The quantum query complexity of sorting under partial information

Jérémie Roland

Université libre de Bruxelles
Quantum Information & Communication

Joint work (in progress) with Jean Cardinal and Gwenaël Joret
Outline

1. Introduction
 - The Sorting problem
 - Quantum lower bound for Sorting

2. Sorting under Partial Information
 - The problem
 - Polytopes
 - Entropy
 - Application: Sorting under Partial Information

3. Quantum Sorting under Partial Information
 - Yao’s lower bound
 - Our contributions
The Sorting problem

Definition
- Let \(V = \{v_1, \ldots, v_n\} \) be totally ordered by an unknown linear order \(\leq \).
- Determine \(\leq \) by making queries of the form “is \(v_i \leq v_j \)?”

Classical query complexity (or decision tree complexity)
- \(C(\text{Sorting}) = \) minimum #queries to solve Sorting
- Trivial lower bound: \(C(\text{Sorting}) \geq \log n! = \Omega(n \log n) \)
 - One line proof: # possible orders \(= n! \)
- Upper bound: \(C(\text{Sorting}) = O(n \log n) \)
 - Many algorithms: Mergesort, Heapsort
The classical query complexity of Sorting is $\Theta(n \log n)$

Question

Can quantum algorithms provide a speedup for the Sorting problem?

No...
Outline

1. Introduction
 - The Sorting problem
 - Quantum lower bound for Sorting

2. Sorting under Partial Information
 - The problem
 - Polytopes
 - Entropy
 - Application: Sorting under Partial Information

3. Quantum Sorting under Partial Information
 - Yao’s lower bound
 - Our contributions
The adversary bound

Theorem \[\text{Ambainis’02, Høyer Lee Špalek’07} \]

\[
Q_\epsilon(\text{Sorting}_P) = \Omega(\text{Adv}(\text{Sorting}_P))
\]

where

\[
\text{Adv}(\text{Sorting}_P) = \max_{\Gamma} \frac{\|\Gamma\|}{\max_{i,j} \|\Gamma \circ (J - \Delta^{ij})\|}
\]

Notes

- Valid for any problem in the query model, not just for \(\text{Sorting}_P\)
- For \(\text{Sorting}\)
 - The involved matrices are \(n! \times n!\)
 - Lines and columns are indexed by permutations \(\sigma\) over \(\{1, \ldots, n\}\) such that
 \[
v_i \leq v_j \iff \sigma(i) \leq \sigma(j)
 \]
 - For \(\sigma\), the unknown total order is therefore such that
 \[
v_{\sigma^{-1}(1)} \leq v_{\sigma^{-1}(2)} \leq \cdots \leq v_{\sigma^{-1}(n)}
 \]
 - \(J\) is the all-1 matrix, and \(\Delta^{ij}\) the boolean matrix such that
 \[
 \Delta_{\sigma,\tau}^{ij} = 1 \text{ iff the query } v_i \leq v_j \text{ returns the same answer for } \sigma \text{ and } \tau
 \]
Quantum lower bound for Sorting

- We just need to find a good adversary matrix \(\Gamma \)
- Høyer, Neerbek and Shi proposed to use

\[
\Gamma_{\sigma \tau} = \frac{1}{d} \quad \text{for} \quad \tau = (k, k + 1, \ldots, k + d) \circ \sigma
\]

- \(\Gamma_{\sigma \tau} = \frac{1}{d} \) when total orders are the same except for one element shifted by \(d \) positions

Theorem [Høyer Neerbek Shi’02]

\[
\text{Adv(Sorting)} = \Omega(n \log n)
\]

Conclusion
- No quantum speedup for Sorting
Outline

1. Introduction
 - The Sorting problem
 - Quantum lower bound for Sorting

2. Sorting under Partial Information
 - The problem
 - Polytopes
 - Entropy
 - Application: Sorting under Partial Information

3. Quantum Sorting under Partial Information
 - Yao’s lower bound
 - Our contributions
Definition

- Let $V = \{v_1, \ldots, v_n\}$ be totally ordered by an unknown linear order \leq
- Let $P = (V, \leq_P)$ denote a poset (partially ordered set) compatible with (V, \leq)
- Given P, determine \leq by making queries of the form “is $v_i \leq v_j$?”

Notes

- A poset $P = (V, \leq_P)$ specifies a partial order between elements of V
- Since $P = (V, \leq_P)$ compatible with (V, \leq)
 $$v_i \leq_P v_j \implies v_i \leq v_j$$
- Since P is given, some comparisons are already known
Sorting under Partial Information

Definition
- Let $V = \{v_1, \ldots, v_n\}$ be totally ordered by an unknown linear order \leq
- Let $P = (V, \leq_P)$ denote a poset (partially ordered set) compatible with (V, \leq)
- Given P, determine \leq by making queries of the form “is $v_i \leq v_j$?”

Classical query complexity
- Let $e(P)$ be the number of linear extensions of P
 - # total orders (V, \leq) compatible with (V, \leq_P)
- Trivial lower bound: $C(\text{Sorting}_P) \geq \log e(P)$
- Can we design an algorithm that matches this lower bound?
Balanced pairs

- Suppose we start with a poset \(P(V, \leq_P) \) with \(e(P) \)
- After performing a query "is \(v \leq w? \)”, we can update \(P \)
 - If yes: \(P_{\leq} = P(v \leq w) \), with \(e(P_{\leq}) \leq e(P) \)
 - If no: \(P_{\geq} = P(v \geq w) \), with \(e(P_{\geq}) \leq e(P) \)

Observation: \(e(P_{\leq}) + e(P_{\geq}) = e(P) \)
Ideal case: \(e(P_{\leq}) \approx e(P_{\geq}) \approx e(P)/2 \)

Theorem(s)

If \(P \) is not a chain, then \(\exists \) incomparable pair \(v, w \in V \) s.t.

\[
\delta \cdot e(P) \leq e(P(v \leq w)) \leq (1 - \delta) \cdot e(P)
\]

for some absolute constant \(\delta > 0 \)

- \(\delta = \frac{3}{11} \approx 0.2727 \) \[Kahn Saks’84\]
- \(\delta = \frac{5 - \sqrt{5}}{10} \approx 0.2764 \) \[Brightwell Felsner Trotter’95\]
- 1/3–2/3 conjecture: \(\delta = \frac{1}{3} \)
Algorithm for Sorting under partial information

1. Given \(P \), find a \(\delta \)-balanced pair \(v, w \)
2. Query “is \(v \leq w \)?”
3. Update \(P \) according to result
4. Repeat until \(P \) is a total order

Discussion

- The algorithm uses \(\leq \log_{1/(1-\delta)} e(P) = \Theta(\log e(P)) \) queries
 - Good!
- Computing \(e(P) \) is a \#P-complete problem
 - Bad...
- Can we approximate \(e(P) \)?
Outline

1 Introduction
 - The Sorting problem
 - Quantum lower bound for Sorting

2 Sorting under Partial Information
 - The problem
 - Polytopes
 - Entropy
 - Application: Sorting under Partial Information

3 Quantum Sorting under Partial Information
 - Yao’s lower bound
 - Our contributions
In all that follows, $P = (V, \leq_P)$ is a poset on a set V of n elements.

Definition

The Order Polytope $O(P)$ of P is the subset of points $x \in \mathbb{R}^V$ satisfying:

\[
\begin{align*}
0 & \leq x_v \leq 1 \quad \forall v \in V \\
x_v & \leq x_w \quad \forall v, w \in V \text{ such that } v \leq_P w
\end{align*}
\]
Examples

\begin{align*}
0 & \leq x_a, x_b \leq 1 \\
x_a & \leq x_b
\end{align*}
Examples

$0 \leq x_a, x_b, x_c \leq 1$

$x_a \leq x_b$

$x_a \leq x_c$

Jérémie Roland (ULB, Brussels)

Quantum sorting

Paris, December 2017
Volume of the Order Polytope

- Recall
 - $n := |V|$
 - $e(P) := \#\text{linear extensions of } P$

Theorem [Stanley’86]

$$vol(\mathcal{O}(P)) = \frac{e(P)}{n!}$$

Proof (sketch)

- Every linear extension of P defines a simplex of $\mathcal{O}(P)$
- Every simplex has volume $1/n!$
 - One simplex for each of the $n!$ possible total orders
Volume of the Order Polytope

Illustration of the proof

\begin{align*}
0 & \leq x_a, x_b, x_c \leq 1 \\
x_a & \leq x_b \\
x_a & \leq x_c
\end{align*}

\[b \quad ? \quad c \]

\[a \]

\[0 \quad 1 \quad 1 \quad ? \quad a \quad c \quad 0 \leq x_a, x_b, x_c \leq 1 \quad x_a \leq x_b \quad x_a \leq x_c \]
Volume of the Order Polytope

A first simplex:

\[x_a \leq x_b \leq x_c \]
\[0 \leq x_a, x_b, x_c \leq 1 \]
Volume of the Order Polytope

A second simplex:

\[x_a \leq x_c \leq x_b \]
\[0 \leq x_a, x_b, x_c \leq 1 \]
Notion of chain

- Given a poset P, a chain C is a subset of elements such that

$$v_1 \leq_P v_2 \leq_P \ldots \leq_P v_k$$

Definition

The Chain Polytope $C(P)$ of P is the subset of points $x \in \mathbb{R}^V$ satisfying:

$$x_v \geq 0 \quad \forall v \in V$$

$$\sum_{v \in C} x_v \leq 1 \quad \text{for every chain } C \text{ in } P$$
Example

\[x_a, x_b, x_c \geq 0 \]
\[x_a + x_b \leq 1 \]
\[x_a + x_c \leq 1 \]
Definition

Let \(\phi : \mathcal{O}(P) \rightarrow \mathcal{C}(P) : x \rightarrow y \) where, for each \(v \in V \)

\[
y_v = \begin{cases}
 x_v & \text{if } v \text{ minimal element} \\
 \min\{x_v - x_w : w <_P v\} & \text{otherwise.}
\end{cases}
\]

Properties of \(\phi \)

- \(\phi \) is a continuous, piecewise-linear bijection from \(\mathcal{O}(P) \) onto \(\mathcal{C}(P) \)
Example

A point $x \in \mathcal{O}(P)$ and its image $y = \phi(x) \in \mathcal{C}(P)$
Consequence

\[\text{Corollary [Stanley'86]} \]

\[
\text{vol}(\mathcal{C}(P)) = \text{vol}(\mathcal{O}(P)) = \frac{e(P)}{n!}
\]

We may thus work with either polytope to approximate \(e(P) \)
Outline

1 Introduction
 • The Sorting problem
 • Quantum lower bound for Sorting

2 Sorting under Partial Information
 • The problem
 • Polytopes
 • Entropy
 • Application: Sorting under Partial Information

3 Quantum Sorting under Partial Information
 • Yao’s lower bound
 • Our contributions
Approximating $e(P)$ (or more precisely, $\log e(P)$)

Approximating the volume of a convex corner by an enclosed box:
Maximizing the box volume inside the Chain Polytope

Observation

For each \(x \in C(P) \), the box with the origin and \(x \) as opposite corners is fully contained in \(C(P) \)

Let us consider the included box with the largest volume

Maximum included box program:

\[
\max \prod_{v \in V} x_v \quad \text{s.t.} \quad x \in C(P)
\]

Taking the log, normalizing by \(n \), and changing sign, we get

Definition

The entropy of \(P \) is

\[
H(P) := \min \left\{-\frac{1}{n} \sum_{v \in V} \log x_v \right\} \quad \text{s.t.} \quad x \in C(P)
\]

Special case of Graph entropy [Körner'73]

For the comparability graph of \(P \)
Recall: Example of Chain Polytope

\[x_a, x_b, x_c \geq 0 \]
\[x_a + x_b \leq 1 \]
\[x_a + x_c \leq 1 \]
Maximizing the box volume inside the Chain Polytope

Observation

- For each $x \in C(P)$, the box with the origin and x as opposite corners is fully contained in $C(P)$
- Let us consider the included box with the largest volume
 - Maximum included box program:
 $$\max \prod_{v \in V} x_v \quad \text{s.t.} \quad x \in C(P)$$
- Taking the log, normalizing by n, and changing sign, we get

Definition

The entropy of P is

$$H(P) := \min \left\{ -\frac{1}{n} \sum_{v \in V} \log x_v \right\} \quad \text{s.t.} \quad x \in C(P)$$

- Special case of Graph entropy [Körner’73]
 - For the comparability graph of P
Approximating log $e(P)$

Main idea

- The volume of the Chain Polytope is $\text{vol}(C(P)) = \text{vol}(O(P)) = \frac{e(P)}{n!}$
- Taking the log, and changing sign, we get
 $-\log \text{vol}(C(P)) = n \log n - \log e(P) + O(n)$
- Let \mathcal{V} be the volume of the maximum included box
 $-\log \mathcal{V} = nH(P)$ is used as an approximation for $n \log n - \log e(P)$
- Introducing the dual entropy $H(\overline{P}) = \log n - H(P)$
 $nH(\overline{P})$ is used as an approximation for $\log e(P)$

Theorem(s)

$$\log e(p) \leq nH(\overline{P}) \leq c \log e(P)$$

- $c = 1 + 7 \log e \approx 11.1$ [Kahn Kim’95]
- $c = 2$ (tight) [Cardinal Fiorini Joret Jungers Munro’10]
Entropy: basic facts

Definition

\[H(P) := \min \{ f(x) : x \in C(P) \} \]

where

\[f(x) := -\frac{1}{n} \sum_{v \in V} \log x_v \]

- If \(P \) is a **total order** then
 \[C(P) = \{ x \in \mathbb{R}^V : x_v \geq 0 \ \forall v \in V \ \& \ \sum_{v \in V} x_v \leq 1 \} \]
 - setting \(x_v = \frac{1}{n} \ \forall v \in V \) minimizes \(f(x) \), thus \(H(P) = \log n \)

- If \(P \) is an **empty order** then
 \[C(P) = \{ x \in \mathbb{R}^V : 0 \leq x_v \leq 1 \ \forall v \in V \} \]
 - setting \(x_v = 1 \ \forall v \in V \) minimizes \(f(x) \), thus \(H(P) = 0 \)

- If \(Q \) is a poset on \(V \) extending \(P \), then \(H(Q) \geq H(P) \)
 - Thus in general \(0 \leq H(P) \leq \log n \)
Outline

1. Introduction
 - The Sorting problem
 - Quantum lower bound for Sorting

2. Sorting under Partial Information
 - The problem
 - Polytopes
 - Entropy
 - Application: Sorting under Partial Information

3. Quantum Sorting under Partial Information
 - Yao’s lower bound
 - Our contributions
Kahn & Kim’s approach

Lemma [Kahn Kim’95]

If P is not a chain, then \exists incomparable pair $v, w \in V$ s.t.

$$\max\left\{nH(P(v \leq w)), nH(P(v \geq w))\right\} \leq nH(P) - c$$

where $c = \log(1 + 17/112) \approx 0.2$

Discussion

- Similar to δ-unbalanced pairs
 - Using entropy $H(P)$ instead of $e(P)$
- $H(P)$ can be computed efficiently (ellipsoid method)
Kahn & Kim’s algorithm

Algorithm for Sorting under partial information

1. Given P, find an incomparable pair v, w as in previous lemma
2. Query “is $v \leq w$?”
3. Update P according to result
4. Repeat until P is a total order

Discussion

- The algorithm uses $O(nH(\bar{P})) = O(\log e(P))$ queries
 - Good!
- It is polynomial and deterministic
 - Good!
Outline

1. Introduction
 - The Sorting problem
 - Quantum lower bound for Sorting

2. Sorting under Partial Information
 - The problem
 - Polytopes
 - Entropy
 - Application: Sorting under Partial Information

3. Quantum Sorting under Partial Information
 - Yao’s lower bound
 - Our contributions
Recall: the adversary bound

Theorem \[\text{Ambainis’02, Høyer Lee Špalek’07}\]

\[Q_\varepsilon(\text{Sorting}_P) = \Omega(\text{Adv}(\text{Sorting}_P))\]

where

\[\text{Adv}(\text{Sorting}_P) = \max_{\Gamma} \frac{\|\Gamma\|}{\max_{i,j} \|\Gamma \circ (J - \Delta_{ij})\|}\]

Notes

- Valid for any problem in the query model, not just for \(\text{Sorting}_P\)
- For \(\text{Sorting}_P\)
 - The involved matrices are \(e(P) \times e(P)\)
 - Lines and columns are indexed by permutations \(\sigma\) consistent with \(P\)
Yao’s quantum lower bound for Sorting_P

- Using the same adversary matrix as [Høyer Neerbek Shi’02]

$$\Gamma_{\sigma \tau} = \frac{1}{d} \quad \text{for} \quad \tau = (k, k + 1, \ldots, k + d) \circ \sigma$$

- Restricted to lines/columns for $\sigma \in \Delta(P)$ (those consistent with P)

- Yao proved the following lower bound

Theorem [Yao’04]

For any poset P,

$$\text{Adv}(\text{Sorting}_P) = \text{QLB}(P) := E_{\sigma \in \Delta(P)} \left[\sum_{v} H_{d_v(\sigma) - 1} \right]$$

where H_k is the k-th Harmonic number and

$$d_i(\sigma) := \begin{cases}
\sigma(i) & \text{if } v_i \text{ minimal element in } P \\
\min\{\sigma(i) - \sigma(j) : v_j <_P v_j\} & \text{otherwise.}
\end{cases}$$
Conjecture: no quantum speedup

- Yao conjectured that this bound is tight and matches the classical complexity

Conjecture \[[\text{Yao'04}] \]
For any poset \(P \)
\[
\text{QLB}(P) \geq c \log e(P)
\]
for some constant \(c > 0 \)

- Using connections with graph entropy, he was able to prove

Theorem \[[\text{Yao'04}] \]
For any poset \(P \)
\[
\text{QLB}(P) \geq c \log e(P) - c' n
\]
for some constant \(c, c' > 0 \)

- Due to the linear term, this gives a trivial bound if \(\log e(P) = o(n) \)
Yao’s approach

- First, let’s switch to natural logarithms:

\[H(\bar{P}) = \max_{x \in C(P)} \left[\ln n - f(x) \right] \]

where

\[f(x) = -\frac{1}{n} \sum_{v \in V} \ln x_v \]

Therefore \(nH(\bar{P}) \geq \ln e(P) \)

Lemma [Yao’04]

For any poset \(P \)

\[QLB(P) \geq nE_{x \in C(P)} \left[\ln n - f(x) \right] \]

\[E_{x \in C(P)} \left[\ln n - f(x) \right] \geq H(\bar{P}) - 200 \]

Discussion

- Almost what we want, except that we have an average version of the entropy instead of a max
- Still OK if both versions are close
- Since it is multiplied by \(n \) in the lower bound, the \(-200\) terms causes the linear loss
Recall: Example of Chain Polytope

\[x_a, x_b, x_c \geq 0 \]
\[x_a + x_b \leq 1 \]
\[x_a + x_c \leq 1 \]
1 Introduction
 - The Sorting problem
 - Quantum lower bound for Sorting

2 Sorting under Partial Information
 - The problem
 - Polytopes
 - Entropy
 - Application: Sorting under Partial Information

3 Quantum Sorting under Partial Information
 - Yao’s lower bound
 - Our contributions
Max-entropy vs Average-entropy

Observations

- The bound $nE_{x \in C(P)} [\ln n - f(x)]$ cannot be tight
- If P is a total order
 \[nE_{x \in C(P)} [\ln n - f(x)] = -\gamma n + O(1) \]
 - where γ Euler-Mascheroni constant
- If P is the ‘ordered insertion’ poset
 \[nE_{x \in C(P)} [\ln n - f(x)] = \ln(n - 1) - \gamma n + O(1) \]
- For all examples considered: loss of $-\gamma n$
 - Maybe not a coïncidence?
 - Recall that $\gamma = \lim_{n \to \infty} [H_n - \ln n]$
- With a finer analysis of QLB we proved the following

Theorem [Cardinal Joret R.’17]

\[QLB(P) = nE_{x \in C(P)} [H_n - f(x)] \]
Proof idea and consequences

- Proof based on the following main technical lemma, together with Stanley’s map
 \(\phi : \mathcal{O}(P) \mapsto \mathcal{C}(P) \)

Lemma

For any poset \(P \), for all \(\sigma \in \Delta(P) \) and for all \(1 \leq i \leq n \), we have

\[
H_{d_i(\sigma)-1} = H_n + E_{y \in \mathcal{O}_\sigma(P)} [\ln d_i(y)]
\]

- We conjecture that the strengthened lower bound is tight, which reduces to the following conjecture

Conjecture

For any poset \(P \)

\[
E_{x \in \mathcal{C}(P)} [H_n - f(x)] \geq c \max_{x \in \mathcal{C}(P)} [\ln n - f(x)]
\]

for some constant \(c > 0 \)
Towards proving Yao’s conjecture

- We are able to prove the conjecture for an extended class of posets

Theorem [Cardinal Joret R.’17]

For any *series-parallel* poset P

$$E_{x \in C(P)} [H_n - f(x)] \geq c \max_{x \in C(P)} [\ln n - f(x)]$$

for $c = \frac{1}{2\ln 2} \simeq 0.72$

- Series-parallel posets can be obtained by composing iteratively smaller posets using
 - Parallel composition
 - Series composition
Parallel composition

c b

a

d f e

Jérémie Roland (ULB, Brussels)
Series composition

Jérémie Roland (ULB, Brussels) Quantum sorting Paris, December 2017
Towards proving Yao’s conjecture

Theorem [Cardinal Joret R.’17]

For any series-parallel poset P

$$\mathbb{E}_{x \in C(P)} [H_n - f(x)] \geq c \max_{x \in C(P)} [\ln n - f(x)]$$

for $c = \frac{1}{2 \ln 2} \approx 0.72$

Proof idea

- We show that the average and the max-entropy behave the same
 - under series composition
 - under parallel composition
- The main theorem is then proved by induction on the size of P
Thank you!
Outline

Quantum lower bounds
- Sorting
- Sorting under Partial Information
Let us consider a quantum algorithm for Sorting

We denote by σ the permutation over $\{1, \ldots, n\}$ such that

$$v_i \leq v_j \iff \sigma(i) \leq \sigma(j)$$

The unknown total order is therefore such that

$$v_{\sigma^{-1}(1)} \leq v_{\sigma^{-1}(2)} \leq \cdots \leq v_{\sigma^{-1}(n)}$$

The algorithm should work for any $\sigma \in S_n$

Let $|\psi^t_\sigma\rangle$ be the state of the quantum computer after t queries for permutation σ

Let ρ^t_σ be the Gram matrix of those states for all permutations $\sigma, \tau \in S_n$

$$\rho^t_{\sigma\tau} = \langle \psi^t_\sigma | \psi^t_\tau \rangle$$
Properties of the Gram matrix

- ρ^t is the matrix with entries
 \[\rho^t_{\sigma \tau} = \langle \psi^t_{\sigma} | \psi^t_{\tau} \rangle \]
 where $|\psi^t_{\sigma}\rangle$ is the state after t queries for permutation σ

- Initially (at $t = 0$)
 - Before any queries, the state $|\psi^0_{\sigma}\rangle$ is independent of σ
 \[\rho^0 = J \quad \text{(the all-1 matrix)} \]

- Unitaries independent of σ do not affect the Gram matrix
 \[\langle \psi^t_{\sigma} | U^\dagger U | \psi^t_{\tau} \rangle = \langle \psi^t_{\sigma} | \psi^t_{\tau} \rangle \]

- At the end of the algorithm (at $t = T$, assuming T queries in total)
 - The algorithm must discriminate between all permutations so $\langle \psi^T_{\sigma} | \psi^T_{\tau} \rangle \approx \delta_{\sigma \tau}$
 \[\rho^T \approx I \quad \text{(the identity matrix)} \]
Progress function and effect of queries

Idea

In order to track the progress of the algorithm from $\rho^0 = J$ to $\rho^T \approx I$, we introduce a progress function

$$W(\rho^t) = \text{Tr}[\Gamma(\rho^t \circ |\delta\rangle \langle \delta|)]$$

where Γ is a so-called adversary matrix and $|\delta\rangle$ its principal eigenvector.

Effect of queries

- Let $\Delta^{ij}_\sigma\tau$ be the boolean matrix such that $\Delta^{ij}_\sigma\tau = 1$ iff the query $v_i \leq v_j$ returns the same answer for σ and τ.

- We can show that for each query

$$\left| W(\rho^{t+1}) - W(\rho^t) \right| \leq \max_{i,j} \| \Gamma \circ (J - \Delta^{ij}) \|$$
Properties of the progress function

\[W(\rho^t) = \text{Tr}[\Gamma(\rho^t \circ |\delta\rangle \langle \delta|)] \]

- Initially: \(W(\rho^0) = W(J) = \text{Tr}[\Gamma |\delta\rangle \langle \delta|] = \|\Gamma\| \)
- For each query
 \[|W(\rho^{t+1}) - W(\rho^t)| \leq \max_{i,j} \|\Gamma \circ (J - \Delta^{ij})\| \]
- After \(T \) queries:
 \[|W(\rho^T) - W(\rho^0)| \leq T \max_{i,j} \|\Gamma \circ (J - \Delta^{ij})\| \]
- At the end:
 \[W(\rho^T) \approx W(I) = \text{Tr}[(\Gamma \circ I) |\delta\rangle \langle \delta|] = 0 \]
 > assuming \(\Gamma_{\sigma\sigma} = 0 \)

Conclusion

\[T \geq \frac{\|\Gamma\|}{\max_{i,j} \|\Gamma \circ (J - \Delta^{ij})\|} \]
The adversary bound

Theorem [Ambainis’02, Høyer Lee Špalek’07]

\[Q_\varepsilon(\text{Sorting}) = \Omega(\text{Adv}(\text{Sorting})) \]

where

\[\text{Adv}(\text{Sorting}) = \max_{\Gamma} \frac{\|\Gamma\|}{\max_{i,j} \|\Gamma \circ (J - \Delta^ij)\|} \]

Notes

- Valid for any problem in the query model, not just for Sorting
- This bound is tight!
The adversary bound (2)

Theorem [Reichardt’11, LMRŠS’11]

\[Q_\varepsilon (\text{Sorting}) = \Theta (\text{Adv(\text{Sorting})}) \]

where

\[\text{Adv(\text{Sorting})} = \max \Gamma \frac{\| \Gamma \|}{\max_{i,j} \| \Gamma \circ (J - \Delta_{ij}) \|} \]

Notes

- Valid for any problem in the query model, not just for Sorting
- Now we just need to find a good adversary matrix \(\Gamma \)
Quantum lower bound for Sorting

Theorem [Høyer Neerbek Shi’02]

\[
\text{Adv}(\text{Sorting}) = \Omega(n \log n)
\]

Proof (sketch)

- Use the adversary matrix

\[
\Gamma = \sum_{\sigma} \sum_{k=1}^{n-1} \sum_{d=1}^{n-k} \frac{1}{d} |\sigma\rangle \langle \sigma^{(k,d)}|,
\]

where the permutation \(\sigma^{(k,d)}\) is defined as \((k, k+1, \ldots, k+d) \circ \sigma\).

- Step 1 (skipped)

\[
\|\Gamma \circ (J - \Delta^{ij})\| \leq \pi
\]

- Step 2

\[
\|\Gamma\| \geq nH_n - n
\]

where \(H_n = \Theta(\log n)\) is the \(n\)-th Harmonic number
Quantum lower bound for Sorting

Theorem

\[\text{Adv}(\text{Sorting}) = \Omega(n \log n) \]

Proof (sketch - continued)

- For

\[\Gamma = \sum_{\sigma} \sum_{k=1}^{n-1} \sum_{d=1}^{n-k} \frac{1}{d} |\sigma\rangle \langle \sigma^{(k,d)}| \]

\[|v\rangle = \frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |\sigma\rangle \]

- We have

\[\|\Gamma\| \geq \langle v| \Gamma |v\rangle = \sum_{k=1}^{n-1} \sum_{d=1}^{n-k} \frac{1}{d} = \sum_{k=1}^{n-1} H_{n-k} = \sum_{l=1}^{n-1} H_l = nH_n - n \]

▶ by the properties of the Harmonic numbers
Outline

- Quantum lower bounds
 - Sorting
 - Sorting under Partial Information
Recall: the adversary bound

Theorem \[\text{Ambainis’02, Høyer Lee Špalek’07}\]

\[Q_{\epsilon}(\text{Sorting}_P) = \Omega(\text{Adv}(\text{Sorting}_P))\]

where

\[
\text{Adv}(\text{Sorting}_P) = \max_{\Gamma} \frac{\|\Gamma\|}{\max_{i,j} \|\Gamma \circ (J - \Delta_{ij})\|}
\]

Notes

- Valid for any problem in the query model, not just for Sorting\(_P\)
- For Sorting\(_P\)
 - The involved matrices are \(e(P) \times e(P)\)
 - Lines and columns are indexed by permutations \(\sigma\) over \(\{1, \ldots, n\}\) such that
 \[v_i \leq v_j \iff \sigma(i) \leq \sigma(j)\]
 - For \(\sigma\), the unknown total order is therefore such that
 \[v_{\sigma^{-1}(1)} \leq v_{\sigma^{-1}(2)} \leq \cdots \leq v_{\sigma^{-1}(n)}\]
 - \(J\) is the all-1 matrix, and \(\Delta_{ij}\) the boolean matrix such that
 \[\Delta_{ij}^{\sigma\tau} = 1\text{ iff the query } v_i \leq v_j\text{ returns the same answer for } \sigma\text{ and } \tau\]
Yao’s quantum lower bound for Sorting_P

- Using the same adversary matrix as [Høyer Neerbek Shi’02]

$$\Gamma = \sum_{\sigma \in \Delta(P)} \sum_{k=1}^{n-1} \sum_{d=1}^{n-k} \frac{1}{d} \left| \sigma \right\rangle \left\langle \sigma^{(k,d)} \right|,$$

- Restricted to lines/columns for $\sigma \in \Delta(P)$ (those consistent with P)
- Yao proved the following lower bound

Theorem

For any poset P,

$$\text{Adv}(\text{Sorting}_P) = \text{QLB}(P) := \mathbf{E}_{\sigma \in \Delta(P)} \left[\sum_{v} H_{d_v(\sigma) - 1} \right]$$

where H_k is the k-th Harmonic number and

$$d_i(\sigma) := \begin{cases}
\sigma(i) & \text{if } v_i \text{ minimal element in } P \\
\min\{\sigma(i) - \sigma(j) : v_j \prec_P v_i\} & \text{otherwise.}
\end{cases}$$