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Introduction
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Classical query complexity

Function        , where 

Oracle 

Goal: Compute         given black-box access tof(x) O
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Randomized query complexity

Minimum # calls to     necessary to compute    
with success probability 
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Quantum query complexity

 Extra power:
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Quantum lower bounds
Query complexity: Compute         given black-box 
access to

Different lower bound methods for            :

Adversary methods:

Idea: bound the change in a progress function for each 
query

Different variations: additive, negative weights, 
multiplicative

Polynomial method:

Idea: bound the degree of polynomials approximating 
the function
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f(x)

Q"(f)

x = (x1, . . . , xn)



Question I
The different methods have different advantages:

Additive adversary with negative weights:

Tight for bounded error

Multiplicative adversary and polynomial:

Better bounds for low success probability 

Bounds for specific problems
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Question I
Is there a method that combines all 

advantages?



Question II
Suppose we want to evaluate    on    different 
inputs 
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Question II
Can we do much better than just applying 

times the algorithm for   ?

f k
x

(1)
, . . . , x

(k)

k f

If not : “Strong direct product theorem” (SDPT) for

Success    for   application     success     for   applications

Requires to prove lower bound for exponentially small success probability

 SDPTs known for:

Classical query complexity [Drucker'11], one-way classical communication 
[Jain’10], parallel repetition theorem for games [Raz’98] 

f
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A brief history
of

lower bound methods



Adversary method
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MADV"(f)

ADV±
" (f) ADVmax
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ADV"(f) gdeg"(f)?
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Quantum lower bounds by 
quantum arguments [Ambainis’02]

Hybrid argument [BBBV’97]

Different variations
[Amb’03,BS’04,HNS’08,LM’08]

All equivalent
[ŠpalekSzegedy’06]



Polynomial method
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Polynomial method 
[BBCMdW’98]

General SDPT for the 
polynomial method [Sherstov’11]

MADV"(f)

ADV±
" (f) ADVmax

" (f)

ADV"(f) gdeg"(f)?
SDPT
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SDPT for OR
[KŠdW’07]

Lower bound for Collision 
[Aaronson,Shi’04]

Incomparable!
[AS’04,Zhang’05,ŠS’06,Ambainis’06]



Generalized adversary method
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Adversary method with negative 
weights

[HøyerLeeŠpalek’07]
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Multiplicative adversary method
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New lower bounds and SDPT
[AŠdW’06]

Multiplicative adversary method
[Špalek’08]



Optimality of adversary method
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Adversary method is tight for 
bounded error!

[Reichardt’11,LMRŠS’11]
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Our results
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MADV generalizes all methods
[AMRR’11,MR’13]

SDPT for any function
[LR’12]
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Techniques



• Set of quantum states

• Oracle 

• Goal: Generate         given black-box access to

• Observation: Problem only depends on Gram matrix

Quantum state generation
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Quantum query complexity

Minimum # calls to     necessary to generate        
a state  
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Reducing to zero-error case
      : state of the algorithm after   queries on input

Gram matrix

Initially: 

At the end:  
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Output conditions
                                            [Ambainis02]

                                            [HøyerLeeŠpalek07]

                                            [LeeR11]
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��MT � M
��
1  2

p
"

�2(M
T � M)  2

p
"

FH(MT ,M) �
p
1 � "

Algorithm

where

FH

�2

`1

Q"(M) = min
FH(N,M)�p

1�"
Q0(N)

• Theorem:  The last condition is tight     

FH(MT ,M) = min
|ui

F(MT � |uihu|,M � |uihu|)



From adversaries to random variables

Adversary methods involve a Hermitian matrix 
called “adversary matrix”.

We can view     as an observable, and consider the 
random variable obtained by measuring this 
observable on a state.

19

Lemma
Let       be the distribution of random 
variables obtained by measuring    on       .
Then, we have 

�

�

�

⇢, ⇢0

Classical fidelity:                 .                    

p, p0

X

i

q
pip0

i

F(⇢, ⇢0)  F(p, p0)



From adversaries to random variables
Using this idea, we can use properties of classical 
distributions to prove properties of adversary bounds.

In particular, the following result is key to the proof of the 
strong direct product theorem.

Note: this would be trivial if               were independent.
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Lemma
Let                   be random variables on       .
Let         with              and              
Then

[LeeR12]

A,A1, . . . , Ak [1, 3]

A ⇠ p (A1, . . . , Ak) ⇠ qEp[A] = 2

F(p⌦k, q) �
p
�k E[⇧lAl] �

✓
3�

2

◆k

)

☛
A1, . . . , Ak
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Multiplicative >= Additive



Additive adversary
Progress function:

Initial value:  

Additive change for one query: 

Final value after T queries:  
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Additive adversary bound

subject to

Adversary 
matrix

W[M t] = Tr[(� � M t)vv⇤]

ADV

±
0 (M) = max

�
k� � (J � M)k

k� � (J � �i)k  1 ) |W[M t+1] � W[M t]|  1

|W[MT ] � W[M0]|  T

k� � (J � �i)k  1 8i

[HøyerLeeŠpalek07]

W[J ] = Tr[�vv⇤]



Multiplicative adversary
Progress function:

Initial value:  

Multiplicative change for one query: 

Maximum value after T queries:  
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Multiplicative adversary bound

subject to

Adversary 
matrix

[Špalek08]

c�1 · � � � � �i � c · � ) W[M t+1]  c · W[M t]

MADV

c
0(M) =

1

log c
max

�m⌫0
log

Tr[(�m � M)vv⇤
]

Tr[�mvv⇤
]

W[J ] = Tr[�mvv⇤]

W[M t] = Tr[(�m � M t)vv⇤]

W[MT ]  cT · W[J ]

c�1 · � � � � �i � c · � 8i



Multiplicative >= Additive

Proof idea:

Use the adversary matrix: 

Show that it satisfies the conditions for

Show the we get the same bound for  
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Theorem
lim
c!1

MADVc(M) � ADV±(M)

c = 1 + �

� ! 0

�m = I + � · (k�k I � �)

[AmbainisMagninRoettelerR11]
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Multiplicative >= Polynomial



Polynomial method
Let                                be a Boolean function

Approximate degree:
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f : {0, 1}n ! {0, 1}

gdeg"(f) = min
p

{deg(p) : 8x 2 {0, 1}n
, |f(x) � p(x)|  "}

Polynomial method

• Proof idea:

After   queries, 

where           are polynomials of degree at most  ↵

t
k(x) k

| t

x

i =
X

k

↵

t

k

(x)|kit

[BBCMdW97]



Extended polynomial method
Fourier basis:

Degree of a Gram matrix:

Approximate degree:
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Extended polynomial method

• Proof idea:

Initially:

Querying bit     maps       to        with   

[MagninR13]

deg(M) = max

S
tr(|�Sih�S|M)

|�
S

i =
1

p
2n

X

x

(�1)x·S|xi

Q"(M) � gdeg"(M)

deg(M) = max

S
{|S| : tr(|�Sih�S|M) 6= 0}

gdeg(M) = min
N

n

deg(N) : FH(M,N) �
p
1 � "

o

M0 = 2n|�?ih�?|

|�Si |�T i T = S [ {xi}xi



Max >= Polynomial
Let    be the Gram matrix for computing    in the 
phase, i.e., for generating

We have  
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f�

(�1)f(x)|0̄i

Q(1�p
1�")/2+"/4(f)  Q"(�)  2Q(1�p

1�")/2(f)
[LeeR12]

Theorem
lim
c!1

MADVc
"(�) = gdeg"(�) � gdeg"/2(f)

Proof idea:

Use the adversary matrix:

Final value of the progress function:

 W[�] =
1

2n

X

S

c|S|tr(|�Sih�S|�) ���!
c!1

1

2n
cdeg(�)

� =
X

S

c|S||�Sih�S|

[MagninR13]
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Strong direct product theorem



SDPT

Proof idea:

Use optimality of           :

Use                                     for

Using adversary matrix       , we have:  

Almost there... but this is for zero error!
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Theorem

Let 
f

(k)(x(1)
, . . . , x

(k)) = (f(x(1)), . . . , f(x(k)))

Q1��k/2(f (k)) �
k · ln(3�/2)

C
· Q1/4(f)

ADV±

c = 1 + 1

ADV±
0 (F )

�⌦k
m

MADVc
0(F

⌦k) � k · MADVc
0(F )

MADVc
0(F ) �

ADV±
0 (F )

2

Q1/4(f)  C · ADV±
0 (F ) [LMRŠS11]

[LeeR12]



SDPT
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MADVc
0(F

⌦k) � k · MADVc
0(F )

We have 

Using lemma about classical fidelity, we have                         

This implies:             

MADVc
"(F

⌦k) = min
M

MADVc
0(M)

FH(F⌦k,M) �
p
1 � "subject to

Theorem

Q1��k/2(f (k)) �
k · ln(3�/2)

C
· Q1/4(f)

Proof idea (continued):

FH(F⌦k,M) � �k/2

[LeeR12]

Tr[(�⌦k
m � M)(vv⇤)⌦k] � (3�/2)k)

MADVc
1��k/2(F⌦k) � k · ln(3�/2) · MADVc

0(F )
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Conclusion



Conclusion and future work
Multiplicative adversary                 generalizes all 
known methods:          

Additive adversary                for

Polynomial method               for

Polynomial method    fixed adversary matrix 
(independent of   )     insight for its limitations

General SDPT for any function

XOR lemma for Boolean functions

Other applications? (new lower bounds, time-
space tradeoffs,...)
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MADVc(f)

ADV±(f)

gdeg"(f) c ! 1

Support:

f )
⇡

c ! 1


