

Quantum Weak Coin Flipping

Jérémie Roland

Overview

- Introduction
 - Motivation
 - Problem statement
- Prior art
 - Protocols
 - Point games (TDPG, TIDPG)
- Contributions
 - Protocol with bias 1/10
 - Obtaining protocols with arbitrarily low bias
- Conclusion and outlook

Motivation

Beyond QKD

Multi-party Computation (dishonest majority)

Two-party Secure Function Evaluation

Oblivious Transfer

 \downarrow , \uparrow , \uparrow

-Quantumly
Impossible
[Mayers 97,
LoChau97]

Bit Commitment

₩, ∦

Coin Flipping

Classically all are impossible.

Problem Statement

Strong CF, Weak CF, correctness and bias

Problem Statement

Coin Flipping (CF): Alice and Bob wish to agree on a random bit remotely without trusting each other.

- Strong Coin Flipping: No player knows the preference of the other.
- Weak Coin Flipping (WCF): Each player knows the preference of the other.

Situations

Honest player: A player that follows the protocol exactly as described.

Alice	Bob	Remark
Honest	Honest	Correctness
Cheats	Honest	Alice can bias
Honest	Cheats	Bob can bias
Cheats	Cheats	Independent of the protocol

Bias of a protocol: A protocol that solves the CF problem has bias ε if neither player can force their desired outcome with probability more than $\frac{1}{2}+\varepsilon$.

Situations | Weak CF

NB. For WCF the players have opposite preferred outcomes.

Alice	Bob	Pr(A wins)	Pr(B wins)
Honest	Honest	P_A	$P_B = 1 - P_A$
Cheats	Honest	P_A^*	$1 - P_A^*$
Honest	Cheats	$1 - P_B^*$	P_B^*

Bias:

smallest
$$\epsilon$$
 s.t. $P_A^*, P_B^* \le \frac{1}{2} + \epsilon$

NB.

$$0 \le \epsilon \le \frac{1}{2}$$

Situations | Weak CF | Flip and declare

Protocol: Alice flips a coin and declares the outcome to Bob.

Alice	Bob	Pr(A wins)	Pr(B wins)
Honest	Honest	$P_A = 1/2$	$P_B = 1/2$
Cheats	Honest	$P_A^* = 1$	$1 - P_A^* = 0$
Honest	Cheats	$1 - P_B^* = 1/2$	$P_B^* = 1/2$

Bias: smallest
$$\epsilon$$
 s.t. $P_A^*, P_B^* \leq \frac{1}{2} + \epsilon$ $\Longrightarrow \epsilon = \frac{1}{2}$

Prior Art

Bounds and protocols, Kitaev's Frameworks, Mochon's Breakthrough

Bounds and Protocols

$$\epsilon = \frac{1}{2}$$

Classically: $\epsilon = \frac{1}{2}$ viz. at least one player can always cheat and win.

Quantumly:

Bound

Best protocol known

$$\epsilon \ge \frac{1}{\sqrt{2}} - \frac{1}{2}$$
[Kitaev 03]
$$\epsilon \Longrightarrow \frac{11}{4\sqrt{2}} - \frac{1}{2}$$
[Chailloux Kerenidis 09]

$$\epsilon \Rightarrow \frac{11}{4\sqrt{[2]}} - \frac{1}{2}$$
Chailloux Kerenidis 09

$$\epsilon \to 0$$
 [Mochon 07] $\epsilon \to \frac{1}{6}$ [Mochon 05]

$$\epsilon \to \frac{1}{6}$$
 [Mochon 05]

Kitaev | Three Equivalent Frameworks

Time Dependent Point Game (TDPG)

Time Independent Point Game (TIPG)

Kitaev | Protocol | Definition

Alice Message Bob E_1U_1 E_2U_2 E_3U_3 E_4U_4 $E_{n-1}U_{n-1}$ E_nU_n $(\Pi_B^{(0)},\Pi_B^{(1)})$ Protocol described by

- Initial (product) state $|\psi_0\rangle_{AMB}$
- Unitaries U_i and projectors E_i alternating between
 - \star Alice for i odd
 - \star Bob for i even
- Final measurements (POVMs)
 - $\star \{\Pi_A^{(0)}, \Pi_A^{(1)}\}$ for Alice
 - $\star \{\Pi_B^{(0)}, \Pi_B^{(1)}\}$ for Bob
- We assume
 - ★ 0 means "Alice wins"
 - ★ 1 means "Bob wins"

Kitaev | Protocol | Honest players

For honest players

• Honest state: The global state after step i is given by

$$|\psi_i\rangle = U_i U_{i-1} \dots U_1 |\psi_0\rangle$$

- \star "Cheat detection" projectors E_i do not affect the "honest" state
- Correctness: Final measurements never yield different outcomes

$$\Pi_A^{(0)} \otimes \mathbb{I}_{\mathcal{M}} \otimes \Pi_B^{(1)} | \psi_n \rangle = \Pi_A^{(1)} \otimes \mathbb{I}_{\mathcal{M}} \otimes \Pi_B^{(0)} | \psi_n \rangle = 0$$

• Balanced: Each player wins with probability 1/2

$$P_A = \|\Pi_A^{(0)} \otimes \mathbb{I}_{\mathcal{M}} \otimes \Pi_B^{(0)} |\psi_n\rangle \|^2 = \frac{1}{2}$$

$$P_B = \|\Pi_A^{(1)} \otimes \mathbb{I}_{\mathcal{M}} \otimes \Pi_B^{(1)} |\psi_n\rangle \|^2 = \frac{1}{2}$$

Kitaev | Protocol | Cheating Bob

If Bob is cheating (but Alice remains honest)

- Focus on the Alice-Message reduced state $\rho_{AM,i}$
- Bob cannot affect the initial state

$$\rho_{AM,0} = \operatorname{Tr}_{\mathcal{B}}(\ket{\psi_0}\bra{\psi_0}) = \ket{\psi_{AM,0}}\bra{\psi_{AM,0}}$$

• For *i* odd, Alice is honest

$$\rho_{AM,i} = E_i U_i \rho_{AM,i-1} U_i^{\dagger} E_i$$

• For i even, Bob can apply any operation on \mathcal{M} but cannot affect \mathcal{A}

$$\operatorname{Tr}_{\mathcal{M}}(\rho_{AM,i}) = \operatorname{Tr}_{\mathcal{M}}(\rho_{AM,i-1})$$

• Bob tries to maximise the probability that Alice declares him to be the winner

$$\operatorname{Tr}((\Pi_A^{(1)} \otimes \mathbb{I}_{\mathcal{M}}) \rho_{AM,n})$$

Kitaev | Protocol | Cheating Bob

Bob's maximum cheating probability is given by an SDP

$$P_B^* = \max_{\rho_{AM,i}} \operatorname{Tr}((\Pi_A^{(1)} \otimes \mathbb{I}_{\mathcal{M}})\rho_{AM,n})$$

subject to

- $\rho_{AM,0} = \operatorname{Tr}_{\mathcal{B}}(|\psi_0\rangle \langle \psi_0|) = |\psi_{AM,0}\rangle \langle \psi_{AM,0}|;$
- for i odd, $\rho_{AM,i} = E_i U_i \rho_{AM,i-1} U_i^{\dagger} E_i$;
- for i even, $\operatorname{Tr}_{\mathcal{M}}(\rho_{AM,i}) = \operatorname{Tr}_{\mathcal{M}}(\rho_{AM,i-1})$.

Kitaev | Protocol | Cheating Alice

Alice's maximum cheating probability is given by an SDP

$$P_A^* = \max_{\rho_{MB,i}} \operatorname{Tr}((\Pi_B^{(0)} \otimes \mathbb{I}_{\mathcal{M}}) \rho_{MB,n})$$

subject to

- $\rho_{MB,0} = \operatorname{Tr}_{\mathcal{A}}(|\psi_0\rangle \langle \psi_0|) = |\psi_{MB,0}\rangle \langle \psi_{MB,0}|;$
- for i odd, $\operatorname{Tr}_{\mathcal{M}}(\rho_{MB,i}) = \operatorname{Tr}_{\mathcal{M}}(\rho_{MB,i-1})$.
- for i even, $\rho_{MB,i} = E_i U_i \rho_{MB,i-1} U_i^{\dagger} E_i$;

Kitaev | Dual SDPs

We want to upper bound the cheating probabilities

⇒ Better to work with dual SDPs

$$P_B^* = \min_{Z_{A,i} > 0} \operatorname{Tr}(Z_{A,0} | \psi_{A,0} \rangle \langle \psi_{A,0} |)$$

subject to

- for i odd, $Z_{A,i-1} \otimes \mathbb{I}_{\mathcal{M}} \geq U_{A,i}^{\dagger} E_{A,i} (Z_{A,i} \otimes \mathbb{I}_{\mathcal{M}}) E_{A,i} U_{A,i};$
- for i even, $Z_{A,i-1} = Z_{A,i}$;
- $Z_{A,n} = \Pi_A^{(1)}$.

$$P_A^* = \min_{Z_{B,i} > 0} \operatorname{Tr}(Z_{B,0} | \psi_{B,0} \rangle \langle \psi_{B,0} |)$$

subject to

- for i even, $\mathbb{I}_{\mathcal{M}} \otimes Z_{B,i-1} \geq U_{B,i}^{\dagger} E_{B,i} (\mathbb{I}_{\mathcal{M}} \otimes Z_{B,i}) E_{B,i} U_{B,i};$
- for i odd, $Z_{B,i-1} = Z_{B,i}$;
- $Z_{B,n} = \prod_{B}^{(0)}$.

Kitaev | Three Equivalent Frameworks

Constructive Non-constructive

Time Dependent Point Game (TDPG)

Time Independent Point Game (TIPG)

Kitaev | Time Dependent Point Game

For each i, construct the following graphical representation (frame)

- Set of weighted points on a 2D figure
- Point coordinates: (z_A, z_B)
 - $\star~z_A$ runs over eigenvalues of dual variable $Z_{A,i}$
 - $\star z_B$ runs over eigenvalues of dual variable $Z_{B,i}$
- Point weights: $p_{z_A,z_B} = \langle \psi_i | \Pi^{[z_A]} \otimes \Pi^{[z_B]} | \psi_i \rangle$
 - \star $|\psi_i\rangle$ is the honest state at step i
 - $\star~\Pi^{[z_A]}$ is the projector on the corresponding eigenspace of $Z_{A,i}$
 - $\star~\Pi^{[z_B]}$ is the projector on the corresponding eigenspace of $Z_{B,i}$
- Notation
 - $\star \operatorname{Prob}[Z_{A,i} \otimes Z_{B,i}, |\psi_i\rangle] = \sum_{z_A, z_B} p_{z_A, z_B} \cdot (z_A, z_B)$

Kitaev | TDPG | SDP constraints

SDP constraints

- Initialization
 - $\star \frac{1}{2}(0,1) + \frac{1}{2}(1,0)$
- Point transitions
 - $\star i \text{ odd} \rightarrow \text{Horizontal transition}$
 - \star i even \rightarrow Vertical transition
- Finalization
 - $\star 1 \cdot (\beta, \alpha)$ where
 - $\star \alpha = P_A^*$ (Alice's cheating probability)
 - $\star~\beta = P_B^*$ (Bob's cheating probability)

Kitaev | TDPG | SDP constraints

SDP constraints

- Initialization
 - $\star \frac{1}{2}(0,1) + \frac{1}{2}(1,0)$
- Point transitions
 - $\star i \text{ odd} \rightarrow \text{Horizontal transition}$
 - \star i even \rightarrow Vertical transition
- Finalization
 - $\star 1 \cdot (\beta, \alpha)$ where
 - $\star \alpha = P_A^*$ (Alice's cheating probability)
 - $\star~\beta = P_B^*$ (Bob's cheating probability)

Kitaev | TDPG | SDP constraints

SDP constraints

- Initialization
 - $\star \frac{1}{2}(0,1) + \frac{1}{2}(1,0)$
- Point transitions
 - $\star i \text{ odd} \rightarrow \text{Horizontal transition}$
 - \star i even \rightarrow Vertical transition
- Finalization
 - $\star 1 \cdot (\beta, \alpha)$ where
 - $\star \alpha = P_A^*$ (Alice's cheating probability)
 - $\star~\beta = P_B^*$ (Bob's cheating probability)

- Ideally
 - \star Zero bias \to Final point $(\frac{1}{2}, \frac{1}{2})$
- Naïve (wrong) protocol
 - ★ One horizontal transition
 - ★ One vertical transition
- Problem
 - * This transition is not valid
 - * For each line, coordinates of the center of mass can only increase

- Ideally
 - \star Zero bias \to Final point $(\frac{1}{2}, \frac{1}{2})$
- Naïve (wrong) protocol
 - ★ One horizontal transition
 - \star One vertical transition
- Problem
 - * This transition is not valid
 - * For each line, coordinates of the center of mass can only increase

- Ideally
 - \star Zero bias \to Final point $(\frac{1}{2}, \frac{1}{2})$
- Naïve (wrong) protocol
 - ★ One horizontal transition
 - ★ One vertical transition
- Problem
 - * This transition is not valid
 - * For each line, coordinates of the center of mass can only increase

 z_B

$$Z_{A,i-1} \otimes \mathbb{I}_{\mathcal{M}} \geq U_{A,i}^{\dagger} E_{A,i} (Z_{A,i} \otimes \mathbb{I}_{\mathcal{M}}) E_{A,i} U_{A,i}$$

- Ideally
 - \star Zero bias \to Final point $(\frac{1}{2}, \frac{1}{2})$
- Naïve (wrong) protocol
 - * One horizontal transition
 - ★ One vertical transition
- Problem
 - * This transition is not valid
 - * For each line, coordinates of the center of mass can only increase

- Ideally
 - \star Zero bias \to Final point $(\frac{1}{2}, \frac{1}{2})$
- Naïve (wrong) protocol
 - ★ One horizontal transition
 - ★ One vertical transition
- Problem
 - * This transition is not valid
 - * For each line, coordinates of the center of mass can only increase

Kitaev | TDPG | EBM transitions

Validity condition: Expressible by matrices (EBM):

• There exists $G \leq H$ and $|\psi\rangle$ such that the transition can be written

$$\operatorname{Prob}[G, |\psi\rangle] \mapsto \operatorname{Prob}[H, |\psi\rangle]$$

Kitaev | TDPG | Valid transitions

Validity condition: Valid transition:

• For all $\lambda \geq 0$

$$\sum_{i} p_{i} \frac{\lambda z_{i}}{\lambda + z_{i}} \leq \sum_{i} p'_{i} \frac{\lambda z'_{i}}{\lambda + z'_{i}}$$

Kitaev | TDPG | EBM and valid transitions

 $\xrightarrow{\text{Dual}}$

(*) Expressible By Matrices (EBM)

$$H \geq G, |\psi\rangle$$
 s.t.

 $\operatorname{Prob}[G, |\psi\rangle] \to \operatorname{Prob}[H, |\psi\rangle]$

K: cone of EBM

Operator monotone function

$$f$$
 s.t.

$$\forall H \ge G, f(H) \ge f(G)$$

Valid functions

$$\sum_{\text{final } \frac{\lambda z}{\lambda + z}} p_z \ge \sum_{\text{init } \frac{\lambda z}{\lambda + z}} p_z$$

 K^* : cone of Operator Monotones

 $\overset{\mathrm{Dual}}{\rightarrow}$

 K^{**} : cone of valid functions

 $\angle \text{Lemma:} K = K^{**}$

Kitaev | TDPG | Valid transitions

Validity condition: Valid transition:

• For all $\lambda \geq 0$

$$\sum_{i} p_{i} \frac{\lambda z_{i}}{\lambda + z_{i}} \leq \sum_{i} p'_{i} \frac{\lambda z'_{i}}{\lambda + z'_{i}}$$

Kitaev | TDPG | Basic transitions

Merge $(n_g \to 1)$:

$$\langle x_g \rangle \le x_h$$

Split $(1 \to n_h)$:

$$\frac{1}{x_g} \ge \left\langle \frac{1}{x_h} \right\rangle$$

Raise $(n_g = n_h \rightarrow n_h)$:

$$x_{g_i} \le x_{h_i}$$

Kitaev | TDPG | Example

Merge $(n_g \to 1)$:

$$\langle x_g \rangle \le x_h$$

Split $(1 \to n_h)$:

$$\frac{1}{x_g} \ge \left\langle \frac{1}{x_h} \right\rangle$$

Raise
$$(n_g = n_h \rightarrow n_h)$$
:

$$x_{g_i} \le x_{h_i}$$

The flip and declare protocol!

Kitaev | TDPG | Example (2)

Merge $(n_g \to 1)$:

$$\langle x_g \rangle \le x_h$$

Split $(1 \to n_h)$:

$$\frac{1}{x_g} \ge \left\langle \frac{1}{x_h} \right\rangle$$

Raise
$$(n_g = n_h \rightarrow n_h)$$
:

$$x_{g_i} \le x_{h_i}$$

Spekkens Rudolph protocol (PRL, 2002)

Kitaev | TDPG | Example (3)

Merge
$$(n_g \to 1)$$
:

$$\langle x_g \rangle \le x_h$$

Split
$$(1 \to n_h)$$
:

$$\frac{1}{x_g} \ge \left\langle \frac{1}{x_h} \right\rangle$$

Raise
$$(n_g = n_h \to n_h)$$
:

$$x_{g_i} \le x_{h_i}$$

Best known explicit protocol: Dip Dip Boom (Mochon, PRA 2005)

Kitaev | Three Equivalent Frameworks

Protocol

Constructive Non-constructive

Time Dependent Point Game (TDPG)

Time Independent Point Game (TIPG)

Kitaev | TIPG

Time Independent Point Game (TIPG):

- Key idea: Allow negative weights
- h(x,y), v(x,y) s.t.

h + v = final frame - initial frame

h, v satisfy a similar equation.

Mathemagic: For a valid TIPG there is TDPG with the same last frame.

Charm: Catalyst state.

Mochon | Near-perfect WCF is possible

• Mathemagic: Family of TIPGs that yield

$$\epsilon = \frac{1}{4k+2}$$

where 2k = number of points involved in the non-trivial step.

- k = 1 yields the Dip Dip Boom protocol ($\epsilon = 1/6$) protocol.
- Charm: Polynomials.

Contributions

TEF, Blinkered Unitaries, 1/10 explicit, Elliptic-Monotone-Align Algorithm

TEF

TDPG to Explicit protocol Framework (TEF):

A TDPG \rightarrow Protocol if

for each consecutive frame of a TDPG one can construct a U s.t.

$$\sum x_{h_i} |h_i\rangle \langle h_i| - \sum x_{g_i} E_h U |g_i\rangle \langle g_i| U^{\dagger} E_h \ge 0$$

and

$$U(\underbrace{\sum \sqrt{p_{g_i}} |g_i\rangle}_{|v\rangle}) = \underbrace{\sum \sqrt{p_{h_i}} |h_i\rangle}_{|w\rangle}.$$

TEF | Blinkered Unitaries

For the Dip Boom ($\epsilon = 1/6$) protocol, we need a U that implements

- Split: $1 \to n_h$
- Merge: $n_q \to 1$

Claim: $U_{\text{blink}} = |w\rangle \langle v| + |v\rangle \langle w| + \mathbb{I}_{\text{else}}$ can perform both.

Significance: Current best protocol from its point game directly.

TEF | 1/10 Explicit

For initialising and the catalyst state we need

- Merge
- Split

and to climb down the ladder we need a special class

- \bullet 3 \rightarrow 2
- \bullet 2 \rightarrow 2.

$$U_{3\to 2} = |w_1\rangle \langle v_1| + (|v_2'\rangle + |w_2\rangle) \langle v_2'| + |v_0'\rangle \langle v_0'| + (|v_2'\rangle - |w_2\rangle) \langle w_2| + |v_1\rangle \langle w_1|$$

$$U_{2\to 2} = |w_1\rangle \langle v_1| + (\alpha |v_1\rangle + \beta |w_2\rangle) \langle v_2| + |v_1\rangle \langle w_1| + (\beta |v_1\rangle - \alpha |w_2\rangle) \langle w_2|$$

Elliptic Monotone Align (EMA) Algorithm

Find a U s.t.

$$X_h \ge U X_g U^\dagger$$

and

$$U|v\rangle = |w\rangle$$

where $X_h = \operatorname{diag}(x_{h_1}, x_{h_2}, \dots), |w\rangle \doteq (\sqrt{p_{h_1}}, \sqrt{p_{h_2}}, \dots)^T$. X_q and $|v\rangle$ are similarly defined.

EMA | Elliptic Representation

- Restrict to reals: $U \to O$.
- \bullet For X diagonal

$$\mathcal{E}_X = \{ |u\rangle \, | \, \langle u| \, X \, |u\rangle = 1 \}$$

is \vec{u} which satisfy $\sum x_i u_i^2 = 1$, viz. an ellipsoid.

- Generalises to all X > 0.
- $X_h \ge OX_gO^T$ means \mathcal{E}_H is contained in \mathcal{E}_G (containment is reversed).

EMA | Elliptic Representation $_{O|v\rangle = |w\rangle}$

- Imagine: Solution O is known, viz.
 - $-O|v\rangle = |w\rangle$.
 - $-X_h \ge OX_qO^T.$
- Suppose: Point of contact is $|w\rangle$.
- Observation:
 - $-O|n_g\rangle = |n_h\rangle.$
 - Inner ellipsoid more curved.

EMA | Elliptic Representation

• Imagine: Solution O is known, viz.

$$-O|v\rangle = |w\rangle$$
.

$$-X_h \ge OX_gO^T.$$

- Suppose: Point of contact is $|w\rangle$.
- Observation:

$$-O|n_g\rangle = |n_h\rangle.$$

- Inner ellipsoid more curved.

EMA | Elliptic Monotone-Align Algorithm

- EBRM=EBM
- Elliptic Representation
- Weingarten Maps
 (to evaluate curvatures)

Given a k dimension problem:

- Tighten;
- Normals must coincide at the point of contact;
- The inner ellipsoid must be more curved than the outer ellipsoid,

which yields a k-1 dimension problem.

Apply iteratively and combine to get U.

Significance: Explicit protocol for Weak CF with $\epsilon \to 0$.

Conclusion

Summary

- Framework for finding protocols from point games.
 - Split and Merge, basic moves in these games, exactly converted to unitaries
 - Bias 1/6 protocol
 - Catalyst State
 - Bias 1/10 protocol moves exactly determined
- Elliptic Monotone Align (EMA) Algorithm.
 - A systematic way of finding unitaries for any valid move
 - Protocol for WCF with $\epsilon \rightarrow 0$.

Summary

$$\epsilon = \frac{1}{2}$$

Classically: $\epsilon = \frac{1}{2}$ viz. at least one player can always cheat and win.

Quantumly:

Bound

Best protocol known

$$\epsilon \ge \frac{1}{\sqrt{2}} - \frac{1}{2}$$
 [Kitaev 03] $\epsilon = \frac{1}{4}$ [Ambainis 01]

$$\epsilon = \frac{1}{4}$$
 [Ambainis 01]

$$\epsilon \to 0$$
 [Mochon 07] $\epsilon \to \frac{1}{10}$ (analytic) [Aharonov et al 16] $\epsilon \to 0$ (Mochon 05] $\epsilon \to 0$

$$\begin{array}{c} \epsilon \to \frac{1}{10} \\ \epsilon \to 0 \end{array}$$
 (analytic)
 $\epsilon \to 0$ (Mochon 0

Outlook

- Resources. Compile the 1/10 game into a neater protocol
- Structure. Relation between Mochon's polynomial assignment and the EMA solution
- Simpler. Study the Pelchat-Høyer point games and its moves
- *Robust*. Account for noise in the unitaries
 - EMA will run with finite precision; quantify its effect on the bias
- Bounds. Prove lower bounds on number of points needed for achieving a certain bias

arXiv:1811.02984

Thank you

The work was funded by EU H2020, FRIA, FNRS; FNRS grant QUICTIME; FNRS grant QuantAlgo.

Resource Requirements

COROLLARY 4.6. Assume there exists a TIPG with a valid horizontal function $h = h^+ - h^-$ and a valid vertical function $v = v^+ - v^-$ such that $h + v = 1[\beta, \alpha] - \frac{1}{2}[0,1] - \frac{1}{2}[1,0]$. Let Γ be the largest coordinate of all the points that appear in the TIPG game. Then, for all $\varepsilon > 0$, we can construct a point game with $O(\frac{\|h\|\Gamma^2}{\varepsilon^2})$ valid transitions and final point $[\beta + \varepsilon, \alpha + \varepsilon]$.

5. Construction of a TIPG achieving bias ε **.** In this section we construct for every $\varepsilon > 0$ a game with final point $[1/2 + \varepsilon, 1/2 + \varepsilon]$. Moreover, the number of qubits used in the protocol will be $O(\log \frac{1}{\varepsilon})$ and the number of rounds $(\frac{1}{\varepsilon})^{O(\frac{1}{\varepsilon})}$.

DORIT AHARONOV[†], ANDRÉ CHAILLOUX[‡], MAOR GANZ[†], IORDANIS KERENIDIS[§], AND LOÏCK MAGNIN[†]