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Classical random walk on a graph

- Classical random walk on a discrete state space X , such that |X | = n.

- Described by a n × n stochastic matrix P such that its (x , y)th entry is pxy .

- If the row-vector v0 is the initial state of the walker, after t-steps: vt = v0P t .

- Stationary state: row vector π such that π = πP.

- Assumptions: P is ergodic and reversible

I Eigenvalues of P lie between −1 and 1.
I π is unique.
I πx pxy = πy pyx for all (x , y)
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Classical Hitting time

Set of marked nodes:
M ⊆ X .

Hitting time: Starting from some random node x ∼ π, the expected number of steps to reach
some node ∈ M.

Spatial search (classical)
1. Sample x ∈ X from π.

2. Check if x ∈ M.

3. If x ∈ M, output x

4. Otherwise update x according to P and go to step 2.

Hitting time of P with respect to M is the expected number of times step 4 is executed.
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Classical Hitting time

Spatial search stops when x ∈ M =⇒ Walk on an absorbing Markov chain P ′

HT (P,M) = Expected number of steps of P ′ to reach some x ∈ M.

Complexity of spatial search by quantum walk?

Discrete-time quantum walk (DTQW)?

Continuous-time quantum walk (CTQW)?
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Discrete-time and continuous-time quantum walks

Complexity of spatial search by DTQW
For any ergodic, reversible Markov chain P with a set of M marked nodes: O

(√
HT +(P,M)

)
.

[Krovi, Magniez, Ozols, and Roland 2014]

HT +(P,M): Extended hitting time

- For |M| = 1, HT +(P,M) = HT (P,M) =⇒ Quadratic speedup for unique marked node.

- For |M| > 1, HT +(P,M) ≥ HT (P,M).

Previous talk
Improved to

O
(√

HT (P,M) log
(√

HT (P,M)
))

.

[Ambainis, Gilyén, Jeffery and Kokainis 2019]
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Discrete-time and continuous-time quantum walks

Complexity of spatial search by DTQW
For any ergodic, reversible Markov chain P with a set of M marked nodes: O

(√
HT +(P,M)

)
.

[Krovi, Magniez, Ozols, and R. 2014]

HT +(P,M): Extended hitting time

- For |M| = 1, HT +(P,M) = HT (P,M) =⇒ Quadratic speedup for unique marked node.

- For |M| > 1, HT +(P,M) ≥ HT (P,M).

Complexity of spatial search by CTQW
No such general result is known.

Childs and Goldstone proposed a CTQW-based algorithm in 2004.

Has been applied to certain specific graphs such as d-dimensional lattices, hypercubes and
others.
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Main results

For any ergodic, reversible Markov chain:

General conditions for the optimality of the Childs and Goldstone
algorithm

Modified version of the Childs and Goldstone algorithm with better
running time

Spatial search algorithm by CTQW with running time Θ(
√

HT +(P,M))
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Continuous-time quantum walk on a graph

General idea

Prepare initial state |ψ0〉

Evolve under Hamiltonian HG, encoding the connectivity of the graph

Probability of the walker being at node |x〉, after time t

p(t) = | 〈x |e−iHG t |ψ0〉 |2.

Application to spatial search
What Hamiltonian HG to consider for a given graph?
How is the Hamiltonian modified for marked nodes? (Oracle?)

Jérémie Roland (ULB) Banff, April 2019 11 / 33



Outline

1 Introduction
Spatial search by random walk
Spatial search by quantum walk

2 Our contributions
Overview
Childs-Goldstone algorithm
Modified Childs-Goldstone algorithm
New algorithm using interpolated Markov Chains

3 Conclusion

Jérémie Roland (ULB) Banff, April 2019 12 / 33



Spatial search by CTQW (Childs and Goldstone 2004)

Setup
Hamiltonian: HG = A, adjacency matrix of the graph

I Hilbert space: spanned by the nodes of the graph {|1〉 , . . . , |n〉}
Node |w〉 marked by energy penalty: Horacle = |w〉 〈w |

CG algorithm
1. Prepare the state |ψ0〉 = 1√

n

∑
x |x〉

2. Evolve according to Hamiltonian H = Horacle + rHG for time T = O(
√

n)
I where r is a real number that should be optimized

3. Measure in the node basis
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Complete graph:

Aij = 1

Same as analog Grover

H = − |w〉 〈w | − |s〉 〈s|

= − |w〉 〈w | −
1
n

A

Optimal! T = O(
√

n)

Hypercube:

Optimal! T = O(
√

n)

Square Lattices:

d ≤ 3

Fails

d = 4

T = O(
√

n log3/2 n)

d > 4

Optimal! T = O(
√

n)
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Sufficient condition for the optimality of CG algorithm

Assume:
Eigenvalues of HG:

λn = 1 > λn−1 = 1−∆ ≥ . . . ≥ λ1 ≥ 0

State transitive graph

Theorem
Let

r =
1
n

∑
i 6=n

1
1− λi

ν =
r√

1
n

∑
i 6=n

1
(1−λi )

2

If ∆� ν
r
√

n , then for T = Θ
(√

n
ν

)
, the CG algorithm prepares a state |ψf 〉 such

that |〈w |ψf 〉| = Θ(ν).
By repetition, one can find the marked node in total time Tsearch = Θ

(√
n

ν3

)
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Discussion

Theorem

If ∆� ν
r
√

n , then for T = Θ
(√

n
ν

)
, the CG algorithm prepares a state |ψf 〉 such

that |〈w |ψf 〉| = Θ(ν).
By repetition, one can find the marked node in total time Tsearch = Θ

(√
n

ν3

)

Discussion
If ∆� ν

r
√

n , the algorithm is optimal for any P such that ν = Θ(1)

When ∆ = Θ(1), we have ν = Θ(1)

[Chakraborty, Novo, Ambainis and Omar 2016]

ν can be Θ(1) even when ∆ 6= Θ(1)
I For d-dimensional lattices with d > 4, ∆ = Θ(n−2/d ) but ν = Θ(1).
I At d = 4, ν = Θ(1/

√
log n) =⇒ Tsearch = O(

√
n log3/2 n).
[Childs and Goldstone 2004]
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Drawbacks of the CG algorithm

Theorem

If ∆� ν
r
√

n , then for T = Θ
(√

n
ν

)
, the CG algorithm prepares a state |ψf 〉 such

that |〈w |ψf 〉| = Θ(ν).
By repetition, one can find the marked node in total time Tsearch = Θ

(√
n

ν3

)

Drawbacks

The condition ∆� ν
r
√

n needs to be satisfied.
I Does not hold for lattices of dimension less than four.

We show that Ω(
√

∆) < ν < 1.

I HT (P, {w}) ≤ n
∆

. So when ν =
√

∆� 1, Tsearch = Ω

(√
HT (P,{w})

∆

)
⇒ No quadratic speed-up!

Example: Movement of rook on a rectangular chessboard
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Questions

How to make quantum walks faster?

Use coins!

DTQW [Ambainis, Kempe and Rivosh 2004]
CTQW [Childs and Goldstone 2004]

How to introduce coins for general graphs?

Walk on edges of the graph rather than nodes!

DTQW [Szegedy 2004]
CTQW [Somma and Ortiz 2010]
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Somma-Ortiz Hamiltonian

Hilbert space: spanned by the edges of the graph |x , y〉

|xE〉 =
∑

y

√
pxy |x , y〉

Consider unitary S and projector ΠE such that

S |x , y〉 = |y , x〉 ΠE =
∑

x

|xE〉 〈xE |

The Somma-Ortiz Hamiltonian is defined as

HP = i[S,ΠE ]

Properties of HP
I Eigenstates and eigenvalues related to those of P
I Spectral gap is Θ(

√
∆)

Applications
I Gibbs Sampling [Somma and Ortiz 2010]
I Spatial search by adiabatic evolution [Krovi, Ozols and R. 2010]
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Oracle

Problem
Using

H = Horacle + rHP with Horacle = |wE〉 〈wE |

requires to take r = 0 ⇒ does not work!

Alternative oracle
We set

H = Horacle + HP with Horacle = − |wE〉 〈wE |HP − HP |wE〉 〈wE |

Previously used for
I Spatial search on crystal lattices [Childs and Ge 2014]
I Spatial search on graphene lattices [Foulger et al. 2014]
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Modified CG algorithm (CG ′)

Setup
HP = i[S,ΠE ], Somma-Ortiz Hamiltonian for Markov chain P

I Hilbert space: spanned by the edges of the graph {|x , y〉}
Node |w〉 marked by Horacle = − |wE〉 〈wE |HP − HP |wE〉 〈wE |

CG ′ algorithm
1. Prepare the state |ψ0〉 = 1√

n

∑
x |xE 〉

2. Evolve according to Hamiltonian H = Horacle + HP for time T
I where T will be specified on the next slide

3. Measure in the node basis
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Modified CG algorithm (CG ′)

Assume:
Eigenvalues of P:

λn = 1 > λn−1 = 1−∆ ≥ . . . ≥ λ1 ≥ 0

State transitive graph

Theorem
Let

µ =

√√√√1
n

∑
i 6=n

1

(1− λi )
2 |w̃〉 =

HP |wE〉
||HP |wE〉 ||

If ∆� 1
nµ2 , then for T = Θ

(
µ
√

n
)
, the CG′ algorithm prepares a state |ψf 〉

such that
∣∣〈w̃ |ψf 〉

∣∣ = Ω(1/µ).
Moreover, e−it′Horacle |w̃〉 = |wE〉, for t ′ = O(µ).
By repetition, one can find the marked node in total time Tsearch = Θ

(
µ3√n

)
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Discussion

Theorem
Let

µ =

√√√√1
n

∑
i 6=n

1

(1− λi )
2 |w̃〉 =

HP |wE〉
||HP |wE〉 ||

If ∆� 1
nµ2 , then for T = Θ

(
µ
√

n
)
, the CG′ algorithm prepares a state |ψf 〉

such that
∣∣〈w̃ |ψf 〉

∣∣ = Ω(1/µ).
Moreover, e−it′Horacle |w̃〉 = |wE〉, for t ′ = O(µ).
By repetition, one can find the marked node in total time Tsearch = Θ

(
µ3√n

)
Discussion

Whenever CG algorithm is optimal, so is CG′.
CG′ also works for lattices down to d = 2

I For d = 2, we get Tsearch = O(
√

n log3/2 n)
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Basic idea

We use the Somma-Ortiz Hamiltonian as for CG′

Rather than marking a node by adding a oracle Hamiltonian
We modify the classical random walk directly

Trick
Interpolated Markov Chain
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Interpolated Markov Chain

Let U = X\M.

π = (πU πM ) π′ ∝ (0 πM ) (P′ is not ergodic)

Interpolated Markov Chains

P(s) = (1− s)P + sP′, s ∈ [0, 1]

For 0 ≤ s < 1, stationary state:

π(s) ∝ ((1− s)πU πM )
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Somma-Ortiz Hamiltonian

Interpolated Markov Chains

P(s) = (1− s)P + sP ′, s ∈ [0,1]

For 0 ≤ s < 1, stationary state:

π(s) ∝ ((1− s)πU πM )

Properties of the Somma-Ortiz Hamiltonian HP(s) built on P(s)

Spectral gap: Θ(
√

∆(s))

Eigenstate with eigenvalue 0: |vn(s)〉 =
∑

x

√
πx (s) |xE〉

For s∗ = 1− pM
1−pM

with pM =
∑

x∈M πx ,

|vn(s∗)〉 =
|U〉+ |M〉√

2

I where |U〉 = 1√
1−pM

∑
x /∈M
√
πx |xE〉 and |M〉 = 1√

pM

∑
x∈M
√
πx |xE〉
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New algorithm

Observation
|vn(s∗)〉 has a constant overlap with |M〉
So all we need to do is prepare |vn(s∗)〉 and measure.

New algorithm
1. Prepare the state |vn(0)〉 =

∑
x
√
πx |xE 〉.

2. Evolve according to Hamiltonian HP(s∗) for a time chosen uniformly at random between
[0,T ], where

I T = Θ(
√

HT +(P,M))
I s∗ = 1− pM

1−pM

3. Measure in the node basis
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New algorithm
1. Prepare the state |vn(0)〉 =

∑
x
√
πx |xE 〉.

2. Evolve according to Hamiltonian HP(s∗) for a time chosen uniformly at random between
[0,T ], where

I T = Θ(
√

HT +(P,M))
I s∗ = 1− pM

1−pM

3. Measure in the node basis

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of HP(s∗) kills coherence terms between
|vn(s∗)〉 and its orthogonal eigenstates.

- We obtain a mixed state between |vn(s∗)〉 and the rest.

There are other ways to prepare |vn(s∗)〉. (Current work).
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Conclusion

Provided general conditions for the optimality of the spatial search
algorithm by Childs and Goldstone

Modified Childs and Goldstone algorithm
I Applicable to any ergodic, reversible Markov chain
I Improved running time

Spatial search algorithm by CTQW that runs in Θ(
√

HT +(P,M)) time for
any ergodic, reversible Markov chain.

Together, these three algorithms subsume or improve on most (all?)
spatial search algorithms by CTQW in the literature
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Open questions:

Extended hitting time vs hitting time for CTQW

Current work:

CTQW for preparing the stationary state of an ergodic, reversible Markov
chain.
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Thank you for your attention!
For more details see:

S. Chakraborty, L. Novo and J. Roland, Finding a marked node on any graph by continuous time
quantum walk, arXiv:1807.05957.
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