A universal adiabatic quantum query algorithm

Jérémie Roland

Université Libre de Bruxelles

Quantum Information & Communication

Based on joint work with Mathieu Brandeho

[BrandehoR, TQC'15, arxiv:1409.3558]

Outline

- * Preliminaries
 - Adiabatic quantum computation
 - Quantum query complexity
- * Continuous-time quantum query complexity
 - Lower bound: adversary bound
 - Upper bound: adiabatic algorithm
- * Conclusion and discussion

Adiabatic quantum computation

Discrete vs continuous-time quantum computation

	Discrete	Continuous
Building blocks	2 qubit gates U_i	2-local Hamiltonians h_i
Algorithm	Sequence of gates $U_T \dots U_2 U_1$	Hamiltonian $H = \sum_{i} h_{i}$
Complexity	Total number of gates	Total time of evolution under H
polynomially equivalent		

- \ast Slow evolution \Longrightarrow remains in ground state
- * Probability of excitation depends on
 - Total time T (slower is better)
 - Gap g(t) (larger is better)

Adiabatic quantum [Farhi et al.'00] computation

st Problem: find minimum of function f(x)

- Prepare ground state of simple Hamiltonian H_0
- O Slowly switch to H_f with spectrum matching f(x)

How powerful is it?

- * It is quantum
 - Unstructured search in time $O(\sqrt{N})$ (cf Grover) [vanDam-Mosca-Vazirani'01, RCerf'02]
- * It is universal for quantum computation
- * Initial motivation: optimization problems (NP-complete)
 - Worst case: exponential

[vanDam-Vazirani'03,Reichardt'04]

[Aharonov et al. '05]

• Average case: long debate (numerical simulations)

Note

Few known adiabatic algorithms
Mostly heuristics (no analytical results)

Quantum query complexity

Classical query complexity

- **O** Function f(x), where $x = (x_1, \ldots, x_n)$
- **O** Oracle $O_x: i \to x_i$
- **O** Goal: Compute f(x) given black-box access to O_x

Randomized query complexity $R_{\varepsilon}(f)$ Minimum # calls to O_x necessary to compute f(x) with success probability $(1 - \varepsilon)$

Quantum query complexity

* Quantum oracle:

$$\begin{array}{c|c} |i\rangle \\ \hline O_x \\ |b\rangle \end{array} \begin{array}{c} |i\rangle \\ |b_i \oplus x_i\rangle \end{array}$$

***** Extra power:

Can query O_x in superposition $\Rightarrow Q_{\varepsilon}(f) \leq R_{\varepsilon}(f)$

Quantum state generation

stSet of quantum states $\{\ket{\psi_x}:x\in\mathcal{D}^n\}$

stGoal: Generate $|\psi_x
angle$ given black-box access to O_x

*Observation: Problem only depends on Gram matrix

$$M_{xy} = \langle \psi_x | \psi_y
angle$$

Quantum state conversion

stSet of target states $\{|\psi_x
angle:x\in\mathcal{D}^n\}$ stSet of initial states $\{|arphi_x
angle:x\in\mathcal{D}^n\}$

*****Goal: Convert $|\varphi_x\rangle$ to $|\psi_x\rangle$ given black-box access to O_x *****Observation: Problem only depends on Gram matrices

$$M_{xy} = \langle \psi_x | \psi_y \rangle \qquad N_{xy} = \langle \varphi_x | \varphi_y \rangle$$

(Zero-error) quantum query complexity

✤ Given

- O Gram matrix of initial states N
- O Gram matrix of target states M
- O Black-box access to x via oracle O_x

Quantum query complexity
$$Q_0(N, M)$$

Minimum # calls to O_x necessary to convert
the state $|\varphi_x\rangle|\bar{0}\rangle$ into $|\psi_x\rangle|\bar{0}\rangle$
work space

Bounded-error quantum query complexity

* Given

- O Gram matrix of initial states N
- O Gram matrix of target states M
- O Black-box access to x via oracle O_x

Quantum query complexity $Q_{\varepsilon}(N, M)$ Minimum # calls to O_x necessary to convert the state $|\varphi_x\rangle|\bar{\mathbf{0}}\rangle$ into a state $\sqrt{1-\varepsilon}|\psi_x\rangle|\bar{\mathbf{0}}\rangle + \sqrt{\varepsilon}|\mathrm{error}_x\rangle$ Reducing to zero-error case $|\psi^t_x
angle$: state of the algorithm after t queries on input x* Gram matrix $M_{xy}^t = \langle \psi_x^t | \psi_y^t \rangle$ $|\psi^0_x
angle = |arphi_x
angle |ar 0
angle \Rightarrow M^0 = N$ * Initially: * At the end: $|\psi^T_x
anglepprox|\psi_x
angle|ar{0}
angle\Rightarrow M^Tpprox M$ $M^{\bullet} M$ Algorithm What distance?

Output conditions

Quantum Lower bounds

* Different lower bound methods :

- Adversary method:
 - Idea: bound the change in a progress function for each query
- Polynomial method:
 - Idea: bound the degree of polynomials approximating the function

Adversary bound
[HøyerLeeŠpalek07]
* Progress function:
$$W[M^t] = \operatorname{Tr}[(\Gamma \circ M^t)vv^*]$$

* Initial value: $W[N] = \operatorname{Tr}[(\Gamma \circ N)vv^*]$ Adversary
Matrix
* Additive change for one query:
 $\|\Gamma \circ \Delta_i\| \leq 1 \ \forall i \Rightarrow |W[M^{t+1}] - W[M^t]| \leq 1$
* Final value after T queries: $|W[M^T] - W[M^0]| \leq T$
Adversary bound
ADV $(N, M) = \max_{\Gamma} \|\Gamma \circ (M - N)\|$
subject to $\|\Gamma \circ \Delta_i\| \leq 1 \ \forall i$

Adversary bound is tight

* In the bounded-error case, we have:

O $\mathrm{ADV}_{arepsilon}(f)$ is a lower bound for $Q_{arepsilon}(f)$ [HøyerLeeŠpalek'07]

 $O ADV_{\varepsilon}(f)$ is also an upper bound! [Reichardt'11,LMRŠS'11]

* Proof idea:

- **O** $ADV_{\varepsilon}(f)$ can be expressed as a semidefinite program (SDP)
- Dualize this SDP
- Build an algorithm from a feasible point of the dual SDP

Continuous-time quantum query complexity

Continuous-time state conversion #Set of target states $\{|\psi_x\rangle: x \in \mathcal{D}^n\}$ stSet of initial states $\{|arphi_x
angle:x\in\mathcal{D}^n\}$ *Given Hamiltonian oracle H_x (s.t. $O_x = e^{-iH_x}$) $\text{Convert} |\varphi_x\rangle$ to $|\psi_x\rangle$ via evolution under $H(t) = H_D(t) + \alpha(t)H_x$ arbitrary $|lpha(t)| \leq 1$ $\begin{array}{c|c} |0\rangle & - & - & |0\rangle \\ |0\rangle & - & i\hbar \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi(t)\rangle & - & |0\rangle \\ |0\rangle & - & - & |0\rangle \\ 2_x\rangle & - & - & |\psi_r\rangle \end{array}$

Continuous-time quantum query complexity

* Given

- O Gram matrix of initial states N
- O Gram matrix of target states M
- O Black-box access to x via Hamiltonian oracle H_x

C-t quantum query complexity $Q_0^{\rm ct}(N, M)$ Minimum time of evolution under $H(t) = H_D(t) + \alpha(t)H_x$ necessary to convert the state $|\varphi_x\rangle|\bar{0}\rangle$ into $|\psi_x\rangle|\bar{0}\rangle$

Comparison with discretetime model (1)

* Hamiltonian simulation of quantum circuit

Comparison with discretetime model (2)

* Just as in the discrete-time case, we can prove that

$$Q_0^{ ext{ct}}(N,M) \ge ext{ADV}(N,M)$$

* Two proof approaches:

- Adapting the discrete-time proof [Yonge-Mallo'11]
- Reduction via the fractional query model [CGMSY'09,LMRŠS'11]

$$\left\{ egin{aligned} Q_arepsilon^{ ext{ct}}(f) &= \Theta(Q_arepsilon(f)) &= \Theta(\operatorname{ADV}(f)) \end{aligned}
ight\}$$

Our contribution

- \ast We revisit this result
- \ast For the lower bound
 - Direct proof
- \ast For the upper bound
 - Adiabatic algorithm (inherently time-continuous)
- ***** Motivation
 - New intuition
 - New ideas to build adiabatic quantum algorithms?

Lower bound

Continuous-time adversary bound

st Let $\ket{\psi_x(t)}$ be the state of the algorithm on input x at time t

* Assume we run the algorithm on a superposition of inputs $|\Psi(t)
angle=\sum_x v_x|x
angle_{\mathcal{X}}|\psi_x(t)
angle_{\mathcal{A}}$

 \ast Choose an observable Γ on $\mathcal X$ measuring "progress"

$$\mathcal{W}(t) = \langle \Gamma \rangle_t = \langle \Psi(t) | \Gamma \otimes I_{\mathcal{A}} | \Psi(t) \rangle$$

* Bound the progress over the course of the algorithm

$$\langle \Gamma
angle_T - \langle \Gamma
angle_0 = \int_0^T \partial_t \langle \Gamma
angle_t dt \leq T \left| \partial_t \langle \Gamma
angle_t
ight|$$

EHRENFESTWEG

PAUL EHRENFEST, 1880-1933, NATUURKUNDIGE

THREE COLUMN ADDRESS AND ADDRESS ADDRES

Continuous-time adversary bound $\langle \Gamma \rangle_T - \langle \Gamma \rangle_0 = \int_0^T \partial_t \langle \Gamma \rangle_t dt \leq T \left| \partial_t \langle \Gamma \rangle_t \right|$

* By Ehrenfest's theorem: $\partial_t \langle \Gamma \rangle_t = -i \langle [H,\Gamma] \rangle_t + \langle \partial_t \Gamma \rangle_t$ O $\langle \partial_t \Gamma \rangle_t = 0$

$$\begin{array}{ll} \bullet & H = I_{\mathcal{X}} \otimes H_D + \sum_x |x\rangle\!\langle x| \otimes H_x \\ \Rightarrow [H,\Gamma] = \sum [|x\rangle\!\langle x| \otimes H_x,\Gamma] \end{array} \end{array}$$

* We get the lower bound x $T \ge \max_{\Gamma} |\langle \Gamma \rangle_T - \langle \Gamma \rangle_0 |$ subject to $||[H, \Gamma]|| \le 1$ VADV(N, M)

Upper bound

NAND tree algorithm

* Suppose we need to evaluate the following formula

* This can be done optimally (time $O(\sqrt{n})$) using a continuous-time quantum walk!

Dual of the adversary bound

$$ADV(N, M) = \max_{\Gamma} \|\Gamma \circ (M - N)\|$$
subject to $\|\Gamma \circ \Delta_i\| \le 1 \forall i$

$$\int SDP \text{ dualization}$$

$$ADV(N, M) = \min_{|u_{x,j}\rangle, |v_{y,j}\rangle} \max\left\{\max_{x} \sum_{j} \||u_{x,j}\rangle\|^2, \max_{y} \sum_{j} \||v_{y,j}\rangle\|^2\right\}$$
subject to

$$M_{xy} - N_{xy} = \sum_{i} \Delta_{i,xy} \langle u_{x,i} | v_{y,i} \rangle \forall x, y$$

Path to target state

 $\text{*Goal: convert } |\varphi_x\rangle \text{ to } |\psi_x\rangle$ $\text{*Ideal path: } |t_x(s)\rangle = \cos(\frac{\pi}{2}s)|0\rangle|\varphi_x\rangle + \sin(\frac{\pi}{2}s)|1\rangle|\psi_x\rangle$ $(s = \frac{t}{T})$ $(s = \frac{t}{T})$

 $\begin{aligned} &\text{Modified path} \left| \tilde{t}_x(s) \right\rangle = \left| t_x(s) \right\rangle + \frac{\delta}{\sqrt{\text{ADV}(N,M)}} \left| u_x \right\rangle \\ & \geqslant \left| u_x \right\rangle \text{ built from } \left| u_{x,i} \right\rangle \text{ in dual form of ADV}(N,M) \\ & \geqslant \left\| \left| \tilde{t}_x(s) \right\rangle - \left| t_x(s) \right\rangle \right\| \leq \delta \end{aligned}$

- * We set $H(s) = \Pi(s) H_x$ with $s = rac{t}{T}$
 - O Oracle Hamiltonian H_x
 - O Driver Hamiltonian $\Pi(s)$: projector built from $|v_{x,i}\rangle$ in dual form of $\mathrm{ADV}(N,M)$

$$H(s)ig| ilde{t}_x(s)ig
angle=0 \hspace{1em} orall s$$

Correctness of the algorithm

- * Error analysis
- $\begin{aligned} |||\psi_x(1)\rangle |1\rangle |\psi_x\rangle || &\leq \text{ starting error } \leq \delta \\ + \text{ adiabatic error } \leq \varepsilon_A ? \\ + \text{ ending error } \leq \delta \end{aligned}$

Adiabatic condition(s)

Let
$$g(s)$$
 be the spectral gap. Then
 $\varepsilon_A \leq \frac{1}{T} \max_s \left[2 \frac{||\dot{H}(s)||}{g^2(s)} + \frac{||\ddot{H}(s)||^2}{g^2(s)} + 7 \frac{||\dot{H}(s)||^2}{g^3(s)} \right]$
[Jansen-Ruskai-Seiler'07]

Problem Here, we might not have a gap!

Adiabatic condition(s)

Let
$$P(s) = |\tilde{t}_x(s)\rangle\langle \tilde{t}_x(s)|$$
 and $A(s)$ be such that
 $[\dot{P}(s), P(s)] = [H(s), A(s)]$
Then
 $\varepsilon_A \leq \frac{1}{T} \max_s \left[2||A(s)|| + ||\dot{A}(s)P(s)|| + ||A(s)\dot{P}(s)P(s)||\right]$
[Avron-Elgart'99]

Here: A(s) built from $|v_{x,i}\rangle$ in dual form of $\mathrm{ADV}(N,M)$

Correctness of the algorithm

* We choose running time $T = 15 \frac{ADV(N,M)}{\delta^2}$

$$Q^{ ext{ct}}_{(3\delta)^2}(N,M) = O\left(rac{ ext{ADV}(N,M)}{\delta^2}
ight)$$

Conclusion and discussion

Conclusion

- \ast Alternative proof that the adversary bound characterizes $Q_{\varepsilon}^{\rm ct}$
 - Lower bound: Ehrenfest's theorem
 - Upper bound: Adiabatic condition without a gap
- * New intuition:
 - Bounded error unavoidable due to adiabatic error

Further work

O Zero-error quantum query complexity

- Non-adiabatic algorithm?
- O New adiabatic quantum algorithms
 - Quantum query: adiabatic Deutsch-Jozsa, Simon, Shor?
 - Other: quantum walks?

Comparison with discretetime adversary algorithm

	Continuous	Discrete
Technique	Adiabatic evolution	Phase estimation
Analysis	Adiabatic condition	Effective spectral gap lemma

Search via quantum walks

- * Similar situation for quantum walks
 - Searching marked vertices from the stationary distribution (cf Maris' talk)

	Continuous	Discrete
Technique	Adiabatic evolution	Phase estimation
Analysis	Adiabatic condition	Effective spectral gap lemma

Search via quantum walks

- * Similar situation for quantum walks
 - Detecting marked vertices from an arbitrary initial distribution (cf Alexander's talk)

	Continuous	Discrete
Technique	???	Phase estimation
Analysis	???	Effective spectral gap lemma

• Can we also find multiple marked vertices using the adiabatic approach?