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Classical random walk on a graph

Pxy X

- Classical random walk on a discrete state space X, such that |[X| = n.

Described by a n x n stochastic matrix P such that its (x, y)™ entry is pxy.
- If the row-vector v; is the initial state of the walker, after t-steps: v; = vy P!.
- Stationary state: row vector 7 such that # = 7P.

- Assumptions: P is ergodic and reversible

» Eigenvalues of P lie between —1 and 1.
> 7 is unique.
> TxPxy = TyPyx forall (x, y)
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Classical Hitting time

Pxy X

Set of marked nodes:
Pz M C X.

Hitting time: Starting from some random node x ~ =, the expected number of steps to reach
some node € M.

Spatial search (classical)

1. Sample x € X from .

2. Checkif x € M.

3.

4. Otherwise update x according to P and go to step 2.

If x € M, output x

Hitting time of P with respect to M is the expected number of times step 4 is executed.
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Classical Hitting time

Spatial search stops when x € M —> Walk on an absorbing Markov chain P’

E@ﬂ =g

= Expected number of steps of P’ to reach some x € M.

Complexity of spatial search by quantum walk?
Discrete-time quantum walk (DTQW)?
Continuous-time quantum walk (CTQW)?
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Discrete-time and continuous-time quantum walks

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M marked nodes: O (\/HT+(P, M)).
[Krovi, Magniez, Ozols, and Roland 2014]

HT*(P, M): Extended hitting time

- For M| =1, HT*(P,M) = HT(P,M) = Quadratic speedup for unique marked node.
- For [M| > 1, HT™ (P, M) > HT(P, M).

Previous talk

Improved to

0] (\/HT(P, M) log (\/HT(P, M))) .
[Ambainis, Gilyén, Jeffery and Kokainis 2019]
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Discrete-time and continuous-time quantum walks

Complexity of spatial search by DTQW

For any ergodic, reversible Markov chain P with a set of M marked nodes: O (\/ HT+(P, M)).
[Krovi, Magniez, Ozols, and R. 2014]

HT*(P, M): Extended hitting time

- For [M| =1, HT*(P,M) = HT(P,M) = Quadratic speedup for unique marked node.
- For [M| > 1, HT (P, M) > HT(P, M).

Complexity of spatial search by CTQW

@ No such general result is known.
@ Childs and Goldstone proposed a CTQW-based algorithm in 2004.

@ Has been applied to certain specific graphs such as d-dimensional lattices, hypercubes and
others.
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Main results

For any ergodic, reversible Markov chain:

@ General conditions for the optimality of the Childs and Goldstone
algorithm

@ Modified version of the Childs and Goldstone algorithm with better
running time

@ Spatial search algorithm by CTQW with running time ©(y/HT+(P, M))
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Continuous-time quantum walk on a graph

General idea
@ Prepare initial state |ig)
@ Evolve under Hamiltonian Hg, encoding the connectivity of the graph

@ Probability of the walker being at node |x), after time ¢
p(t) = | (x| &6 uo) 2.

Application to spatial search
@ What Hamiltonian Hg to consider for a given graph?
@ How is the Hamiltonian modified for marked nodes? (Oracle?)
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Spatial search by CTQW (Childs and Goldstone 2004)

Setup
@ Hamiltonian: Hg = A, adjacency matrix of the graph
» Hilbert space: spanned by the nodes of the graph {|1),...,|n)}

@ Node |w) marked by energy penalty: Horace = |W) (W]

Cg algorithm
1. Prepare the state [1)o) = - 3=, |x)

2. Evolve according to Hamiltonian H = Hyage + rHg for time T = O(+y/n)
where r is a real number that should be optimized

3. Measure in the node basis
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Complete graph:
Aj =1
Same as analog Grover
H=—|w)(w|—|s) (s]

= —[w) (w - 1A

Optimal! T = O(v/n)

Jérémie Roland (ULB)

Hypercube:

Optimall T = O(v/n)

Square Lattices:
d<3
Fails
d=4
T = O(v/nlog®? n)
d>4

Optimal! T = O(v/n)
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Sufficient condition for the optimality of CG algorithm

Assume:
@ Eigenvalues of Hg:

A=1>XA\p1=1-A>...>2X>0
@ State transitive graph

Theorem
Let

1 1 r
r=->" v
ni;ﬁn1_>\' \/%Zi;ﬁnﬁji)\f)?
If A > ﬁ thenfor T =0 (@) the CG algorithm prepares a state |¢¢) such
that [(w]ur)| = ©(v).
By repetition, one can find the marked node in total time Tsearchn = © (ﬁ)

3
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Discussion

Theorem

If A > r%ﬁ thenfor T =0 (#) the CG algorithm prepares a state |¢¢) such
that [(w|yr)| = ©(v).
By repetition, one can find the marked node in total time Tsearch = © (ﬁ)

3

Discussion
o IfA> VL the algorithm is optimal for any P such that v = ©(1)
@ When A = ©(1), we have v = ©(1)
[Chakraborty, Novo, Ambainis and Omar 2016]

@ v can be ©(1) even when A # ©(1)

» For d-dimensional lattices with d > 4, A = ©(n~%/9) but v = ©(1).
» Atd =4, v =0(1//logn) = Tsearch = O(y/nlog>’? n).
[Childs and Goldstone 2004]
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Drawbacks of the CG algorithm

Theorem

IfA > r%m thenfor T =0 (?) the CG algorithm prepares a state |¢¢) such
that [(w|yr)| = ©(v).
By repetition, one can find the marked node in total time Tsgarch = © (%)

Drawbacks

@ The condition A > ﬁ needs to be satisfied.

» Does not hold for lattices of dimension less than four.
@ We show that Q(vA) < v < 1.

» HT(P,{w}) < Z.Sowhenv = VA <1, Teearcn = Q (@)

= No quadratic speed-up!

Example: Movement of rook on a rectangular chessboard J
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Questions

How to make quantum walks faster?

Use coins!

@ DTQW [Ambainis, Kempe and Rivosh 2004]
@ CTQW [Childs and Goldstone 2004]

How to introduce coins for general graphs?

Walk on edges of the graph rather than nodes!

o DTQW [Szegedy 2004]
@ CTQW [Somma and Ortiz 2010]
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Somma-Ortiz Hamiltonian

@ Hilbert space: spanned by the edges of the graph |x, y)

XE) =D /By IX.¥)
y

@ Consider unitary S and projector NE such that
Six.y) =ly.x) ne =" |xE) (x|
X

@ The Somma-Ortiz Hamiltonian is defined as
Hp = i[S, E]

@ Properties of Hp
» Eigenstates and eigenvalues related to those of P
» Spectral gap is ©(vVA)

@ Applications

» Gibbs Sampling [Somma and Ortiz 2010]
» Spatial search by adiabatic evolution [Krovi, Ozols and R. 2010]
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Oracle

Problem
Using

H = Hyrace + rHp with
requires to take r =0

Horacle = |WE> <WE|

= does not work!

Alternative oracle
We set

H = Hyacie + Hp with  Hoagle = — |WE) (WE| Hp — Hp |WE) (WE|

@ Previously used for

Spatial search on crystal lattices
Spatial search on graphene lattices

[Childs and Ge 2014]
[Foulger et al. 2014]
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Modified CG algorithm (CG’)

Setup
@ Hp = i[S, NF], Somma-Ortiz Hamiltonian for Markov chain P
» Hilbert space: spanned by the edges of the graph {|x, y)}

@ Node |w) marked by Hoacle = — |WE) (WE| Hp — Hp |WE) (WE|

CG' algorithm
1. Prepare the state |¢) = \1—5 Sk IXE)

2. Evolve according to Hamiltonian H = Hoacie + Hp for time T
where T will be specified on the next slide

3. Measure in the node basis
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Modified CG algorithm (CG’)

Assume:
@ Eigenvalues of P:
)\n:1 >An_1:1_A2...2)\1 20

@ State transitive graph

Theorem
Let

1 1 Hp|WE>
= =) —— W) = —
n T W) = TR wE

IfA > 2, then for T = © (u\/n), the CG’ algorithm prepares a state |¢r)
such that \ wle) | = Q(1/p).

Moreover, e_mHo,ac,e |w) = |wF), for t' = O(p).

By repetition, one can find the marked node in total time Tsearch = © (13v/n)

v
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Discussion

Theorem
Let

1 1 ~ HP|WE>
==y — Wy = 1L
D ey AT

If A > n%ﬁ then for T = © (u\/n), the CG’ algorithm prepares a state |¢7)
such that |(w|vy)| = Q(1/p).

Moreover, et Horce | /) = |WE), for t' = O(p).

By repetition, one can find the marked node in total time Tsearch = © (13v/n)

Discussion

@ Whenever CG algorithm is optimal, so is CG’.
@ CG’ also works for lattices downto d = 2
» For d =2, we get Tsearch = O(ﬁl()gs/z n)
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Basic idea

@ We use the Somma-Ortiz Hamiltonian as for CG’
@ Rather than marking a node by adding a oracle Hamiltonian
@ We modify the classical random walk directly

Trick
Interpolated Markov Chain
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Interpolated Markov Chain

Let U = X\M.
o Pxy X Cae .y . Pxy X
m=(my ™m) 7’ o (0 mp) (P is not ergodic)

Interpolated Markov Chains
P(s)=(1—-s)P+sP’, sc[0,1]

For 0 < s < 1, stationary state:

w(s) < (1 = §)my 7m)
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Somma-Ortiz Hamiltonian

Interpolated Markov Chains

P(s)=(1—-s)P+sP', s€0,1]

For 0 < s < 1, stationary state:

w(s) < (1 = §)my 7m)

Properties of the Somma-Ortiz Hamiltonian Hps) built on P(s)

@ Spectral gap: ©(,/A(s))

@ Eigenstate with eigenvalue 0: [va(s)) = >, /7x(S) |XE)
o Fors* =1 — {24 with py = erMﬂX,
oy _ [U)+ [M)
Vn(8*)) = ———-
[Vn(s™)) 75

> where |U> ﬁngM\/ﬂ—iXV >and |M> \/WZXEM\/EP( >
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New algorithm

Observation
@ |v,(s*)) has a constant overlap with |M)
@ So all we need to do is prepare |v,(s*)) and measure.

New algorithm
1. Prepare the state |vs(0)) = 3, +/7x|xE).

2. Evolve according to Hamiltonian Hps) for a time chosen uniformly at random between

[0, T], where
T =O(y/HT+(P,M))
st =1— Pm

1—pwm

3. Measure in the node basis
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New algorithm
1. Prepare the state |v,(0)) = 3, /7x|xE).

2. Evolve according to Hamiltonian Hps«) for a time chosen uniformly at random between
[0, T], where

T = O(/HT (P, )

* _ 4 _ _Pum
s =1 1—pum

3. Measure in the node basis

Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of Hp(s-) kills coherence terms between
|vn(s*)) and its orthogonal eigenstates.

- We obtain a mixed state between |v,(s*)) and the rest.

There are other ways to prepare |v,(s*)). (Current work). J
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Conclusion

@ Provided general conditions for the optimality of the spatial search
algorithm by Childs and Goldstone

@ Modified Childs and Goldstone algorithm

» Applicable to any ergodic, reversible Markov chain
» Improved running time

@ Spatial search algorithm by CTQW that runs in ©(y/HT (P, M)) time for
any ergodic, reversible Markov chain.

@ Together, these three algorithms subsume or improve on most (all?)
spatial search algorithms by CTQW in the literature
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Open questions:

Extended hitting time vs hitting time for CTQW

Current work:

CTQW for preparing the stationary state of an ergodic, reversible Markov
chain.
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Thank you for your attention!

For more details see:
S. Chakraborty, L. Novo and J. Roland, Finding a marked node on any graph by continuous time
quantum walk, arXiv:1807.05957.
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