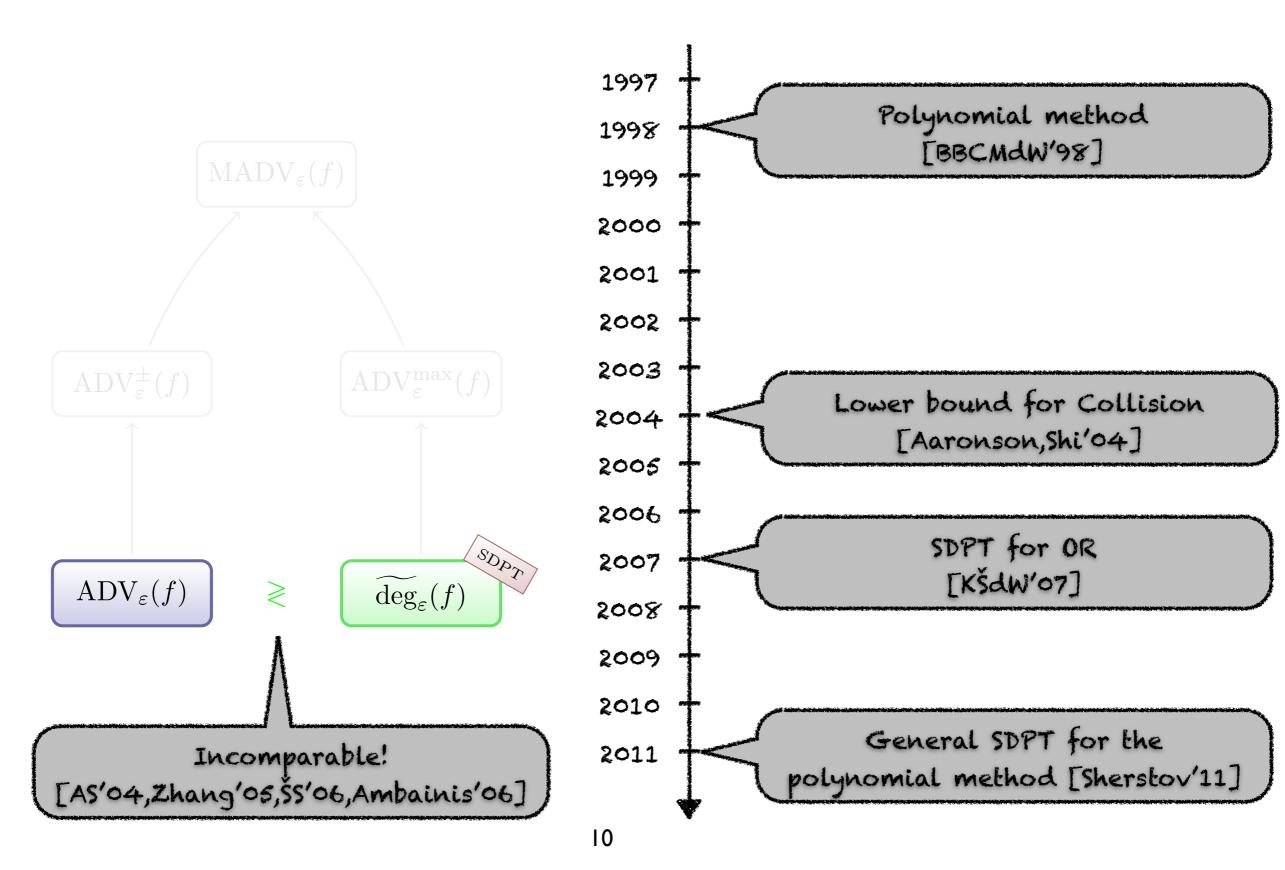
Success p for 1 application \Rightarrow success p^k for k applications

- Requires to prove lower bound for exponentially small success probability
- * SDPTs known for:
 - Classical query complexity [Drucker'II], one-way classical communication [Jain'I0], parallel repetition theorem for games [Raz'98]

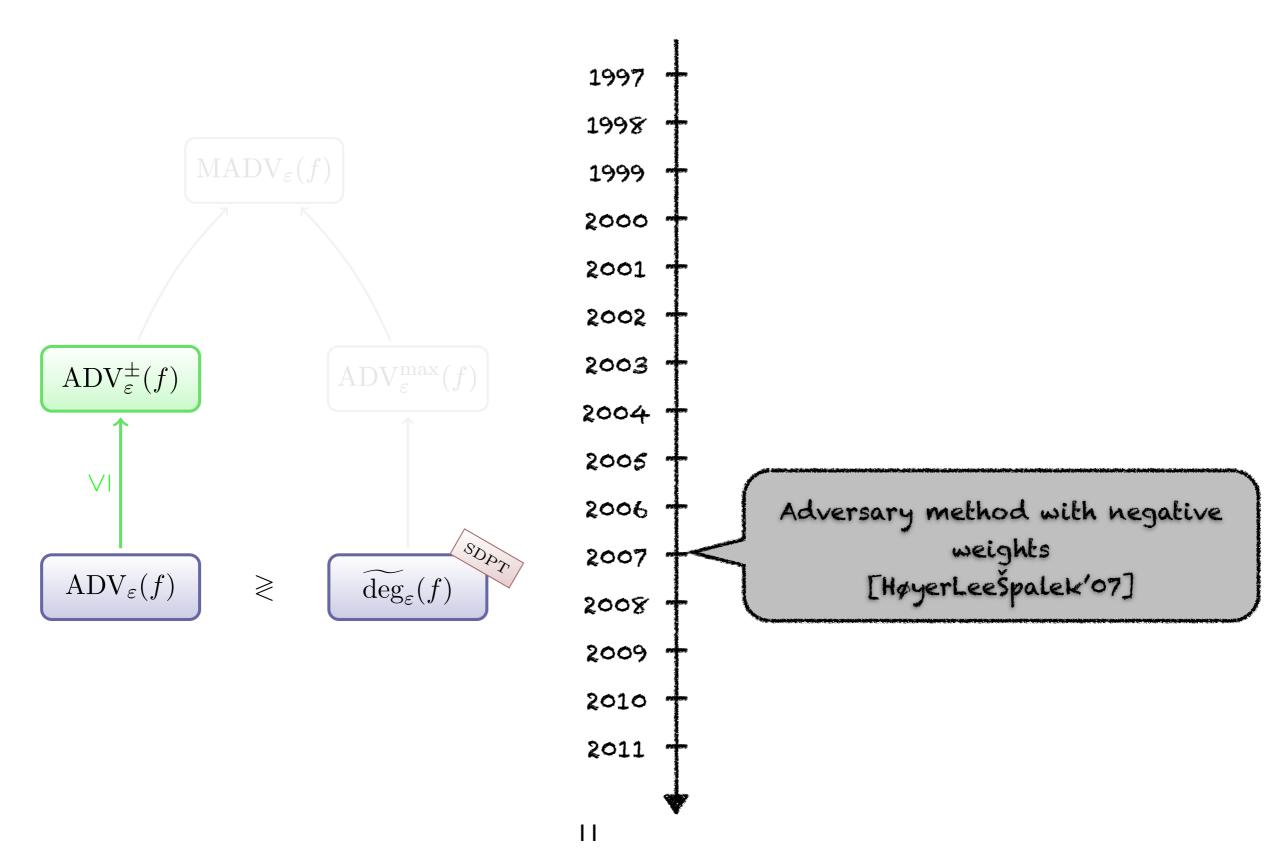
A brief history of Lower bound methods



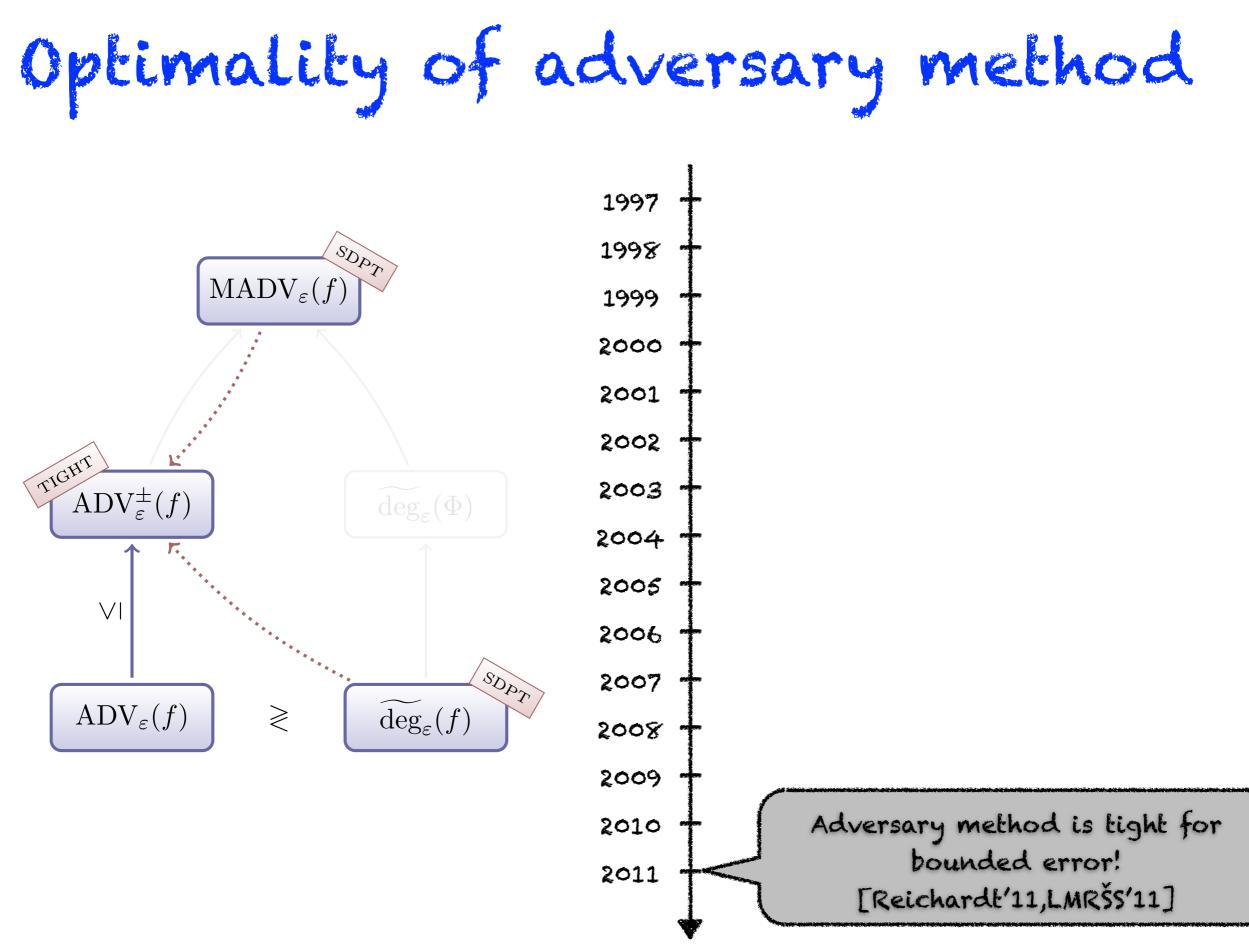
Polynomial method



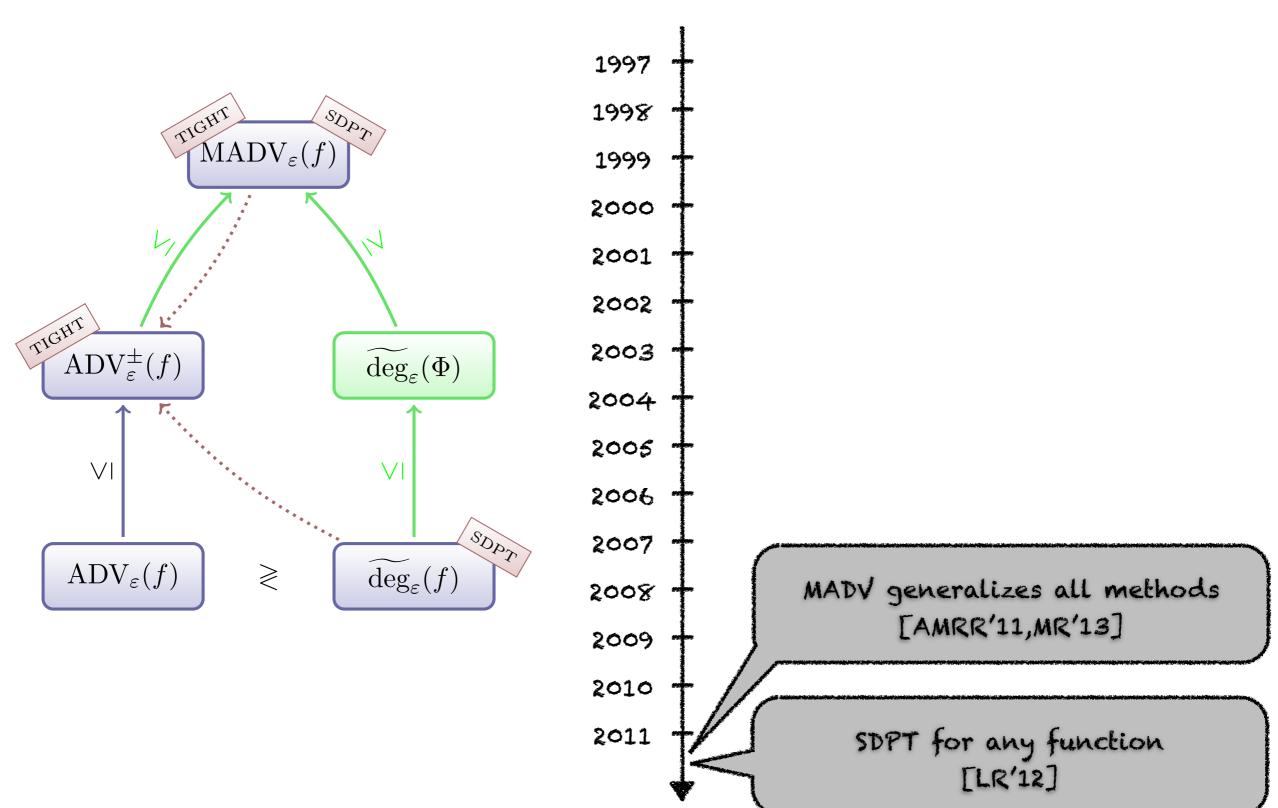
Generalized adversary method



Multiplicative adversary method 1997 SDPT 1998 $MADV_{\varepsilon}(f)$ 1999 2000 2001 2002 2003 $ADV_{\varepsilon}^{\pm}(f)$ 2004 2005 \vee New Lower bounds and SDPT 2006 [AŠdW'06] SDPT 2007 $ADV_{\varepsilon}(f)$ \geq $\deg_{\varepsilon}(f)$ Multiplicative adversary method 2008 [Špalek'08] 2009 2010 2011



Our results



Techniques

Quantum state generation

- Set of quantum states $\{\ket{\psi_x}:x\in\mathcal{D}^n\}$
- ullet Oracle $O_x: |i
 angle |b
 angle \mapsto |i
 angle |b\oplus x_i
 angle$
- Goal: Generate $\ket{\psi_x}$ given black-box access to O_x
- Observation: Problem only depends on Gram matrix

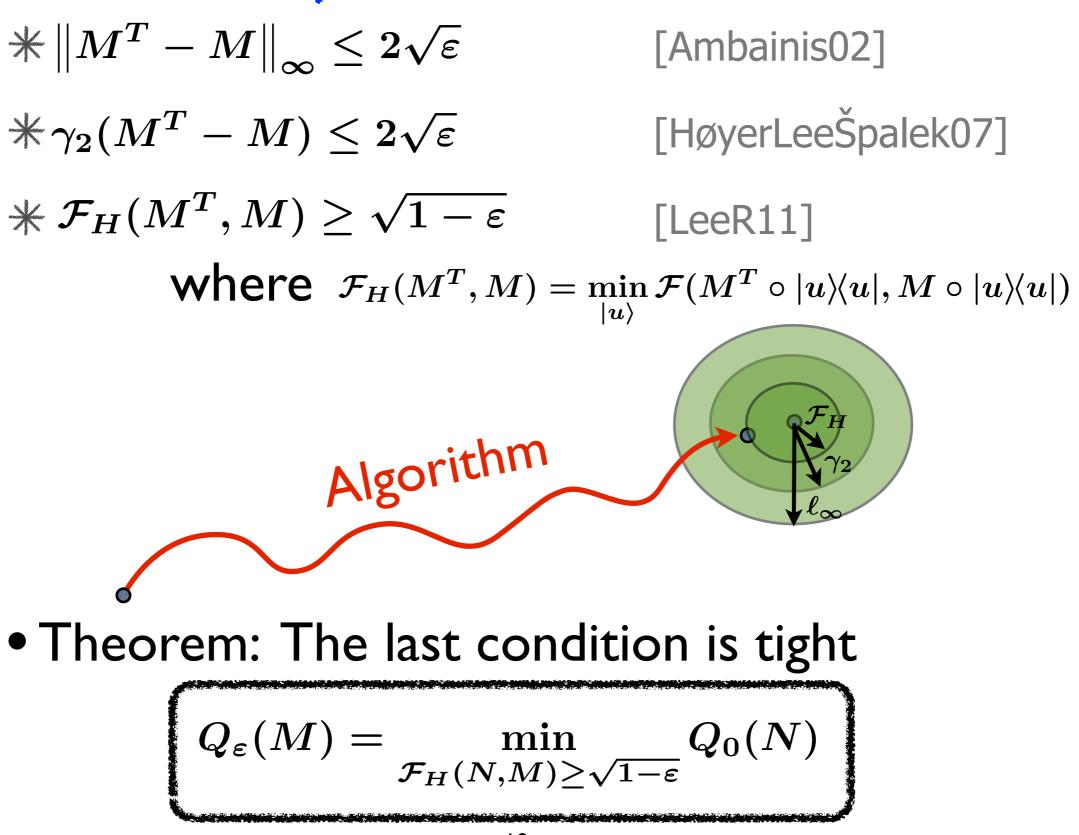
$$M_{xy} = \langle \psi_x | \psi_y
angle$$

Quantum query complexity
$$Q_{\varepsilon}(M)$$

Minimum # calls to O_x necessary to generate
a state $\sqrt{1-\varepsilon}|\psi_x\rangle|\bar{0}\rangle + \sqrt{\varepsilon}|\mathrm{error}_x\rangle$
work space

Reducing to zero-error case $|\psi^t_x
angle$: state of the algorithm after t queries on input x* Gram matrix $M_{xy}^t = \langle \psi_x^t | \psi_y^t \rangle$ (All-1 matrix * Initially: $|\psi^0_x
angle = |ar{0}
angle \;orall x \; \Rightarrow M^0 = \overset{f V}{J}$ * At the end: $|\psi_x^T
angle pprox |\psi_x
angle \ \Rightarrow M^T pprox M$ $M^{\bullet} M$ Algorithm What distance?

Output conditions



From adversaries to random variables

- * Adversary methods involve a Hermitian matrix Γ called "adversary matrix".
- * We can view Γ as an observable, and consider the random variable obtained by measuring this observable on a state.

Lemma
Let
$$p, p'$$
 be the distribution of random
variables obtained by measuring Γ on ρ, ρ' .
Then, we have $\mathcal{F}(\rho, \rho') \leq \mathcal{F}(p, p')$
Classical fidelity: $\sum_{i} \sqrt{p_i p'_i}$.

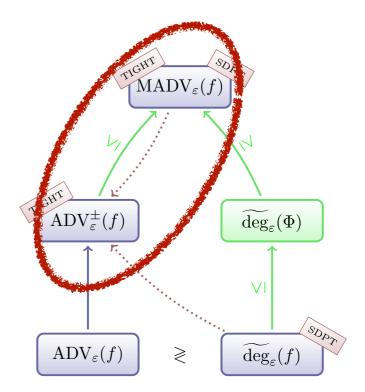
From adversaries to random variables

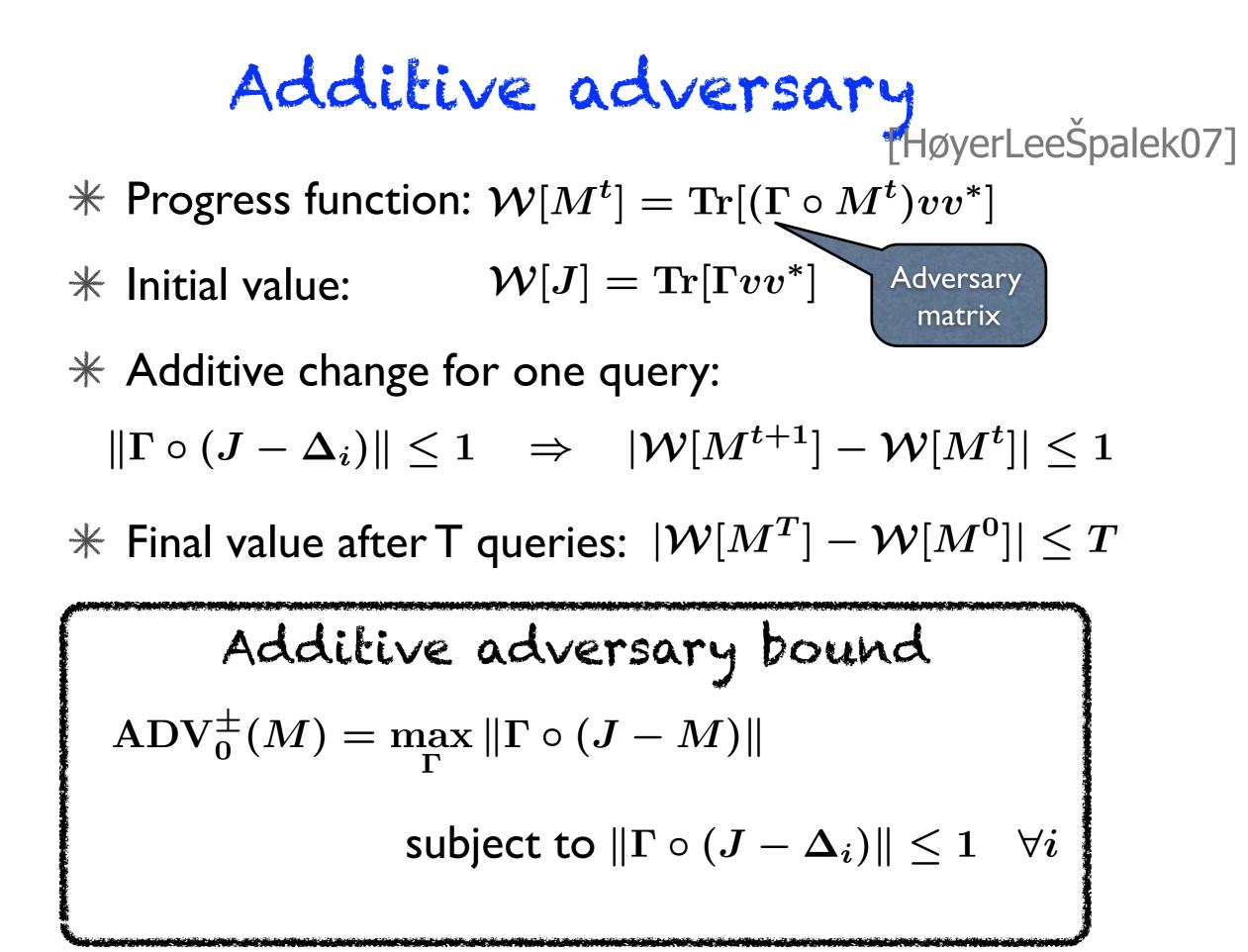
- * Using this idea, we can use properties of classical distributions to prove properties of adversary bounds.
- * In particular, the following result is key to the proof of the strong direct product theorem.

$$\begin{array}{ll} \mathsf{Lemma} & & & & & \\ \mathsf{Let}\ A, A_1, \dots, A_k \text{ be random variables on } [1,3] \, . \\ \mathsf{Let}\ A \sim p \text{ with } E_p[A] = 2 \text{ and } (A_1, \dots, A_k) \sim q \\ & & \\ \mathsf{Then} \\ & \mathcal{F}(p^{\otimes k},q) \geq \sqrt{\delta^k} \ \ \Rightarrow \ E[\Pi_l A_l] \geq \left(\frac{3\delta}{2}\right)^k \end{array}$$

* Note: this would be trivial if A_1, \ldots, A_k were independent.

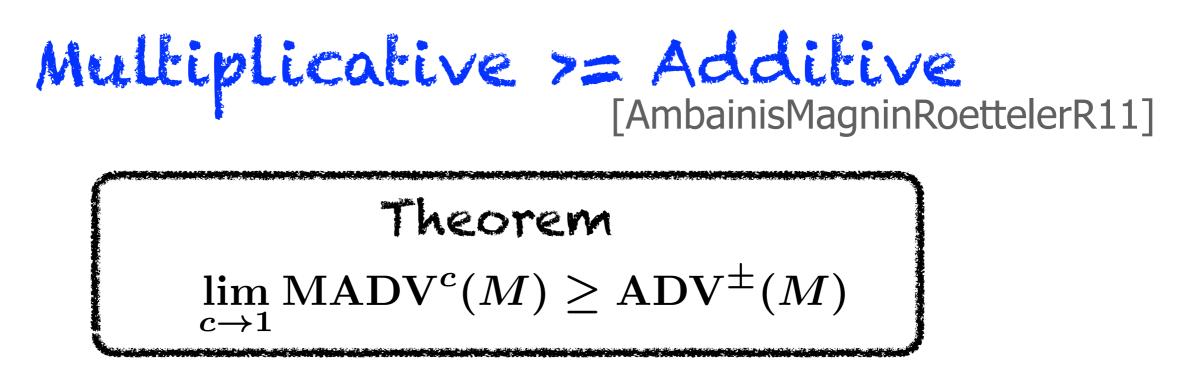
Multiplicative >= Additive





Multiplicative adversary [Špalek08]
* Progress function:
$$W[M^t] = \operatorname{Tr}[(\Gamma_m \circ M^t)vv^*]$$

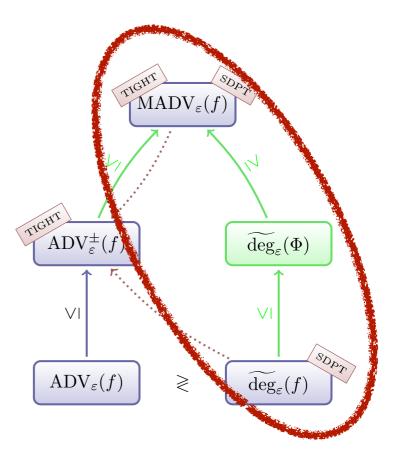
* Initial value: $W[J] = \operatorname{Tr}[\Gamma_m vv^*]$
Adversary
matrix
* Multiplicative change for one query:
 $c^{-1} \cdot \Gamma \preceq \Gamma \circ \Delta_i \preceq c \cdot \Gamma \Rightarrow W[M^{t+1}] \le c \cdot W[M^t]$
* Maximum value after T queries: $W[M^T] \le c^T \cdot W[J]$
Multiplicative adversary bound
MADV_0^c(M) = $\frac{1}{\log c} \max_{\Gamma_m \succeq 0} \log \frac{\operatorname{Tr}[(\Gamma_m \circ M)vv^*]}{\operatorname{Tr}[\Gamma_m vv^*]}$
subject to $c^{-1} \cdot \Gamma \preceq \Gamma \circ \Delta_i \preceq c \cdot \Gamma \quad \forall i$



Proof idea:

- * Use the adversary matrix: $\Gamma_m = I + \gamma \cdot (\|\Gamma\| I \Gamma)$
- * Show that it satisfies the conditions for $c = 1 + \gamma$
- * Show the we get the same bound for $\gamma \to 0$

Multiplicative >= Polynomial



Polynomial method [BBCMdW97]

* Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be a Boolean function

* Approximate degree:

 $\widetilde{\deg}_{arepsilon}(f) = \min_{p} \left\{ \deg(p) : orall x \in \{0,1\}^n, \ |f(x) - p(x)| \leq arepsilon
ight\}$

Polynomial method
$$Q_{arepsilon}(f) \geq rac{\widetilde{\deg}_{arepsilon}(f)}{2}$$

• Proof idea:

After t queries, $|\psi_x^t\rangle = \sum_k \alpha_k^t(x)|k\rangle$ where $\alpha_k^t(x)$ are polynomials of degree at most k Extended polynomial method [MagninR13] ***** Fourier basis: $|\chi_S\rangle = \frac{1}{\sqrt{2^n}} \sum (-1)^{x \cdot S} |x\rangle$ * Degree of a Gram matrix: $\deg(M) = \max_{S} \{ |S| : \operatorname{tr}(|\chi_{S} \rangle \langle \chi_{S} | M) \neq 0 \}$ * Approximate degree: $\widetilde{\deg}(M) = \min_{N} \left\{ \deg(N) : \mathcal{F}_{H}(M, N) \ge \sqrt{1 - \varepsilon} \right\}$ Extended polynomial method $Q_{\varepsilon}(M) \geq \deg_{\varepsilon}(M)$

• Proof idea:

* Initially: $M_0 = 2^n |\chi_{\varnothing}\rangle \langle \chi_{\varnothing}|$

st Querying bit x_i maps $|\chi_S\rangle$ to $|\chi_T\rangle$ with $T = S \cup \{x_i\}$

Max >= Polynomial
[MagninR13]
* Let
$$\Phi$$
 be the Gram matrix for computing f in the
phase, i.e., for generating $(-1)^{f(x)}|\bar{0}\rangle$

 $\mbox{ We have } Q_{(1-\sqrt{1-\varepsilon})/2+\varepsilon/4}(f) \leq Q_{\varepsilon}(\Phi) \leq 2Q_{(1-\sqrt{1-\varepsilon})/2}(f) \mbox{ [LeeR12]}$

$$\begin{split} & \underset{c \to \infty}{\text{Theorem}} \\ & \underset{c \to \infty}{\lim} \text{MADV}_{\varepsilon}^{c}(\Phi) = \widetilde{\deg}_{\varepsilon}(\Phi) \geq \widetilde{\deg}_{\varepsilon/2}(f) \end{split}$$

Proof idea:

* Use the adversary matrix: $\Gamma = \sum_{S} c^{|S|} |\chi_{S}\rangle \langle \chi_{S}|$ * Final value of the progress function:

$$\mathcal{W}[\Phi] = rac{1}{2^n} \sum_S c^{|S|} \mathrm{tr}(|\chi_S
angle \! \langle \chi_S | \Phi) \xrightarrow[c o \infty]{} rac{1}{2^n} c^{\mathrm{deg}(\Phi)}$$

Strong direct product theorem

SDPT [LeeR12]
Let
$$f^{(k)}(x^{(1)},\ldots,x^{(k)}) = (f(x^{(1)}),\ldots,f(x^{(k)}))$$

$$Theorem \ Q_{1-\delta^{k/2}}(f^{(k)}) \geq rac{k \cdot \ln(3\delta/2)}{C} \cdot Q_{1/4}(f)$$

Proof idea:

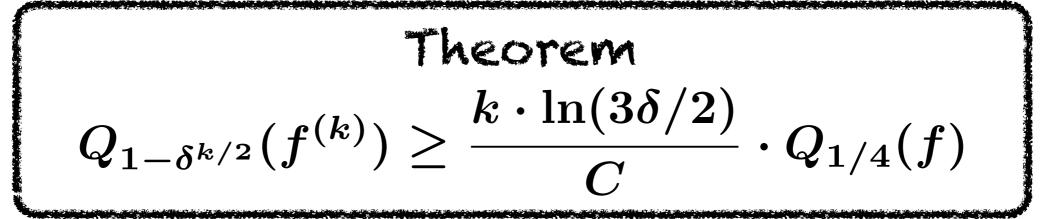
★ Use optimality of ADV[±]: Q_{1/4}(f) ≤ C · ADV₀[±](F) [LMRŠS11]
★ Use MADV₀^c(F) ≥ $\frac{ADV_0^{\pm}(F)}{2}$ for $c = 1 + \frac{1}{ADV_0^{\pm}(F)}$ ★ Using adversary matrix Γ_m^{⊗k}, we have:

$$\operatorname{MADV}_0^c(F^{\otimes k}) \ge k \cdot \operatorname{MADV}_0^c(F)$$

* Almost there... but this is for zero error!

SDPT

[LeeR12]



Proof idea (continued): $MADV_0^c(F^{\otimes k}) \ge k \cdot MADV_0^c(F)$

 $\begin{tabular}{ll} \mbox{{\sc Mad}} We have \mbox{MADV}^c_{\varepsilon}(F^{\otimes k}) = \min_M {\rm MADV}^c_0(M) \\ \mbox{subject to} \end{tabular} \begin{tabular}{ll} \mbox{Subject tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \begin{tabular}{ll} \mbox{Subject tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \e$

★ Using lemma about <u>classical fidelity</u>, we have $\mathcal{F}_{H}(F^{\otimes k}, M) \ge \delta^{k/2} \quad \Rightarrow \quad \operatorname{Tr}[(\Gamma_{m}^{\otimes k} \circ M)(vv^{*})^{\otimes k}] \ge (3\delta/2)^{k}$ ★ This implies: MADV^c_{1-δ^{k/2}}(F^{⊗k}) ≥ k · ln(3δ/2) · MADV^c₀(F)

Conclusion

Conclusion and future work

- * Multiplicative adversary $MADV^{c}(f)$ generalizes all known methods:
 - **O** Additive adversary $ADV^{\pm}(f)$ for $c \to 1$
 - O Polynomial method $\widetilde{\deg}_{\varepsilon}(f)$ for $c \to \infty$
- ★ Polynomial method ≈ fixed adversary matrix (independent of f) ⇒ insight for its limitations
- * General SDPT for any function
- * XOR lemma for Boolean functions
- * Other applications? (new lower bounds, timespace tradeoffs,...)

Support: