A universal adiabatic quantum query algorithm Jérémie Roland

Université Libre de Bruxelles

Quantum Information \& Communication

Based on joint work with
Mathieu Brandeho
[BrandehoR,TQC' 15 , arxiv: 1409.3558$]$

Oubline

* Preliminaries
- Adiabatic quantum computation

O Quantum query complexity

* Continuous-time quantum query complexity
- Lower bound: adversary bound
- Upper bound: adiabatic algorithm
* Conclusion and discussion

Adiabatic quantum computation

Discrete vs continuous-Eime quantum compubation

| | Discrete | Continuous |
| :---: | :---: | :---: | :---: |
| Building blocks | 2 qubit gates | 2-local Hamiltonians |
| Algorithm | Sequence of gates
 $U_{T} \ldots U_{2} U_{1}$ | Hamiltonian
 $H=\sum_{i} h_{i}$ |
| Complexity | Total number of
 gates | Total time of
 evolution under \boldsymbol{H} |

Adiabalic evolution

* Slow evolution \Rightarrow remains in ground state
* Probability of excitation depends on

O Total time T (slower is better)
O Gap $g(t)$ (larger is better)

Adiababic quankum compulation

* Problem: find minimum of function $f(x)$

O Prepare ground state of simple Hamiltonian $\boldsymbol{H}_{\mathbf{0}}$

- Slowly switch to H_{f} with spectrum matching $f(x)$

How powerful is it?

* It is quantum

O Unstructured search in time $O(\sqrt{N})$ (cf Grover)
[vanDam-Mosca-Vazirani'01, RCerf'02]

* It is universal for quantum computation
* Initial motivation: optimization problems (NP-complete)
- Worst case: exponential

O Average case: long debate (numerical simulations)

Nole

* Few known adiabatic algorithms
* Mostly heuristics (no analytical results)

Quankum query complexily

Classical query complexity

O Function $f(x)$, where $x=\left(x_{1}, \ldots, x_{n}\right)$
O Oracle $O_{x}: i \rightarrow x_{i}$
O Goal: Compute $f(x)$ given black-box access to O_{x}

Randomized query complexiky $R_{\varepsilon}(f)$ Minimum \# calls to O_{x} necessary to compute $f(x)$ with success probability $(1-\varepsilon)$

Quankum query complexily

* Quantum oracle:

$$
\begin{aligned}
& |i\rangle-O_{x}-|i\rangle \\
& \|(\theta\rangle-\left|x_{i} \neq x_{i}\right\rangle
\end{aligned}
$$

* Extra power:

Can query O_{x} in superposition $\Rightarrow Q_{\varepsilon}(f) \leq R_{\varepsilon}(f)$

Quantum stale generation

*Set of quantum states $\left\{\left|\psi_{x}\right\rangle: x \in \mathcal{D}^{n}\right\}$

* Goal: Generate $\left|\psi_{x}\right\rangle$ given black-box access to O_{x}

$$
\begin{aligned}
& |i\rangle-O_{x}-|i\rangle \\
& |b\rangle-\sqrt{-}\left|b \oplus x_{i}\right\rangle
\end{aligned}
$$

* Observation: Problem only depends on Gram matrix

$$
M_{x y}=\left\langle\psi_{x} \mid \psi_{y}\right\rangle
$$

Quankum slabe conversion

*Set of target states $\left\{\left|\psi_{x}\right\rangle: x \in \mathcal{D}^{n}\right\}$
*Set of initial states $\left\{\left|\varphi_{x}\right\rangle: x \in \mathcal{D}^{n}\right\}$

* Goal: Convert $\left|\varphi_{x}\right\rangle$ to $\left|\psi_{\boldsymbol{x}}\right\rangle$ given black-box access to $\boldsymbol{O}_{\boldsymbol{x}}$
* Observation: Problem only depends on Gram matrices

$$
M_{x y}=\left\langle\psi_{x} \mid \psi_{y}\right\rangle \quad N_{x y}=\left\langle\varphi_{x} \mid \varphi_{y}\right\rangle
$$

(Zero-error) quankum query complexily

* Given

O Gram matrix of initial states N
O Gram matrix of target states M
O Black-box access to x via oracle O_{x}

Quankum query complexily $Q_{0}(N, M)$
Minimum \# calls to O_{x} necessary to convert the state $\left|\varphi_{x}\right\rangle|\overline{0}\rangle$ into $\left|\psi_{x}\right\rangle|\overline{0}\rangle$

Bounded-error quantum query complexily

* Given

O Gram matrix of initial states N
O Gram matrix of target states M
O Black-box access to x via oracle O_{x}

Quankum query complexily $Q_{\varepsilon}(N, M)$
Minimum \# calls to O_{x} necessary to convert the state $\left|\varphi_{x}\right\rangle|\overline{0}\rangle$ into a state

$$
\left.\sqrt{1-\varepsilon}\left|\psi_{x}\right\rangle|\overline{0}\rangle+\sqrt{\varepsilon} \mid \text { error }_{x}\right\rangle
$$

Reducing to zero-error case

 * $\left|\psi_{x}^{t}\right\rangle_{\text {: state }}$ of the algorithm after t queries on input x * Gram matrix $M_{x y}^{t}=\left\langle\psi_{x}^{t} \mid \psi_{y}^{t}\right\rangle$ * Initially: $\quad\left|\psi_{x}^{0}\right\rangle=\left|\varphi_{x}\right\rangle|\overline{0}\rangle \Rightarrow M^{0}=N$ * At the end: $\quad\left|\psi_{x}^{T}\right\rangle \approx\left|\psi_{x}\right\rangle|\overline{\mathbf{0}}\rangle \Rightarrow M^{T} \approx M$

Output conditions

$$
\begin{aligned}
& \text { * }\left\|M^{T}-M\right\|_{\infty} \leq 2 \sqrt{\varepsilon} \\
& \text { * } \gamma_{2}\left(M^{T}-M\right) \leq 2 \sqrt{\varepsilon} \\
& \text { * } \mathcal{F}_{H}\left(M^{T}, M\right) \geq \sqrt{1-\varepsilon}
\end{aligned}
$$

where $\mathcal{F}_{H}\left(M^{T}, M\right)=\min _{|u\rangle} \mathcal{F}\left(M^{T} \circ|u\rangle\langle u|, M \circ|u\rangle\langle u|\right)$

- Theorem: The last condition is tight

$$
Q_{\varepsilon}(N, M)=\min _{\mathcal{F}_{H}\left(M, M^{\prime}\right) \geq \sqrt{1-\varepsilon}} Q_{0}\left(N, M^{\prime}\right)
$$

Quankum lower bounds

* Different lower bound methods :

O Adversary method:

- Idea: bound the change in a progress function for each query

O Polynomial method:

- Idea: bound the degree of polynomials approximating the function

Adversary bound

[HøyerLeeŠpalek07]

* Progress function: $\mathcal{W}\left[M^{t}\right]=\operatorname{Tr}\left[\left(\Gamma \circ M^{t}\right) \boldsymbol{v v ^ { * }}\right]$
* Initial value: $\mathcal{W}[N]=\operatorname{Tr}\left[(\Gamma \circ N) \boldsymbol{v} v^{*}\right]$
* Additive change for one query:

$$
\left\|\Gamma \circ \Delta_{i}\right\| \leq 1 \forall i \Rightarrow\left|\mathcal{W}\left[M^{t+1}\right]-\mathcal{W}\left[M^{t}\right]\right| \leq 1
$$

* Final value after T queries: $\left|\mathcal{W}\left[M^{T}\right]-\mathcal{W}\left[M^{0}\right]\right| \leq T$

Adversary bound

$$
\begin{aligned}
\operatorname{ADV}(N, M)= & \max _{\Gamma}\|\Gamma \circ(M-N)\| \\
& \text { subject to }\left\|\Gamma \circ \Delta_{i}\right\| \leq 1 \forall i
\end{aligned}
$$

Adversary bound is kight

* In the bounded-error case, we have:
$\bigcirc \operatorname{ADV}_{\varepsilon}(f)$ is a lower bound for $Q_{\varepsilon}(f)$
$O \operatorname{ADV}_{\varepsilon}(f)$ is also an upper bound!
* Proof idea:
$0 \operatorname{ADV}_{\varepsilon}(f)$ can be expressed as a semidefinite program (SDP)

O Dualize this SDP
O Build an algorithm from a feasible point of the dual SDP

Continuous-kime quantum query complexily

Continuous-lime state

conversion

*Set of target states $\left\{\left|\psi_{\boldsymbol{x}}\right\rangle: x \in \mathcal{D}^{n}\right\}$
*Set of initial states $\left\{\left|\varphi_{x}\right\rangle: x \in \mathcal{D}^{n}\right\}$

* Given Hamiltonian oracle $\boldsymbol{H}_{\boldsymbol{x}}$ (s.t. $O_{x}=e^{-i \boldsymbol{H}_{\boldsymbol{x}}}$)
* Convert $\left|\varphi_{x}\right\rangle$ to $\left|\psi_{x}\right\rangle$ via evolution under

$$
H(t)=H_{D}(t)+\alpha(t) H_{x}
$$

arbitrary
$|\alpha(t)| \leq 1$

Continuous-kime quantum query complexily

* Given

O Gram matrix of initial states N
O Gram matrix of target states M
O Black-box access to \boldsymbol{x} via Hamiltonian oracle $\boldsymbol{H}_{\boldsymbol{x}}$

C-t quantum query complexily $Q_{0}^{\text {ct }}(N, M)$
Minimum time of evolution under $H(t)=H_{D}(t)+\alpha(t) H_{x}$ necessary to convert the state $\left|\varphi_{x}\right\rangle|\overline{0}\rangle$ into $\left|\psi_{x}\right\rangle|\overline{0}\rangle$

Comparison with discretelime model (1)

* Hamiltonian simulation of quantum circuit

$$
Q_{0}^{\mathrm{ct}}(N, M) \leq Q_{0}(N, M)
$$

Comparison with discretetime model (2)

* Just as in the discrete-time case, we can prove that

$$
Q_{0}^{\mathrm{ct}}(N, M) \geq \operatorname{ADV}(N, M)
$$

* Two proof approaches:

Adapting the discrete-time proof
Reduction via the fractional query model

Our conkribubion

* We revisit this result
* For the lower bound

O Direct proof

* For the upper bound

O Adiabatic algorithm (inherently time-continuous)

* Motivation
- New intuition

O New ideas to build adiabatic quantum algorithms?

Lower bound

Conkinuous-bime adversary bound

* Let $\left|\psi_{x}(t)\right\rangle$ be the state of the algorithm on input x at time t
* Assume we run the algorithm on a superposition of inputs

$$
|\Psi(t)\rangle=\sum_{x} v_{x}|x\rangle_{\mathcal{X}}\left|\psi_{x}(t)\right\rangle_{\mathcal{A}}
$$

* Choose an observable Γ on \mathcal{X} measuring "progress"

$$
\mathcal{W}(t)=\langle\Gamma\rangle_{t}=\langle\Psi(t)| \Gamma \otimes I_{\mathcal{A}}|\Psi(t)\rangle
$$

* Bound the progress over the course of the algorithm

$$
\langle\Gamma\rangle_{T}-\langle\Gamma\rangle_{0}=\int_{0}^{T} \partial_{t}\langle\Gamma\rangle_{t} d t \leq T\left|\partial_{t}\langle\Gamma\rangle_{t}\right|
$$

Continuous-kime adversary

 bound$$
\langle\Gamma\rangle_{T}-\langle\Gamma\rangle_{0}=\int_{0}^{T} \partial_{t}\langle\Gamma\rangle_{t} d t \leq T\left|\partial_{t}\langle\Gamma\rangle_{t}\right|
$$

* By Ehrenfest's theorem: $\partial_{t}\langle\Gamma\rangle_{t}=-i\langle[\boldsymbol{H}, \Gamma]\rangle_{t}+\left\langle\partial_{t} \Gamma\right\rangle_{t}$
$0\left\langle\partial_{t} \Gamma\right\rangle_{t}=0$
○ $H=I_{\mathcal{X}} \otimes H_{D}+\sum_{x}|x\rangle\langle x| \otimes H_{x}$

$$
\underset{\mathrm{d}}{\Rightarrow}[\boldsymbol{H}, \Gamma]=\sum_{x}\left[|x\rangle\langle x| \otimes H_{x}, \Gamma\right]
$$

* We get the lower bound

$$
T \geq \underbrace{\operatorname{ADV}(\underset{29}{N}, M)}_{\underset{\Gamma}{\max _{\Gamma}\left|\langle\Gamma\rangle_{T}-\langle\Gamma\rangle_{0}\right| \text { subject to }}}
$$

Upper bound

NAND Eree algorithm

* Suppose we need to evaluate the following formula

* This can be done optimally (time $O(\sqrt{n})$) using a continuous-time quantum walk!

NAND tree algorithm

[Farhi-Goldstone-Gutmann'08]

NAND tree algorithm

[Farhi-Goldstone-Gutmann'08]

Dual of the adversary bound

$$
\begin{aligned}
\operatorname{ADV}(N, M)= & \max _{\Gamma}\|\Gamma \circ(M-N)\| \\
& \text { subject to }\left\|\Gamma \circ \Delta_{i}\right\| \leq 1 \forall i
\end{aligned}
$$

SDP dualization

$$
\begin{gathered}
\operatorname{ADV}(N, M)=\min _{\left|u_{x, j}\right\rangle,\left|v_{y, j}\right\rangle} \max \left\{\max _{x} \sum_{j} \|\left|u_{x, j}\right\rangle\left\|^{2}, \max _{y} \sum_{j}\right\|\left|v_{y, j}\right\rangle \|^{2}\right\} \\
\quad \text { subject to } \\
M_{x y}-N_{x y}=\sum_{i} \Delta_{i, x y}\left\langle u_{x, i} \mid v_{y, i}\right\rangle \forall x, y \\
\hline
\end{gathered}
$$

Palh lo larget slate

* Goal: convert $\left|\varphi_{x}\right\rangle$ to $\left|\psi_{x}\right\rangle$
*Ideal path: $\left|t_{x}(s)\right\rangle=\cos \left(\frac{\pi}{2} s\right)|0\rangle\left|\varphi_{x}\right\rangle+\sin \left(\frac{\pi}{2} s\right)|1\rangle\left|\psi_{x}\right\rangle$

$$
\left(s=\frac{t}{T}\right)
$$

*Modified path $\left|\tilde{t}_{\boldsymbol{x}}(s)\right\rangle=\left|\boldsymbol{t}_{\boldsymbol{x}}(s)\right\rangle+\frac{\delta}{\sqrt{\operatorname{ADV(N,M)}}}\left|u_{x}\right\rangle$
b $\left|u_{x}\right\rangle$ built from $\left|u_{x, i}\right\rangle$ in dual form of $\operatorname{ADV}(N, M)$
B $\left\|\left|\| \tilde{t}_{x}(s)\right\rangle-\left|t_{x}(s)\right\rangle\right\| \leq \delta$

Hamillonian

* We set $\boldsymbol{H}(s)=\Pi(s)-\boldsymbol{H}_{\boldsymbol{x}} \quad$ with $s=\frac{\boldsymbol{t}}{\boldsymbol{T}}$
- Oracle Hamiltonian $\boldsymbol{H}_{\boldsymbol{x}}$
- Driver Hamiltonian $\Pi(s)$: projector built from $\left|v_{x, i}\right\rangle$ in dual form of $\operatorname{ADV}(N, M)$

$$
\boldsymbol{H}(s)\left|\tilde{t}_{\boldsymbol{x}}(s)\right\rangle=0 \quad \forall s
$$

Correctness of the algorithm

* Error analysis

$$
\begin{array}{rlrl}
\|\left|\psi_{x}(\mathbf{1})\right\rangle-|\mathbf{1}\rangle\left|\psi_{x}\right\rangle \| \leq & \text { starting error } & & \leq \delta \\
& + \text { adiabatic error } & \leq \varepsilon_{A} ? \\
& + \text { ending error } & & \leq \delta
\end{array}
$$

Adiabatic condition(s)

Let $g(s)$ be the spectral gap. Then

$$
\varepsilon_{A} \leq \frac{1}{T} \max _{s}\left[2 \frac{\|\dot{H}(s)\|}{g^{2}(s)}+\frac{\|\ddot{H}(s)\|^{2}}{g^{2}(s)}+7 \frac{\|\dot{H}(s)\|^{2}}{g^{3}(s)}\right]
$$

[Jansen-Ruskai-Seiler'07]

Problem

Here, we might not have a gap!

Adiabatic condition(s)

Let $\boldsymbol{P}(s)=\left|\tilde{\boldsymbol{t}}_{\boldsymbol{x}}(s)\right\rangle\left\langle\tilde{\boldsymbol{t}}_{x}(s)\right|$ and $\boldsymbol{A}(s)$ be such that

$$
[\dot{\boldsymbol{P}}(s), \boldsymbol{P}(s)]=[\boldsymbol{H}(s), \boldsymbol{A}(s)]
$$

Then

$$
\varepsilon_{A} \leq \frac{1}{T} \max _{s}[2\|A(s)\|+\|\dot{A}(s) P(s)\|+\|A(s) \dot{P}(s) P(s)\|]
$$

Here: $\boldsymbol{A}(s)$ built from $\left|v_{x, i}\right\rangle$ in dual form of $\operatorname{ADV}(N, M)$

Correctness of the algorithm

$$
\begin{array}{rll}
\|\left|\psi_{x}(1)\right\rangle-|\mathbf{1}\rangle\left|\psi_{x}\right\rangle \| \leq & \quad \text { starting error } & \leq \delta \\
& + \text { adiabatic error } & \leq \mathbf{1 5} \frac{\operatorname{ADV}(N, M)}{\delta T} \\
& + \text { ending error } & \leq \delta
\end{array}
$$

* We choose running time $T=15 \frac{\operatorname{ADV}(N, M)}{\delta^{2}}$

$$
Q_{(3 \delta)^{2}}^{\mathrm{ct}}(N, M)=O\left(\frac{\operatorname{ADV}(N, M)}{\delta^{2}}\right)
$$

Conclusion and discussion

Conclusion

* Alternative proof that the adversary bound characterizes $Q_{\varepsilon}^{\mathrm{ct}}$

O Lower bound: Ehrenfest's theorem
O Upper bound:Adiabatic condition without a gap

* New intuition:

O Bounded error unavoidable due to adiabatic error

Further work

O Zero-error quantum query complexity

- Non-adiabatic algorithm?

O New adiabatic quantum algorithms

- Quantum query: adiabatic Deutsch-Jozsa, Simon, Shor?
- Other: quantum walks?

Comparison with discrelelime adversary algorithm

	Continuous	Discrete
Technique	Adiabatic evolution	Phase estimation
Analysis	Adiabatic condition	Effective spectral gap lemma

Search via quantum walks

* Similar situation for quantum walks

O Searching marked vertices from the stationary distribution (cf Maris' talk)

	Continuous	Discrete
Technique	Adiabatic evolution	Phase estimation
Analysis	Adiabatic condition	Effective spectral gap lemma

Search via quantum walks

* Similar situation for quantum walks

O Detecting marked vertices from an arbitrary initial distribution (cf Alexander's talk)

	Continuous	Discrete
Technique	???	Phase estimation
Analysis	???	Effective spectral gap lemma

o Can we also find multiple marked vertices using the adiabatic approach?

