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Problem Statement

Strong CF, Weak CF, correctness and bias



Problem Statement

Coin Flipping (CF): Alice and Bob wish to agree on a random bit remotely without

trusting each other.

* Strong Coin Flipping: No player knows the preference of the other.

 Weak Coin Flipping (WCF): Each player knows the preference of the other.



Situations

Honest player: A player that follows the protocol exactly as described.

Alice Bob Remark
Honest Honest Correctness
Cheats Honest Alice can bias
Honest Cheats Bob can bias
Cheats Cheats Independent of the protocol

Bias of a protocol: A protocol that solves the CF problem has bias € if neither player
can force their desired outcome with probability more than %+e.



Situations | Weak CF

NB. For WCF the players have opposite preferred outcomes.

Alice Bob Pr(A wins) Pr(B wins)
Honest Honest Py Pg=1—Py
Cheats Honest Py L =P}
Honest Cheats 1 —Pg Py
Bias: smallest € s.t. P}, P < % + €

NB. 0<e<

DN | —



Situations | Weak CF | Flip and declare

Protocol: Alice flips a coin and declares the outcome to Bob.

Alice Bob Pr(A wins) Pr(B wins)
Honest Honest Py =1/2 Pg=1/2
Cheats Honest Pi=1 1-P3=0
Honest Cheats 1-Pp=1/2 Pg=1/2
Bias: smallest € s.t. Py, P5 < % + € = €= %



Prior Art

Bounds and protocols, Kitaev’s Frameworks, Mochon’s Breakthrough



Bounds and Protocols

Classically: ¢ — % viz. at least one player can always cheat and win.

Bound Best protocol
Quantumly: known
€ > ! - € = 11 L
Strong CF V22 " 4/R mbhinis 01
Lsiaey O8] [Chailloux %erenidis 09
Weak CE e 0 [Mochon 07] c 1

[Aharonov et al 16] 6 [Mochon 05]




Kitaev | Three Equivalent Frameworks

{ Protocol }

Constructiveﬂ ﬂ Non-constructive

[ Time Dependent Point Game (TDPG) J

Constructivcﬂ ﬂ Constructive

[ Time Independent Point Game (TIPG) J




Kitaev | Protocol | Definition

Alice Message

[ E U,

)

Bob

(

EyUs

Protocol described by

e Initial (product) state |1g) anB

e Unitaries U; and projectors FE; alternating between

* Alice for 7 odd

* Bob for i even

e Final measurements (POVMs)
x {Hff), HS)} for Alice
« {9 Y for Bob

e We assume

* 0 means “Alice wins”

* 1 means “Bob wins”



Kitaev | Protocol | Honest players

For honest players

Alice Message Bob
| | e Honest state: The global state after step 7 is given by
EU
[ 1¥1 | ] ’¢@> = UiUz’—l .. U1‘¢0>
[ : ExUs ] * “Cheat detection” projectors F; do not affect the “honest” state
[ E3Us | ) e Correctness: Final measurements never yield different outcomes
E, Uy
[l l] I @Iy @I |1,) =T @ Ly @ T |4,) = 0
|
: : : e Balanced: Each player wins with probability 1/2
|| | |
| | 1
0 0
" ByaUnot | Pa= T @ Ty © T [4a) |* = 5
|
1
B Py = 1Y @ Ly @ T ) |12 = 3




Kitaev | Protocol | Cheating Bob

Alice Message Bob

[ | E U,

]

By

[ EUs

)

If Bob is cheating (but Alice remains honest)

Focus on the Alice-Message reduced state panr,;

Bob cannot affect the initial state
pam,o = Tra([tbo) (Yol) = [Yanmo0) (Yanm,ol
For i odd, Alice is honest
PAM,; = EiUipAM,i—lUZ'TEi
For 7 even, Bob can apply any operation on M but cannot affect A
Tra(pani) = Traa(pani—1)

Bob tries to maximise the probability that Alice declares him to be the
winner

Tr((11) @ Tag)pane.n)



Kitaev | Protocol | Cheating Bob

Alice Message Bob
| |
[ £y l j N Bob’s maximum cheating probability is given by an SDP
« 1
( ! Eg\i%\ ) / [ — s Tr((Ty) ® Tae)pans,n)
L ’
subject to
| o pamo = Tra(|vo) (Yol) = [Yanro) (Yamol;
| | |
m m ] e for ¢ odd, pan,i = EiU@'pAM’@'_lUiTE@';
| | |
l l -
f T ;) =T i—1)-
[ R ] o for i even, Traq(panr,i) = Tram(pansi—1)
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Kitaev | Protocol | Cheating Alice

Alice Message Bob

[ E\\il ] Alice’s maximum cheating probability is given by an SDP

ExU.
§§<—[j o 4 Pj = max Tr((Iy @ L) pars.n)
3

[ PMB,i
N subject to
e o
| l l o pvBo = Tra(|vo) (Yo|) = [¥mB,o) (YmBol;
: : : o for i odd, Tram(pap,i) = Trm(pamrsi—1)-
|| [ | |
f&‘j o for i even, prp; = EiUiprp,i—1U) Ei;
n— n—1
N

. BJU, | K




Kitaev | Dual SDPs

We want to upper bound the cheating probabilities
= Better to work with dual SDPs

Alice Message Bob /

B = ZmigoTr(ZA,o 1%4,0) (¥a,0])

| Ai2

B

| subject to

T

| o fori odd, Za,—1 ®Ip > Ul ;Eai(Za; @ Im)EaiUas;

[ E3Us ]

| o forieven, Zs,—1 = Za;

Cpo

| [ \_ * Zan=11
. - .
E ; . / Py = Zgllleo Tr(ZB,o [¥B,0) (¥B,0l)
[ En_lU”_ll ] subject to
[ EnUp j o for i even, Ip ® Zp 1 > U;,iEB,i(I[M ® Zp,i)EBUp.;

K OZB’n: (BP)'
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Kitaev | Three Equivalent Frameworks

{ Protocol }

Constructiveﬂ ﬂ Non-constructive

[ Time Dependent Point Game (TDPG) J

Constructivcﬂ ﬂ Constructive

[ Time Independent Point Game (TIPG) J




Kitaev | Time Dependent Point Game

For each %, construct the following graphical representation (frame)

<B
e Set of weighted points on a 2D figure ,
| zero weight
e Point coordinates: (za,2B) Nm“
* zA runs over eigenvalues of dual variable Z 4 ; kS l ® s
N
* zp runs over eigenvalues of dual variable Zp ; ;g -
S
S
e Point weights: p,, ., = (;|TIl#al @ T8l |4p;) o ® e (D
o0 L
* |1;) is the honest state at step @ o
x TI[#4l ig the projector on the corresponding eigenspace of Z A, T . — o
[2B] : . . . . |
*x 11 is the projector on the corresponding eigenspace of Zp ; Eigenvalues of Za

e Notation

* Prob[Za,; ® Zp,is |¥i)] =D ., 25 Pzaszs * (24, 2B)



Kitaev | TDPG | SDP constraints

SDP constraints
e Initialization

* 2(0,1) + 1(1,0)
e Point transitions

*x ¢ odd — Horizontal transition

*x 1 even — Vertical transition
e Finalization

* 1-(B,a) where
* a = P} (Alice’s cheating probability)
* 8 = P}, (Bob’s cheating probability)

<B

(0,1)
1@

N | —

(1,0

N —

<A



Kitaev | TDPG | SDP constraints

SDP constraints
e Initialization “B
* 5(0,1) + £(1,0)

e Point transitions

*x ¢ odd — Horizontal transition

*x 1 even — Vertical transition

Eigenvalues of Zp ;

e Finalization

* 1-(B,a) where e ° —

ZA
* a = P} (Alice’s cheating probability)

* 8 = P}, (Bob’s cheating probability)

Eigenvalues of Z4 ;



Kitaev | TDPG | SDP constraints

SDP constraints
e Initialization ~B

* 2(0,1) + 3(1,0)

1
e Point transitions
1-(8,a)
*x ¢ odd — Horizontal transition Q a
. . 1 €}
* 1 even — Vertical transition B

e Finalization
* 1-(B,a) where )
* a = P} (Alice’s cheating probability) 2
* 8 = P}, (Bob’s cheating probability)

<A



Kitaev | TDPG | Naive (wrong) protocol

o Ideally
* Zero bias — Final point (%, %)
e Naive (wrong) protocol 1¢

* One horizontal transition

*x One vertical transition

| H=

e Problem

*x This transition is not valid

* For each line, coordinates of the center of mass can only increase

ZAic1 @I 2 U Bai(Za; @Im)EaUa,

ZA



Kitaev | TDPG | Naive (wrong) protocol

o Ideally .
* Zero bias — Final point (3, 1) ~(0,1)
2 )
e Naive (wrong) protocol

* One horizontal transition 1- <1 1)
272

*x One vertical transition

N =

e Problem

*x This transition is not valid

* For each line, coordinates of the center of mass can only increase 1 ZA

ZAic1 @I 2 U Bai(Za; @Im)EaUa,



Kitaev | TDPG | Naive (wrong) protocol

o Ideally n

* Zero bias — Final point (3, 1)

e Naive (wrong) protocol T S

* One horizontal transition

*x One vertical transition

N =

e Problem

*x This transition is not valid m

* For each line, coordinates of the center of mass can only increase ZA

ZAic1 @I 2 U Bai(Za; @Im)EaUa,



Kitaev | TDPG | Naive (wrong) protocol

o Ideally on
* Zero bias — Final point (3, 1)
e Naive (wrong) protocol 1
* One horizontal transition
* One vertical transition 1
2

e Problem

*x This transition is not valid

* For each line, coordinates of the center of mass can only increase

N[ —

ZAic1 @I 2 U Bai(Za; @Im)EaUa,



Kitaev | TDPG | Naive (wrong) protocol

o Ideally n

* Zero bias — Final point (3, 1)

e Naive (wrong) protocol T S

* One horizontal transition

*x One vertical transition

N =

e Problem

x This transition is not valid ./s\.

* For each line, coordinates of the center of mass can only increase ZA

ZAic1 @I 2 U Bai(Za; @Im)EaUa,



Kitaev | TDPG | EBM transitions

21 29 <A / / /I ZA

Validity condition: Expressible by matrices (EBM):

e There exists G < H and |¢) such that the transition can be written

Prob[G, [1)] — Prob[H, |1)]



Kitaev | TDPG | Valid transitions

/ / /
pP1 D2 D1 2 P3
—— e o o & J
T T . e
o - c > ) s t >
z z ZA / / / ZA
1 2 Zl 22 23

Validity condition: Valid transition:

e ForallA >0




Kitaev | TDPG | EBM and valid transitions

(*) Expressible By Matrices Operator monotone function Valid functions
(EBM)
Zﬁnal )\A——I—Zzpz >
> 1. S.t. e
H>G,[p) st ! D init ,\/\—+sz
Prob|G, |1)] — Prob[H, |1))] VH>G, f(H) > f(G)
Dual * Dual s ok
K : cone of EBM — K™ : cone of — K** : cone of

\Operator Monotones valid functions
Lemma: K=K™** 4 



Kitaev | TDPG | Valid transitions

/ / /
P1 - D2 D1 2 Ps
b c o . ;
SR S
o o c > ° o t b
z z ZA / / / ZA
! 2 21 &2 23

Validity condition: Valid transition:

e ForallA >0




Kitaev | TDPG | Basic transitions

Merge (n, — 1): T . e .
() < o, -
L. e
Split (1 — ny): | e

5’7_192<$> ‘[0 | '

Raise (ng, = np — np):

Tg; < Th,




Kitaev| TDPG | Example

Merge (n, — 1):

(zg) < T

Split (1 — nh):
ey
- Z -
Lg Lh

Raise (ng, = np — np):

Tg; < T,

1.1/2

2]

1 12 o2 1-

The flip and declare protocol!



Kitaev | TDPG | Example (2)

Merge (n, — 1):

(Tg) < xp
1 o > < A

;

=

Split (1 — nh):
ey
- Z -
Lg Lh

Raise (ng, = np — np):

1

-
1
V2

Spekkens Rudolph protocol (PRL, 2002)
Tg; < T,



Kitaev | TDPG | Example (3)

Merge (n, — 1):

(zg) < T

Split (1 — nh):

o2 (@)
_Z S
Lg Lh

Raise (ng, = np — np):

Tg; < T,

2

W

~2_ 1,1
N3_2_|_6

Best known explicit protocol:
Dip Dip Boom (Mochon, PRA 2005)



Kitaev | Three Equivalent Frameworks

[ Protocol }

Constructiveﬂ ﬂ Non-constructive

{ Time Dependent Point Game (TDPG) }

Constructivcﬂ ﬂ Constructive

[ Time Independent Point Game (TIPG) J




Kitaev | TIPG

Time Independent Point Game (TIPG):

e Key idea: Allow negative weights

o h(z,y),v(z,y) s.t.
h + v = final frame - initial frame

h,v satisfy a similar equation.
Mathemagic: For a valid TIPG there is TDPG with the same last frame.

Charm: Catalyst state.



Viochon | Near-perfect WCF is possible

e Mathemagic: Family of TIPGs that yield

where 2k = number of points involved in the non-trivial step.

e k =1 yields the Dip Dip Boom protocol (e = 1/6) protocol.

,,,,,,,,,,
8 8 8 8 8 8 8 8 8 8 B 8 8 B B 8

e Charm: Polynomials.

Image taken from E. Pelchat’s Master Thesis



Contributions

TEF, Blinkered Unitaries, 1/10 explicit, Elliptic-Monotone-Align Algorithm



TEF L :

pgl p92 pgg ph1

Pho

Zl?hl

TDPG to Explicit protocol Framework (TEF):

A TDPG — Protocol if
for each consecutive frame of a TDPG one can construct a U s.t.

thi hi) (hil — ngiEhU 9:) (9:| UT By > 0

and

U(Z@ 9:)) =Z¢p—m
) w)

hi) .

Lh

2



Blinkered Unitaries

For the Dip Dip Boom (e = 1/6) protocol, we need a U that implements
e Split: 1 — ny,
e Merge: n, — 1

Claim: Upjink = |w) (v| + |v) {(w] 4 Tese can perform both.

Significance: Current best protocol from its point game directly.



1/10 Explicit

Yie2 Pa(Yj+2) i
For initialising and the catalyst state we need Vi1 u I

(e
e Merge /e Pr%)
/ffﬁ 01

e Split

and to climb down the ladder we need a special class

o 3 — 2 L) P(x;)

o 2 — 2 7 1~

Us—z = [w1) (vi] + (Jvg) + [wz)) (va| + |vg) (vp| + (vg) — |wa2)) (wa| + [v1) (w1

Us—2 = |wy) (1| + (v |v1) + B lwa)) (v2| + [v1) (w1| + (B |v1) — a|wz)) (ws



Elliptic Monotone Align (EMA) Algorithm

pgl p92 p93

Find a U s.t.
X, > UX,UT
and
Ulv) = |w)

where X, = diag(zn,, Th, - .. ), (W) = (\/Phy»\/Phs - - -
X, and |v) are similarly defined.

Ph

Phs

)"

Lh

1

Lh

2



EMA | Elliptic Representation

Restrict to reals: U — O.

For X diagonal
Ex = {lu) | (u] X [u) =1}

is @ which satisfy > z;u? = 1, viz. an ellipsoid.

Generalises to all X > 0.

X, > 0X,0" means £ is contained in £~ (containment is reversed).
g

~N ——
H G



EMA | Elliptic Representation,

e Imagine: Solution O is known, viz. Eox,0T

— O) = ).
- X, > 0X,0".

e Suppose: Point of contact is |w).

e Observation:

~ Olng) = nn).

— Inner ellipsoid more curved.

=|w)




EMA | Elliptic Representation

e Imagine: Solution O is known, viz. EX,

— O) = ).
- X, > 0X,0".

e Suppose: Point of contact is |w).

e Observation:

~ Olng) = nn).

— Inner ellipsoid more curved.

ng)

Ly




EMA | Elliptic Monotone-Align Algorithm

Given a k dimension problem:

e Tighten;

e EBRM=EBM e Normals must coincide at the point of contact;

e [Elliptic Representation i i i
P e The inner ellipsoid must be more curved

e Weingarten Maps
than the outer ellipsoid,

(to evaluate curvatures)

which yields a £ — 1 dimension problem.

Apply iteratively and combine to get U.

Significance: Explicit protocol for Weak CF with ¢ — 0.



Conclusion



Summary

* Framework for finding protocols from point games.

* Split and Merge, basic moves in these games, exactly converted to unitaries
* Bias 1/6 protocol

» Catalyst State

 Bias 1/10 protocol moves exactly determined

* Elliptic Monotone Align (EMA) Algorithm.
* A systematic way of finding unitaries for any valid move

* Protocol for WCF with € > 0.



Summary

Classically: ¢ — % viz. at least one player can always cheat and win.

Bound Best protocol
Quantumly: known
11 1
Strong CF T V2 2 Kitaev 03] 4 [Ambainis 01]
1
Weak CF ¢ y ( Mochon 07] “¢ 14 (analytic)

[Aharonov et al 16] c 00 (QY[och(ﬁl 05%

gorithmic




Outlook

* Resources. Compile the 1/10 game into a neater protocol

Structure. Relation between Mochon’s polynomial assignment and the EMA solution

Simpler. Study the Pelchat-Hgyer point games and its moves

Robust. Account for noise in the unitaries

 EMA will run with finite precision; quantify its effect on the bias

Bounds. Prove lower bounds on number of points needed for achieving a certain bias
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Resource Requirements

COROLLARY 4.6. Assume there exists a TIPG with a valid horizontal function

h = ht — h™ and a valid vertical function v = vt — v~ such that h +v = 1[3,a] —

%[O, 1] — %[1,0]. Let T' be the largest coordinate of all the points that a,ppeaz in the

[A]T )
82

TIPG game. Then, for all € > 0, we can construct a point game with O( valid

transitions and final point [8 + €, a + €].

5. Construction of a TIPG achieving bias €. In this section we construct
for every € > 0 a game with final point [1/2 4+ €,1/2 + ¢]. Moreover, the number of
qubits used in the protocol will be O(log 2) and the number of rounds (1)o(2),

S
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