# Finding a marked node on any graph by continuous-time quantum walk

Jérémie Roland



Université libre de Bruxelles



Quantum Information & Communication

Joint work with Shantanav Chakraborty and Leonardo Novo arXiv:1807.05957

Jérémie Roland (ULB)

# Outline

### Introduction

- Spatial search by random walk
- Spatial search by quantum walk

#### Our contributions

- Overview
- Childs-Goldstone algorithm
- Modified Childs-Goldstone algorithm
- New algorithm using interpolated Markov Chains

### 3 Conclusion

# Classical random walk on a graph



- Classical random walk on a discrete state space X, such that |X| = n.
- Described by a  $n \times n$  stochastic matrix *P* such that its (x, y)<sup>th</sup> entry is  $p_{xy}$ .
- If the row-vector  $v_0$  is the initial state of the walker, after *t*-steps:  $v_t = v_0 P^t$ .
- Stationary state: row vector  $\pi$  such that  $\pi = \pi P$ .
- Assumptions: P is ergodic and reversible
  - ► Eigenvalues of P lie between −1 and 1.
  - $\pi$  is unique.
  - $\pi_x p_{xy} = \pi_y p_{yx}$  for all (x, y)

# **Classical Hitting time**



Set of marked nodes:  $M \subseteq X$ .

**Hitting time**: Starting from some random node  $x \sim \pi$ , the expected number of steps to reach some node  $\in M$ .

### Spatial search (classical)

- **1**. Sample  $x \in X$  from  $\pi$ .
- **2**. Check if  $x \in M$ .
- **3**. If  $x \in M$ , output x
- 4. Otherwise update x according to P and go to step 2.

Hitting time of *P* with respect to *M* is the expected number of times step 4 is executed.

# **Classical Hitting time**

Spatial search stops when  $x \in M \implies$  Walk on an absorbing Markov chain P'



HT(P, M) = Expected number of steps of P' to reach some  $x \in M$ .

Complexity of spatial search by quantum walk?

Discrete-time quantum walk (DTQW)?

Continuous-time quantum walk (CTQW)?

# Outline

### Introduction

- Spatial search by random walk
- Spatial search by quantum walk

#### Our contributions

- Overview
- Childs-Goldstone algorithm
- Modified Childs-Goldstone algorithm
- New algorithm using interpolated Markov Chains

### 3 Conclusion

### Complexity of spatial search by DTQW

For any *ergodic*, *reversible* Markov chain *P* with a set of *M* marked nodes:  $O\left(\sqrt{HT^+(P, M)}\right)$ . [Krovi, Magniez, Ozols, and Roland 2014]

HT<sup>+</sup>(P, M): Extended hitting time

- For |M| = 1,  $HT^+(P, M) = HT(P, M) \implies$  Quadratic speedup for unique marked node.
- For |M| > 1,  $HT^+(P, M) \ge HT(P, M)$ .

### Previous talk

Improved to

$$\mathcal{O}\left(\sqrt{HT(P,M)}\log\left(\sqrt{HT(P,M)}\right)\right).$$

[Ambainis, Gilyén, Jeffery and Kokainis 2019]

# Discrete-time and continuous-time quantum walks

### Complexity of spatial search by DTQW

For any *ergodic*, *reversible* Markov chain *P* with a set of *M* marked nodes:  $O\left(\sqrt{HT^+(P, M)}\right)$ . [Krovi, Magniez, Ozols, and R. 2014]

HT<sup>+</sup>(P, M): Extended hitting time

- For |M| = 1,  $HT^+(P, M) = HT(P, M) \implies$  Quadratic speedup for unique marked node.
- For |M| > 1,  $HT^+(P, M) \ge HT(P, M)$ .

### Complexity of spatial search by CTQW

- No such general result is known.
- Childs and Goldstone proposed a CTQW-based algorithm in 2004.
- Has been applied to certain specific graphs such as d-dimensional lattices, hypercubes and others.

# Outline

#### Introduction

- Spatial search by random walk
- Spatial search by quantum walk

#### Our contributions

- Overview
- Childs-Goldstone algorithm
- Modified Childs-Goldstone algorithm
- New algorithm using interpolated Markov Chains

### 3 Conclusion

For any ergodic, reversible Markov chain:

- General conditions for the optimality of the Childs and Goldstone algorithm
- Modified version of the Childs and Goldstone algorithm with better running time
- Spatial search algorithm by CTQW with running time  $\Theta(\sqrt{HT^+(P, M)})$

# Continuous-time quantum walk on a graph

#### General idea

- Prepare initial state  $|\psi_0\rangle$
- Evolve under Hamiltonian  $H_G$ , encoding the connectivity of the graph
- Probability of the walker being at node  $|x\rangle$ , after time *t*

$$p(t) = |\langle x| e^{-iH_G t} |\psi_0\rangle|^2.$$

### Application to spatial search

- What Hamiltonian *H<sub>G</sub>* to consider for a given graph?
- How is the Hamiltonian modified for marked nodes? (Oracle?)

# Outline

#### Introduction

- Spatial search by random walk
- Spatial search by quantum walk

#### Our contributions

- Overview
- Childs-Goldstone algorithm
- Modified Childs-Goldstone algorithm
- New algorithm using interpolated Markov Chains

### 3 Conclusion

# Spatial search by CTQW (Childs and Goldstone 2004)

#### Setup

- Hamiltonian:  $H_G = A$ , adjacency matrix of the graph
  - Hilbert space: spanned by the nodes of the graph  $\{|1\rangle, \ldots, |n\rangle\}$
- Node  $|w\rangle$  marked by energy penalty:  $H_{oracle} = |w\rangle \langle w|$

## $\mathcal{CG}$ algorithm

- 1. Prepare the state  $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{x} |x\rangle$
- 2. Evolve according to Hamiltonian  $H = H_{oracle} + rH_G$  for time  $T = O(\sqrt{n})$ where *r* is a real number that should be optimized
- 3. Measure in the node basis

Complete graph:

$$A_{ij} = 1$$

Same as analog Grover

$$H = -|w\rangle \langle w| - |s\rangle \langle s|$$
$$= -|w\rangle \langle w| - \frac{1}{n}A$$

**Optimal!** 
$$T = \mathcal{O}(\sqrt{n})$$

Hypercube:

#### Square Lattices:

 $d \leq 3$ 

Fails

$$T = O(\sqrt{n}\log^{3/2} n)$$

d > 4

d = 4

Optimal!  $T = \mathcal{O}(\sqrt{n})$ 



Optimal!  $T = \mathcal{O}(\sqrt{n})$ 

# Sufficient condition for the optimality of $\mathcal{CG}$ algorithm

Assume:

Eigenvalues of H<sub>G</sub>:

$$\lambda_n = 1 > \lambda_{n-1} = 1 - \Delta \ge \ldots \ge \lambda_1 \ge 0$$

State transitive graph

#### Theorem

Let

$$r = \frac{1}{n} \sum_{i \neq n} \frac{1}{1 - \lambda_i} \qquad \qquad \nu = \frac{r}{\sqrt{\frac{1}{n} \sum_{i \neq n} \frac{1}{(1 - \lambda_i)^2}}}$$

If  $\Delta \gg \frac{\nu}{r\sqrt{n}}$ , then for  $T = \Theta\left(\frac{\sqrt{n}}{\nu}\right)$ , the *CG* algorithm prepares a state  $|\psi_f\rangle$  such that  $|\langle \mathbf{w} | \psi_f \rangle| = \Theta(\nu)$ . By repetition, one can find the marked node in total time  $T_{search} = \Theta\left(\frac{\sqrt{n}}{\nu^3}\right)$ 

# Discussion

#### Theorem

If  $\Delta \gg \frac{\nu}{r\sqrt{n}}$ , then for  $T = \Theta\left(\frac{\sqrt{n}}{\nu}\right)$ , the *CG* algorithm prepares a state  $|\psi_f\rangle$  such that  $|\langle w|\psi_f\rangle| = \Theta(\nu)$ . By repetition, one can find the marked node in total time  $T_{search} = \Theta\left(\frac{\sqrt{n}}{\nu^3}\right)$ 

#### Discussion

- If  $\Delta \gg \frac{\nu}{r\sqrt{n}}$ , the algorithm is optimal for any *P* such that  $\nu = \Theta(1)$
- When  $\Delta = \Theta(1)$ , we have  $\nu = \Theta(1)$

[Chakraborty, Novo, Ambainis and Omar 2016]

- $\nu$  can be  $\Theta(1)$  even when  $\Delta \neq \Theta(1)$ 
  - For *d*-dimensional lattices with *d* > 4, Δ = Θ(n<sup>-2/d</sup>) but ν = Θ(1).
  - At d = 4,  $\nu = \Theta(1/\sqrt{\log n}) \implies T_{search} = \mathcal{O}(\sqrt{n}\log^{3/2} n)$ .

[Childs and Goldstone 2004]

# Drawbacks of the $\mathcal{C}\mathcal{G}$ algorithm

#### Theorem

If  $\Delta \gg \frac{\nu}{r\sqrt{n}}$ , then for  $T = \Theta\left(\frac{\sqrt{n}}{\nu}\right)$ , the *CG* algorithm prepares a state  $|\psi_t\rangle$  such that  $|\langle \mathbf{w} | \psi_t \rangle| = \Theta(\nu)$ .

By repetition, one can find the marked node in total time  $T_{search} = \Theta\left(\frac{\sqrt{n}}{\nu^3}\right)$ 

#### Drawbacks

- The condition  $\Delta \gg \frac{\nu}{r\sqrt{n}}$  needs to be satisfied.
  - Does not hold for lattices of dimension less than four.
- We show that  $\Omega(\sqrt{\Delta}) < \nu < 1$ .
  - ►  $HT(P, \{w\}) \leq \frac{n}{\Delta}$ . So when  $\nu = \sqrt{\Delta} \ll 1$ ,  $T_{search} = \Omega\left(\frac{\sqrt{HT(P, \{w\})}}{\Delta}\right)$

 $\Rightarrow$  No quadratic speed-up!

Example: Movement of rook on a rectangular chessboard

Jérémie Roland (ULB)

# Outline

#### Introduction

- Spatial search by random walk
- Spatial search by quantum walk

#### Our contributions

- Overview
- Childs-Goldstone algorithm

#### Modified Childs-Goldstone algorithm

New algorithm using interpolated Markov Chains

### 3 Conclusion

# Questions

How to make quantum walks faster?

Use coins!

- DTQW [Ambainis, Kempe and Rivosh 2004]
- CTQW [Childs and Goldstone 2004]

How to introduce coins for general graphs?

Walk on edges of the graph rather than nodes!

- DTQW [Szegedy 2004]
- CTQW [Somma and Ortiz 2010]

# Somma-Ortiz Hamiltonian

• Hilbert space: spanned by the edges of the graph  $|x, y\rangle$ 

$$|x^{E}
angle = \sum_{y} \sqrt{
ho_{xy}} |x, y
angle$$

Consider unitary S and projector Π<sup>E</sup> such that

$$S|x,y\rangle = |y,x\rangle$$
  $\Pi^{E} = \sum_{x} |x^{E}\rangle \langle x^{E}|$ 

The Somma-Ortiz Hamiltonian is defined as

$$H_P = i[S, \Pi^E]$$

- Properties of H<sub>P</sub>
  - Eigenstates and eigenvalues related to those of P
  - Spectral gap is Θ(√Δ)
- Applications
  - Gibbs Sampling
  - Spatial search by adiabatic evolution

[Somma and Ortiz 2010] [Krovi, Ozols and R. 2010]

# Oracle

| Problem                  |      |                                   |
|--------------------------|------|-----------------------------------|
| Using                    |      |                                   |
| $H = H_{oracle} + rH_P$  | with | $H_{oracle}=\ket{w^{E}}ra{w^{E}}$ |
| requires to take $r = 0$ |      | $\Rightarrow$ does not work!      |

### Alternative oracle

We set

$$H = H_{oracle} + H_P$$
 with  $H_{oracle} = -\ket{w^E} \langle w^E \ket{H_P - H_P} \ket{w^E} \langle w^E \ket{W^E} \ket{W^E} | H_P - H_P \ket{w^E} \langle w^E \ket{W^E} \ket{W^E} | H_P - H_P \ket{w^E} \langle w^E \ket{W^E} | H_P - H_P \ket{w^E} \langle w^E \ket{W^E} | H_P - H_P \ket{w^E} \langle w^E \ket{W^E} | H_P - H_P | H_P + H_P | H_P | H_P + H_P | H_P | H_P + H_P | H_P$ 

#### Previously used for

- Spatial search on crystal lattices
- Spatial search on graphene lattices

[Childs and Ge 2014] [Foulger et al. 2014] Setup

•  $H_P = i[S, \Pi^E]$ , Somma-Ortiz Hamiltonian for Markov chain P

• Hilbert space: spanned by the edges of the graph  $\{|x, y\rangle\}$ 

• Node  $|w\rangle$  marked by  $H_{oracle} = -|w^E\rangle \langle w^E|H_P - H_P|w^E\rangle \langle w^E|$ 

## $\mathcal{CG}'$ algorithm

- 1. Prepare the state  $|\psi_0\rangle = \frac{1}{\sqrt{n}} \sum_{x} |x^E\rangle$
- 2. Evolve according to Hamiltonian  $H = H_{oracle} + H_P$  for time Twhere T will be specified on the next slide
- 3. Measure in the node basis

# Modified CG algorithm (CG')

Assume:

• Eigenvalues of P:

$$\lambda_n = 1 > \lambda_{n-1} = 1 - \Delta \ge \ldots \ge \lambda_1 \ge 0$$

State transitive graph

#### Theorem

Let

$$\mu = \sqrt{\frac{1}{n} \sum_{i \neq n} \frac{1}{\left(1 - \lambda_i\right)^2}} \qquad \qquad |\widetilde{w}\rangle = \frac{H_P |w^E\rangle}{||H_P |w^E\rangle||}$$

If  $\Delta \gg \frac{1}{n\mu^2}$ , then for  $T = \Theta(\mu\sqrt{n})$ , the CG' algorithm prepares a state  $|\psi_f\rangle$  such that  $|\langle \widetilde{w} | \psi_f \rangle| = \Omega(1/\mu)$ . Moreover,  $e^{-it'H_{oracle}} |\widetilde{w}\rangle = |w^E\rangle$ , for  $t' = O(\mu)$ . By repetition, one can find the marked node in total time  $T_{search} = \Theta(\mu^3\sqrt{n})$ 

# Discussion

### Theorem

Let

$$\mu = \sqrt{\frac{1}{n} \sum_{i \neq n} \frac{1}{\left(1 - \lambda_i\right)^2}} \qquad \qquad |\widetilde{w}\rangle = \frac{H_P |w^E\rangle}{||H_P |w^E\rangle||}$$

If  $\Delta \gg \frac{1}{n\mu^2}$ , then for  $T = \Theta(\mu\sqrt{n})$ , the CC' algorithm prepares a state  $|\psi_f\rangle$ such that  $|\langle \widetilde{w} | \psi_f \rangle| = \Omega(1/\mu)$ . Moreover,  $e^{-it'H_{oracle}} |\widetilde{w}\rangle = |w^E\rangle$ , for  $t' = O(\mu)$ . By repetition, one can find the marked node in total time  $T_{search} = \Theta(\mu^3\sqrt{n})$ 

#### Discussion

- Whenever CG algorithm is optimal, so is CG'.
- CG' also works for lattices down to d = 2
  - For d = 2, we get  $T_{search} = \mathcal{O}(\sqrt{n} \log^{3/2} n)$

# Outline

#### Introduction

- Spatial search by random walk
- Spatial search by quantum walk

#### Our contributions

- Overview
- Childs-Goldstone algorithm
- Modified Childs-Goldstone algorithm
- New algorithm using interpolated Markov Chains

### 3 Conclusion

- We use the Somma-Ortiz Hamiltonian as for  $\mathcal{CG}'$
- Rather than marking a node by adding a oracle Hamiltonian
- We modify the classical random walk directly

### Trick

Interpolated Markov Chain

# Interpolated Markov Chain

Let  $U = X \setminus M$ .



 $\pi = (\pi_U \ \pi_M)$ 



 $\pi' \propto$  (0  $\pi_M$ ) (*P'* is not ergodic)

**Interpolated Markov Chains** 

$$P(s) = (1 - s)P + sP', \ s \in [0, 1]$$

For  $0 \le s < 1$ , stationary state:

$$\pi(s) \propto ((1-s)\pi_U \pi_M)$$

# Somma-Ortiz Hamiltonian

### **Interpolated Markov Chains**

$$P(s) = (1-s)P + sP', \ s \in [0,1]$$

For  $0 \le s < 1$ , stationary state:

 $\pi(s) \propto ((1-s)\pi_U \pi_M)$ 

Properties of the Somma-Ortiz Hamiltonian  $H_{P(s)}$  built on P(s)

- Spectral gap:  $\Theta(\sqrt{\Delta(s)})$
- Eigenstate with eigenvalue 0:  $|v_n(s)\rangle = \sum_x \sqrt{\pi_x(s)} |x^E\rangle$

• For  $s^* = 1 - \frac{p_M}{1 - p_M}$  with  $p_M = \sum_{x \in M} \pi_x$ ,  $|v_n(s^*)\rangle = \frac{|U\rangle + |M\rangle}{\sqrt{2}}$ 

• where  $|U\rangle = \frac{1}{\sqrt{1-p_M}} \sum_{x \notin M} \sqrt{\pi_x} |x^E\rangle$  and  $|M\rangle = \frac{1}{\sqrt{p_M}} \sum_{x \in M} \sqrt{\pi_x} |x^E\rangle$ 

### Observation

- $|v_n(s^*)\rangle$  has a constant overlap with  $|M\rangle$
- So all we need to do is prepare  $|v_n(s^*)\rangle$  and measure.

### New algorithm

- 1. Prepare the state  $|v_n(0)\rangle = \sum_x \sqrt{\pi_x} |x^E\rangle$ .
- 2. Evolve according to Hamiltonian  $H_{P(s^*)}$  for a time chosen uniformly at random between [0, *T*], where

$$T = \Theta(\sqrt{HT^+(P, M)})$$
  
$$s^* = 1 - \frac{p_M}{1 - p_M}$$

3. Measure in the node basis

### New algorithm

- 1. Prepare the state  $|v_n(0)\rangle = \sum_x \sqrt{\pi_x} |x^E\rangle$ .
- 2. Evolve according to Hamiltonian  $H_{P(s^*)}$  for a time chosen uniformly at random between [0, *T*], where

$$T = \Theta(\sqrt{HT^+(P, M)})$$
$$s^* = 1 - \frac{p_M}{1 - p_M}$$

3. Measure in the node basis

### Proof idea: Quantum phase randomization [Boixo, Knill and Somma 2009]

- Decoherence in the eigenbasis of  $H_{P(s^*)}$  kills coherence terms between  $|v_n(s^*)\rangle$  and its orthogonal eigenstates.
- We obtain a mixed state between  $|v_n(s^*)\rangle$  and the rest.

There are other ways to prepare  $|v_n(s^*)\rangle$ . (Current work).

- Provided general conditions for the optimality of the spatial search algorithm by Childs and Goldstone
- Modified Childs and Goldstone algorithm
  - Applicable to any ergodic, reversible Markov chain
  - Improved running time
- Spatial search algorithm by CTQW that runs in  $\Theta(\sqrt{HT^+(P, M)})$  time for any ergodic, reversible Markov chain.
- Together, these three algorithms subsume or improve on most (all?) spatial search algorithms by CTQW in the literature

#### **Open questions:**

#### Extended hitting time vs hitting time for CTQW

#### Current work:

CTQW for preparing the stationary state of an ergodic, reversible Markov chain.

# Thank you for your attention!

For more details see:

S. Chakraborty, L. Novo and J. Roland, Finding a marked node on any graph by continuous time quantum walk, arXiv:1807.05957.