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Adiabatic quantum computation



Discrete vs continuous-time 
quantum computation
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Discrete Continuous

Building blocks
2 qubit gates 2-local Hamiltonians 

Algorithm Sequence of gates Hamiltonian 

Complexity Total number of 
gates

Total time of 
evolution under   .
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polynomially equivalent
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Adiabatic evolution

Slow evolution        remains in ground state

Probability of excitation depends on

Total time      (slower is better)

Gap         (larger is better)
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Adiabatic quantum 
computation

Problem: find minimum of function

Prepare ground state of simple Hamiltonian

Slowly switch to       with spectrum matching  
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Hf f(x)

f(x)

H0 Hf

[Farhi et al.’00]



How powerful is it?
It is quantum

Unstructured search in time              (cf Grover)

It is universal for quantum computation

Initial motivation: optimization problems (NP-complete)

Worst case: exponential

Average case: long debate (numerical simulations)
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O(
p
N)

[vanDam-Mosca-Vazirani’01, RCerf’02]

[Aharonov et al. ’05]

[vanDam-Vazirani’03,Reichardt'04]

Note
Few known adiabatic algorithms
Mostly heuristics (no analytical results)
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Quantum query complexity
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Classical query complexity

Function        , where 

Oracle 

Goal: Compute         given black-box access tof(x) O
x

f(x)
x = (x1, . . . , xn)

O
x

: i ! x
i

Randomized query complexity

Minimum # calls to     necessary to compute    
with success probability 

O
x

f(x) (1 � ")

R"(f)
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Quantum query complexity

 Extra power:

   Can query       in superpositionO
x

) Q"(f)  R"(f)
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Set of quantum states

Goal: Generate         given black-box access to

Observation: Problem only depends on Gram matrix

Quantum state generation
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Set of target states

Set of initial states

Goal: Convert        to        given black-box access to

Observation: Problem only depends on Gram matrices

Quantum state conversion
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(Zero-error) quantum query 
complexity
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Quantum query complexity

Minimum # calls to     necessary to convert 
the state          into

O
x

work space

Given

Gram matrix of initial states

Gram matrix of target states

Black-box access to    via oracle 
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Q0(N,M)
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Bounded-error quantum 
query complexity

14

Quantum query complexity

Minimum # calls to     necessary to convert 
the state          into a state

O
x

Given

Gram matrix of initial states

Gram matrix of target states

Black-box access to    via oracle 
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x O
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Reducing to zero-error case
      : state of the algorithm after   queries on input

Gram matrix

Initially: 

At the end:  
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Output conditions
                                            [Ambainis02]

                                            [HøyerLeeŠpalek07]

                                            [LeeR11]
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��MT � M
��
1  2

p
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�2(M
T � M)  2

p
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FH(MT ,M) �
p
1 � "

Algorithm

where

FH

�2

`1

• Theorem:  The last condition is tight     

FH(MT ,M) = min
|ui

F(MT � |uihu|,M � |uihu|)

Q"(N,M) = min
FH(M,M 0)�p

1�"
Q0(N,M 0)



Quantum lower bounds

Different lower bound methods :

Adversary method:

Idea: bound the change in a progress function for each 
query

Polynomial method:

Idea: bound the degree of polynomials approximating 
the function
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Adversary bound
Progress function:

Initial value:  

Additive change for one query: 

Final value after T queries:  
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Adversary bound

subject to

Adversary 
matrix

W[M t] = Tr[(� � M t)vv⇤]

|W[MT ] � W[M0]|  T

[HøyerLeeŠpalek07]

W[N ] = Tr[(� � N)vv⇤]

ADV(N,M) = max

�
k� � (M � N)k

k� � �ik  1 8i

k� � �ik  1 8i )
��W[M t+1] � W[M t]

��  1



Adversary bound is tight
In the bounded-error case, we have:

              is a lower bound for

              is also an upper bound!

Proof idea:

               can be expressed as a semidefinite 
program (SDP)

Dualize this SDP

Build an algorithm from a feasible point of the 
dual SDP
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[Reichardt’11,LMRŠS’11]

[HøyerLeeŠpalek’07]Q"(f)ADV"(f)

ADV"(f)

ADV"(f)



20

Continuous-time quantum query 
complexity



Set of target states

Set of initial states

Given Hamiltonian oracle        (s.t.                       ) 

Convert        to        via evolution under 

Continuous-time state 
conversion
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Continuous-time quantum 
query complexity
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C-t quantum query complexity        

Minimum time of evolution under      
necessary to convert the state          into

Given

Gram matrix of initial states

Gram matrix of target states

Black-box access to    via Hamiltonian oracle 

M
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x H
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Qct
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Comparison with discrete-
time model (1)

Hamiltonian simulation of quantum circuit
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Comparison with discrete-
time model (2)

Just as in the discrete-time case, we can prove that
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Qct
0 (N,M) � ADV(N,M)

Two proof approaches:

Adapting the discrete-time proof

Reduction via the fractional query model

[Yonge-Mallo’11]

[CGMSY’09,LMRŠS’11]

Qct
" (f) = ⇥(Q"(f)) = ⇥(ADV(f))



Our contribution
We revisit this result

For the lower bound

Direct proof

For the upper bound

Adiabatic algorithm (inherently time-continuous)

Motivation

New intuition

New ideas to build adiabatic quantum algorithms?
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Lower bound



Continuous-time adversary 
bound

Let              be the state of the algorithm on input    at time  

Assume we run the algorithm on a superposition of inputs

Choose an observable     on     measuring “progress”

Bound the progress over the course of the algorithm
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By Ehrenfest’s theorem:

     sdsds

  dssds

We get the lower bound
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Continuous-time adversary 
bound

@th�it = �ih[H,�]it + h@t�it
h@t�it = 0

subject toT � max

�
|h�iT � h�i0|

ADV(N,M)

h�iT � h�i0 =

Z T

0
@th�itdt  T |@th�it|

k[H,�]k  1

H = IX ⌦ H
D

+
X

x

|xihx| ⌦ H
x

) [H,�] =
X

x

[|xihx| ⌦ H
x

,�]
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Upper bound



NAND tree algorithm
Suppose we need to evaluate the following formula
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NAND

NAND NAND

NAND NAND NAND NAND

x0 x1 x2 x3 x4 x5 x6 x7

?

This can be done optimally (time              ) using a 
continuous-time quantum walk!

O(
p
n)



NAND tree algorithm
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[Farhi-Goldstone-Gutmann'08]

1 1 1 1 10 0 0

f(x) = 1



NAND tree algorithm
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[Farhi-Goldstone-Gutmann'08]

1 1 1 1 10 0 0

f(x) = 0



Dual of the adversary bound
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subject to
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Path to target state
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Goal: convert         to

Ideal path: 
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Hamiltonian

We set                                       with 

Oracle Hamiltonian 

Driver Hamiltonian          : projector built from      
in dual form of 
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Correctness of the algorithm

Error analysis
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Adiabatic condition(s)
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Let        be the spectral gap.  Theng(s)

"A 
1

T
max
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"
2

|| ˙H(s)||
g2

(s)
+

|| ¨H(s)||2

g2
(s)

+ 7

|| ˙H(s)||2

g3
(s)

#

[Jansen-Ruskai-Seiler’07]

Problem
Here, we might not have a gap!



Adiabatic condition(s)
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Let                                 and         be such thatP (s) = |t̃
x

(s)iht̃
x

(s)| A(s)

[Ṗ (s), P (s)] = [H(s), A(s)]
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"A 

1

T
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s

h
2||A(s)|| + || ˙A(s)P (s)|| + ||A(s) ˙P (s)P (s)||

i

[Avron-Elgart’99]

Here:          built from          in dual form of A(s) |v
x,i

i ADV(N,M)



Correctness of the algorithm
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Conclusion and discussion



Conclusion

Alternative proof that the adversary bound 
characterizes 

Lower bound: Ehrenfest’s theorem

Upper bound: Adiabatic condition without a gap

New intuition: 

Bounded error unavoidable due to adiabatic 
error
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Qct
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Further work

Zero-error quantum query complexity

Non-adiabatic algorithm?

New adiabatic quantum algorithms

Quantum query: adiabatic Deutsch-Jozsa, 
Simon, Shor?

Other: quantum walks?
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Comparison with discrete-
time adversary algorithm
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Continuous Discrete

Technique Adiabatic evolution Phase estimation

Analysis Adiabatic condition Effective spectral 
gap lemma



Search via quantum walks
Similar situation for quantum walks

Searching marked vertices from the stationary 
distribution (cf Maris’ talk)
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Continuous Discrete

Technique Adiabatic evolution Phase estimation

Analysis Adiabatic condition Effective spectral 
gap lemma



Search via quantum walks
Similar situation for quantum walks

Detecting marked vertices from an arbitrary 
initial distribution (cf Alexander’s talk)
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Continuous Discrete

Technique ??? Phase estimation

Analysis ??? Effective spectral 
gap lemma

Can we also find multiple marked vertices using 
the adiabatic approach?


