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Evidence-based discounting rule in Subjective Logic

(extended abstract)

Boris Škorić1, Sebastiaan J.A. de Hoogh2, Nicola Zannone1

1) TU Eindhoven. {b.skoric, n.zannone}@tue.nl
2) Philips Research. sebastiaan.de.hoogh@philips.com

Abstract

We identify an inconsistency in Subjective Logic caused by the discounting operator ‘�’.
We propose a new operator, ‘�’, which resolves all the consistency problems. The new
algebra makes it possible to compute Subjective Logic trust values (reputations) in arbitrarily
connected trust networks. The material presented here is an excerpt of [3].

1 Subjective Logic

Subjective Logic (SL) [1] is a kind of ‘fuzzy’ logic that explicitly keeps track of uncertainties. The
central concepts in SL are evidence and opinions. Let P be a proposition. Evidence about P is
denoted as a vector (p, n), where p is the amount of evidence supporting P , and n the amount
of evidence supporting ¬P . An opinion is a triplet (b, d, u) 2 [0, 1]3 satisfying b + d + u = 1.
The b component is the ‘belief’ in proposition P , and it can be interpreted as the probability
that P is provably true given the evidence. Likewise, the d is disbelief (belief in ¬P ). The u is
the uncertainty, the probability that nothing can be proven about P . There is a simple bijection
between the evidence vector and the opinion based on it,

(b, d, u) =
(p, n, 2)

p + n + 2
; (p, n) = 2

(b, d)

u
. (1)

This relation is based on an analysis of a posteriori probability distributions (beta distributions) [1].
Special points are Belief B = (1, 0, 0), Disbelief D = (0, 1, 0) and Uncertainty U = (0, 0, 1). Triplets
with u = 0 can only be reached with infinite amounts of evidence and are therefore often excluded
from opinion space.
There are two important operations for combining opinions about the same proposition: consensus
and discounting. The consensus operation simply adds up evidence vectors. Let x = (xb, xd, xu)
be an opinion based on evidence (px, nx) and y = (yb, yd, yu) an opinion based on (py, ny). Then
the combined evidence is (px + py, nx + ny) and the corresponding opinion is given by

x � y
def
=

(xuyb + yuxb, xuyd + yuxd, xuyu)

xu + yu � xuyu
. (2)

The consensus operation � is allowed only if the evidence in x and y is independent, otherwise
‘double counting’ of evidence occurs.
Discounting describes trust transitivity. Let Bob publish opinion y about proposition P . Let
Alice have opinion x about Bob’s trustworthiness. Then Alice’s opinion about P is ‘y discounted
through x’, which is denoted as x � y and defined as

x � y
def
= (xbyb, xbyd, xd + xu + xbyu). (3)

1
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2 Problems with the � operator

The definition of � lacks a natural interpretation in evidence space. Let z = x � y in the Alice
& Bob example above. The evidence vector (pz, nz) obtained using (1) is a messy function of px,
py, nx and ny which under certain circumstances yields downright weird results. For instance, if
nx = 0, ny = 0 and py � px, then pz ⇡ px/4, which seems to imply that Alice’s opinion about P
is fully determined by x (which is not even an opinion about P ), independent of y.

Furthermore, consider the following case. Alice has trust x in Bob. Bob gathers two independent
evidence vectors, (p1, n1) and (p2, n2), about proposition P .
Scenario I: Bob forms two independent opinions, y1 and y2, based on the evidence. He publishes
first y1 and later y2. Alice forms opinion x�y1 about P and later updates this to (x�y1)�(x�y2).
Scenario II: Bob combines his evidence and forms opinion y1 �y2, which he publishes. Alice forms
opinion x � (y1 � y2) about P .
It is obvious that these scenarios should yield the same result for Alice. Yet the traditional
discounting rule gives x � (y1 � y2) 6= (x � y1) � (x � y2). In SL the only correct expression is
x � (y1 � y2). We consider this to be a grave inconsistency in SL.

Next consider the trust network in Fig. 1. Due to the complicated mixup of evidence components
in expressions of the form x � y, combined with the prohibition on combining dependent evidence
in � operations, it is impossible to write down a consistent SL result (‘canonical expression’ [2])
expressing the trust that node 1 has in node 6.

3

��

��
1 �� 2

��

��

5 �� 6

4

��

Figure 1: Example of a trust network that is problematic for Subjective Logic.

3 Bijection between evidence and opinion: Simplified deriva-
tion

We have found a simple way to obtain a bijection between evidence (p, n) and opinion x =
(b, d, u). Instead of looking at a posteriori probability distributions, we ask ourselves which natural
constraints should be satisfied by such a bijection. If we impose the following conditions,

1. b/d = p/n

2. b + d + u = 1

3. p + n = 0 ) u = 1

4. p + n ! 1 ) u ! 0

then the relation between x and (p, n) can only be

x = (b, d, u) =
(p, n, c)

p + n + c
; (p, n) = c

(b, d)

u
(4)

where c > 0 is a constant. Eq. (4) is precisely of the form (1), except for the constant ‘2’ versus c.
We make two important remarks: (i) The more generic mapping (4) is consistent with the �
definition (2), i.e. the value of c does not matter, as long as all entities use the same c. (ii) The
analysis of [1] can be re-done using a general constant c, and then still yields a consistent result.
We see no reason to set c = 2.

2
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4 New discounting operator: �
We first define a new operation in Subjective Logic, multiplication of a scalar and an opinion. Let
x = (b, d, u) be an opinion based on evidence (p, n). Let � � 0 be a scalar. In evidence space the
product � · x is defined as (�p, �n). In opinion space this corresponds to the definition

� · x
def
=

(�b, �d, u)

�(b + d) + u
. (5)

Next we define our new discounting operator ‘�’. Let g be a function that maps opinions to [0, 1],
satisfying g(B) = 1 and g(D) = 0. We define

x � y
def
= g(x) · y. (6)

The function g can be chosen at will, depending on the context.
We refer to {SL with the new discounting operator} as Evidence-Based Subjective Logic (EBSL).
EBSL avoids all the inconsistencies of the � operation,

• The expression x�y has a very simple interpretation in evidence space: Due to the disbelief
and uncertainty present in x, only a fraction g(x) of the evidence in y is accepted by the
recipient.

• It holds that x � (y1 � y2) = (x � y1) � (x � y2), which is what is intuitively expected of a
discounting operation.

• Due to the cleanness of the � operation, there is a strict separation between evidence on the
one hand and the way it is carried over trust links on the other hand. Consequently EBSL
can handle any trust network, no matter how complicated the graph. (See the next section.)

5 Arbitrary trust networks

Let opinion Aij be the amount of trust that a node i has in node j, based on direct evidence, e.g.
past interaction between i and j. We set the diagonal to Aii = U . All nodes publish these direct
opinions. Every node wants to know how much the other nodes can be trusted, and is willing to
make use of the opinions published by others (‘indirect evidence’). The mathematical problem is
now to compute a meaningful reputation matrix R from A, giving proper weights to all the direct
and indirect evidence. The diagonal of R is undefined, so we are free to set it arbitrarily. We set
it to B1, where 1 is the unit matrix. The following relation must be satisfied,

R = B1 � (R � A), (7)

where the ‘matrix multiplication’ R � A is defined as (R � A)ij = �k(Rik � Akj). Eq. (7) says
that a reputation Rij consists of a weighted sum of direct opinions Akj , where the weights are
determined by the reputations Rik. Eq. (7) is a fixed-point equation. It can be solved e.g. by
iterative methods such as repeatedly substituting (7) into itself. Experiments on synthetic as well
as real data show fast convergence.
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Caching (a pair of) Gaussians

Giel J. Op ’t Veld Michael C. Gastpar
School of Computer and Communication Sciences, EPFL

Lausanne, Switzerland
giel.optveld@epfl.ch michael.gastpar@epfl.ch

Abstract

A source produces i.i.d. vector samples from a Gaussian distribution, but the
user is interested in only one component. In the cache phase, not knowing which
component the user is interested in, a first compressed description is produced.
Upon learning the user’s choice, a second message is provided in the update phase
so as to attain the desired fidelity on that component. We aim to find the cache
strategy that minimizes the average update rate. We show that for Gaussian
codebooks, the optimal strategy depends on whether or not the cache is large
enough to make the vector conditionally independent. If it is, infinitely many
equally optimal strategies exist. If it is not, we show that the encoder should
project the source onto some subspace prior to coding. For a pair of Gaussians,
we exactly characterize this projection vector.

1 Introduction

Nowadays, streaming-services draw a huge chunk of the available bandwidth. The
on-demand aspect of video-on-demand results in an overload of individual requests at
slightly di↵erent times of the day, albeit concentrated during peak hours. Caching is
a strategy to move part of that load to o↵-peak times. During the night, a service
could pre-load data onto your hard drive, taking an estimated guess of the content you
might ask for during the day. If a user has a limited cache budget on his drive, what
should the server put there in order to minimize tra�c during the day? In this paper,
we study these applied questions in a theoretical context of Gaussian vector sources.

A source produces length K vector samples of a Gaussian distribution, but the user
is only interested in one of the components. In the cache phase, the encoder can code
a first message up to cache rate Rc, without knowing the user’s desired component.
In the update phase, the user chooses component k uniformly, i.e., pY (Y = k) = 1/K
and reveals it to the encoder, who then sends an update at a rate Ru. The decoder
then uses the cache and this update to construct a lossy representation of the k’th
component at the desired fidelity. A schematic of this is depicted in Figure 1. Our goal
is to find the caching strategy that minimizes the average update rate.

We show in this paper that for Gaussian codebooks the optimal coding strategy
depends on whether or not the cache is su�ciently large so as to make the source
components conditionally independent when conditioned on the cache. If that is so,
Section 3.1 explains that there are infinitely many coding strategies that are equally
optimal. If not, we argue in Section 3.2 that the encoder must project the source vector
to a shorter vector. For a pair of Gaussians, we find this projection exactly; it turns
out to be solely defined by the source’s covariance and it does not change for di↵erent
values of Rc.

All that we discuss in this paper relies on the successive refinability of Gaussian
sources to connect the cache and update phase. For a general discussion we refer the
reader to [1, 2]. For the (Gaussian) vector case, one should read [3] and [4] as its
precursor. It describes the refinability of X1 to X2 as being possible if and only if their

4



E2E2E2

X
D

Y = k

X̂k

Rc

Ru

E1

Figure 1: The caching scheme with cache rate Rc. After revealing Y = k as the
selection variable, E2 sends an update at rate Ru s.t. the decoder can retrieve X̂k.

covariances admit a semidefinite ordering ⌃X
1

⌫ ⌃X
2

. A discussion on the general rate-
distortion function for Gaussian vectors was discussed in [5]. An attentive reader might
also notice that our problem shows close resemblance to the Gray-Wyner system [6].
Namely, one could draw all the events of the user asking for one of the K components
as K di↵erent decoders; the cache would then be their shared link and the required
update their individual ones [7].

2 Definitions and Cache Rate-Distortion Function

Let X be an i.i.d. Gaussian vector source of dimension K, following the distribution
N (0,⌃

X

) with some potentially correlated covariance ⌃
X

. That is, at each time instant,
the source independently produces a vector sampled from this fixed distribution. We
denote the source sample at time n by X(n), and we denote its kth component by
Xk(n), for k = 1, 2, . . . , K. Independently of X, a single random variable Y is drawn
from the set {1, 2, . . .K} uniformly at random; we call it the selection variable.

We consider block coding of length N with two encoders. The first, referred to as
the cache encoder, observes only {X(n)}N

n=1 and produces a description using NRc bits,
where Rc is called the cache rate. The second, referred to as the update encoder, gets
to observe {X(n)}N

n=1 as well as the value of the random variable Y = k and produces
a description using NRu(k) bits, where Ru(k) is called the update rate for the case
Y = k. Hence, the average update rate of the encoder is given by Ru = 1

K

PK
k=1 Ru(k).

Notation-wise, the sub- or superscript c stands for cache, while u stands for update.
Upon observing the realization y and both compressed descriptions, the decoder

must output a sequence of estimates X̂y(n) in such a way as to satisfy

1

N

N
X

n=1

⇣

Xy(n) � X̂y(n)
⌘2

 Du.

The question addressed in this paper is to characterize, for a fixed caching rate Rc, the
smallest average update rate Ru for which the distortion constraint can be satisfied
(irrespective of the value of Y ).

For the cache phase, we allow the server to code any Z that is jointly Gaussian with
the source. For large Rc, one can easily argue that Gaussian codebooks are optimal; for
small Rc, it remains a di�cult question that we unfortunately can not yet address in
this article. In the update phase, one can compute X̂c = E[X|Z] as the MSE-estimate
of the source and subsequently the error as:

Dc = E[(X � X̂c)(X � X̂c)T ] � ⌃
X

. (1)

The semidefinite ordering Dc � ⌃
X

means that ⌃
X

� Dc is positive semidefinite. It
yields an engineering perspective: any real symmetric matrix Dc that satisfies this
ordering is an achievable Gaussian codebook.

5



At this point, there is no operational interest for a first estimate X̂c or its error
Dc. However, Dc has theoretical value. Namely, for any X̂ jointly (not necessarily
Gaussian) distributed with X, the mutual information satisfies

I(X; X̂) � 1

2
log

|⌃
X

|
|D| = R(D). (2)

The last step in (2) is met with equality if indeed we use Gaussians codebooks, i.e.,
X̂c = E[X|Z] with Z = X + W where W is independent from X and Gaussian as well
[5, Lemma 2]. Thus, we may not need Dc, but we can use it to characterize the rate
associated with the cache phase. Therefore, a cache strategy that yields a particular
error covariance Dc must have had a rate satisfying

Rc � 1

2
log

|⌃
X

|
|Dc| . (3)

Since our goal is to minimize Ru for a fixed Rc we can reverse (3) and state the following:

Definition 1. A (valid) caching strategy is any real symmetric matrix Dc that satisifies
the following two conditions:

1. |Dc| = |⌃
X

|e�2R
c , the rate-constraint (3).

2. 0 � Dc � ⌃
X

, the semidefinite ordering constraint (1).

In the update phase, Y = k is revealed and consequently only an interest for Xk
remains. Both the encoder and decoder have access to the side information presented
by the cache. The MSE-estimator E[Xk|Z] forms the first step to an estimate X̂k and
since p(Xk|Z) is also a normal distribution, the update rate is lower bounded by the
Gaussian rate distortion function. Namely, Gaussians are successively refinable [1, 3],
which allows to combine the messages from the first and second phase. The variance
of p(Xk|Z) is simply the k’th diagonal entry of Dc and thus we have:

Ru(k) � 1

2
log+ Dc

kk

Du
,

which yields an average update rate for this construction:

Ru,Dc(Du) =
1

K

K
X

k=1

1

2
log+ Dc

kk

Du
. (4)

The subscript Dc emphasizes that Ru depends on a particular cache strategy Dc.

Definition 2. The cache rate-distortion function is the average update rate needed to
attain distortion Du on any component, minimized over all caching strategies:

Ru(Du) = min
D

c

Ru,Dc(Du) s.t.

(

0 � Dc � ⌃
X

|Dc| = |⌃
X

|e�2R
c

(5)

Our search for the best caching strategy thus translates to: What choice of Dc

minimizes (4) given the search space of matrices set by Definition 1? What distortion
profile for the cache phase minimizes that rate needed for the update phase?

Unfortunately, the cache rate-distortion function (5) is a minimization over a con-
cave function. In many Gaussian source coding problems, the optimization variable D
is found in the denominator, which is convex. It is now found in the numerator, which
makes it concave and thus hard to solve. In the next section, we will argue on the
di↵erent optimal caching strategies for small and large Rc.
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3 Optimal Caching Strategies

A di↵erent way of writing (5) is to pull the sum of (4) inside the log:

Ru(Du) = min
D

c

1

2K
log+

Q

k D
c
kk

DK
u

s.t.

(

0 � Dc � ⌃
X

|Dc| = |⌃
X

|e�2R
c

(6)

which leads to the insight that the numerator is lower bounded by the Hadamard
inequality

Q

k Dc
k,k � |Dc|, hence

Ru(Du) � 1

2K
log+ |Dc|

DK
u

, (7)

and in turn |Dc| is bounded (or fixed even) by Rc, see again Definition 1. An interesting
read on the relationship between the Hadamard inequality and Gaussians was presented
in for example [8, Chapter 17]. The di↵erence between a product of the diagonal
entries of a covariance and its determinant stems from h(X) 

P

k h(Xk). The mutual
exclusiveness of the update phase, where the encoder only refines the one component
the decoder asked for, combined with an objective to minimize the average update rate
is the reason for why this product

Q

k D
c
kk popped up instead of |Dc|.

Interestingly, there are two distinct coding strategies depending on whether the
lower bound (7) can be met or not. The Hadamard Inequality is met with equality if
and only if the matrix Dc is diagonal. Algebraically, this is not trivial as one cannot
have a diagonal Dc and satisfy Dc � ⌃

X

at the same time if |Dc| is too large. In
terms of information theory, a diagonal cache distortion implies that the components
of X become independent when conditioned on the cache. This is impossible if Rc
is too small. These algebraic and information theoretic arguments are the same. In
the next subsection, we elaborate on a threshold R⇤ on Rc and show that there are
infinitely many equally optimal cache strategies if the rate is larger than R⇤. In the
subsection thereafter, we show that for smaller rates, the optimal strategy requires a
dimensionality reduction. The cache should be a particular projection of the source
components to some space. For a pair of Gaussians, we derive this projection exactly.

3.1 Large cache rates

The Hadamard inequality that was the lower bound in (7) hits equality if and only if
a matrix is diagonal. Hence there must exist a decomposition ⌃

X

= Dc + ⌃
ˆ

X

where
⌃

ˆ

X

and Dc are both positive semidefinite⇤ and D is diagonal. For this we derive:

Theorem 1. For any cache rate Rc � R⇤, there exists a caching strategy Dc that
achieves the lower bound on the average update rate (7), where R⇤ is the solution to

min
D

c

1

2
log

|⌃
X

|
|Dc| s.t.

(

0 � Dc � ⌃
X

,

Dc is diagonal.
(8)

Proof. Recall that Rc = 1
2
log |⌃X|

|Dc| implies the reverse relation on the determinant,

|Dc| = |⌃
X

|e�2R
c . Suppose that D⇤ is the distortion matrix that minimizes (8) and let

R⇤ be the cache rate associated to this point. Evidently, there cannot be a D0 that is

⇤Demanding that ⌃X decomposes into a sum of two positive semidefinite matrices is equivalent to
demanding D

c � ⌃X like we did before.
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diagonal and has a determinant larger than that of D⇤ (or equivalenty, an Rc smaller
than R⇤), otherwise D0 would have been the minimizer of (8). On the other end, for
all Rc � R⇤ there does exist a diagonal candidate caching strategy D0. Namely, for
diagonal matrices D0 � D⇤ holds if and only if D0

i,i  D⇤
i,i 8i. So one can construct

another distortion matrix D0 by decreasing the values on some arbitrary subset of
the diagonal entries of D⇤. In doing so, any determinant |D0|  |D⇤| (and thus any
Rc � R⇤) can be achieved by a matrix that satisfies the chain D0 � D⇤ � ⌃

X

and is
thus both diagonal and achievable.

In the proof we constructed matrices D0 with any particular determinant in the
region Rc > R⇤ by decreasing some diagonal entries of D⇤, the solution to (8). It
does not matter which entries we use for this or by what amount we decrease them,
as long as the resulting determinant has the value we are after. Hence, in this high-Rc
regime, there exists infinitely many diagonal D0 with the same determinant that thus
all achieve the same lower bound on Ru (7); they are equally optimal.

The minimization of (8) is simply a MaxDet problem, which can be solved e�ciently
numerically. The constraint that Dc must be diagonal is also a simple linear constraint,
namely one can replace it by Dc � diag(Dc) � 0 and we already had Dc ⌫ 0. This
brings about an interesting contrast with the original problem: Finding the general
optimal distortion profile for our problem was a hard-to-solve concave minimization.
The high-rate regime, however, now appears to be characterizable by a convex problem
which is easily solvable. To our knowledge, we do not know of any analytical expression
for Dc that minimizes (8), except for some special cases, one of which we will explain
now.

3.1.1 Example: a Pair of Gaussians

Theorem 2. For a pair of Gaussians the minimizer of (8) is R⇤ = 1
2
log 1+|⇢|

1�|⇢| , which
is achieved by a distortion matrix

D⇤ =



�2
1(1 � |⇢|) 0

0 �2
2(1 � |⇢|)

�

. (9)

Proof. Let us find a decomposition of ⌃
X

= Dc + ⌃
ˆ

X

of a diagonal Dc by setting
Dc = diag(↵2, �2) and work out:



�2
1 ⇢�1�2

⇢�1�2 �2
2

�

=



↵2 0
0 �2

�

+



�2
1 � ↵2 ⇢�1�2

⇢�1�2 �2
2 � �2

�

.

Such a decomposition yields positive semidefinite matrices (which is equivalent to 0 �
Dc � ⌃

X

) and is a valid caching strategy if and only if the following conditions are
met:

1. 0  ↵2  �2
1 and 0  �2  �2

2 (Dc is PSD).

2. ⇢2�2

1

�2

2

(�2

1

�↵2)(�2

2

��2)
 1 (⌃

ˆ

X

is PSD).

3. ↵2�2 = |Dc| = fixed (cache rate constraint).

Let us start by evaluating the 2nd condition:

0  (�2
1 � ↵2)(�2

2 � �2) � ⇢2�2
1�

2
2

= �↵2�2
2 � |Dc|

↵2
�2

1 + |⌃
X

| + |Dc|, (10)
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where we replaced ↵2�2 = |Dc| and �2 = |Dc|
↵2

by condition 3. Moreover, note that for
2 ⇥ 2 matrices we have |⌃

X

| = �2
1�

2
2(1 � ⇢2). The right hand side is convex. If it

has two roots ↵2
� and ↵2

+, all ↵2 2 [↵2
�,↵

2
+] are valid solutions, given that condition 1

is satisfied. Hence, if there are two roots then there exist infinitely many Dc that are
equally optimal.

Equation (10) has only one root -and thus yields only one optimal Dc- if the min-
imum of the right hand side is exactly at zero. By setting its derivative to zero, one

finds that ↵2
min =

q

|Dc|�
2

1

�2

2

. Substituting ↵2
min into (10) and demanding equality:

0 = |⌃
X

| + |Dc| � 2
q

|Dc|�2
1�

2
2

= |Dc|2 � 2|Dc|�2
1�

2
2(1 + ⇢2) + (�2

1�
2
2(1 � ⇢2))2.

This follows from pulling �2
p

|Dc|�2
1�

2
2 to the left hand side, squaring both sides and

then pulling it back, while at the same time filling in |⌃
X

| = �2
1�

2
2(1 � ⇢2). This is a

new quadratic equation, which now revolves around |Dc| instead of ↵2. Its roots are

|Dc|⇤± = �2
1�

2
2(1 + ⇢2) ±

q

�4
1�

4
2(1 + ⇢2)2 � �4

1�
4
2(1 � ⇢2)2

=

(

�2
1�

2
2(1 � |⇢|)2 valid,

�2
1�

2
2(1 + |⇢|)2 invalid (since |Dc| > |⌃

X

| cannot be).

This bifurcation point |Dc|⇤ corresponds to a cache rate

R⇤ =
1

2
log

|⌃
X

|
|Dc|⇤ =

1

2
log

�2
1�

2
2(1 � ⇢2)

�2
1�

2
2(1 � |⇢|)2

=
1

2
log

1 + |⇢|
1 � |⇢| ,

and marks the transition from having no to one and then to infinitely many Dc that
have no correlation. We denote the actual distortion profile that achieves this rate D⇤

(9) and find it by filling |Dc|⇤ = �2
1�

2
2(1� |⇢|)2 into ↵2

min =
q

|Dc|�
2

1

�2

2

and �2 = |Dc|
↵2

.

The value R⇤ = 1
2
log 1+|⇢|

1�|⇢| also came forward in [7] as Wyner’s Common Information
for a pair of Gaussians.

3.2 Small Cache Rates for a Pair of Gaussians

For Rc smaller than the R⇤ of Theorem 1, no Dc can close the Hadamard inequality,
but perhaps we can find another achievable lower bound. Here, we find this optimal
strategy for a pair of Gaussians, which shows a strong connection to Theorem 2. For
general dimensions, the problem remains open. One thing that is clear is the following:

Lemma 1. If Rc  R⇤, the Dc that minimizes (6) yields Dc � ⌃
X

, but not Dc � ⌃
X

.

We will not fully prove this here, but imagine that D̄ is some candidate strategy
that yields D̄ � ⌃

X

. Since the ordering is not strict, we have room to rotate the matrix.
Determinants are rotation-invariant, hence the Rc required for this rotated distortion
profile is the same (3). The key insight is that rotation can always further minimize the
product of the main diagonal, e.g., by bringing the matrix closer to eigendecomposition.

The di↵erence between Dc � ⌃
X

and Dc � ⌃
X

is that the latter implies 9v
such that vT (⌃

X

� D)v = 0; there exists a direction of which one learns nothing by
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observing the cache. In other words, the cache encoder must have projected X onto
some subspace prior to coding. For a pair of Gaussians, a lower-dimensional coding
strategy simply means one codes a representation of vTX for any (normalized) vector
v in the cache, rather than X itself. The code in the cache can be represented as
vTX+W where W is a Gaussian noise and independent of X. Then the error is found
as Dc = [||X � E[X|vTX + W ]||2], which can be worked out completely using channel
models for lossy representations, e.g., [8, Chapter 10]. In short, any caching strategy
featuring a projection to a vector v leads to a Schur complement:

Dc(Rc) = ⌃
X

� (1 � e�2R
c)

1

vT⌃
x

v
⌃

X

vvT⌃
X

. (11)

We specifically express this matrix as a function of Rc. Even the optimal choice of
a vector v could in principle be di↵erent for di↵erent Rc, but for a pair of Gaussians
we will prove that this is actually not the case. Note that (11) always satisfies both
conditions of Definition 1 by construction. The border case D⇤ is also still a one-
dimensional coding operation. We derived D⇤ algebraically, we can plug it into (11)
and solve for the vector v that could have led us to it. The particular vector associated
to D⇤ turns out to be of more importance than simply the border case:

Theorem 3. If for a pair of Gaussians Rc  1
2
log 1+|⇢|

1�|⇢| , then the caching strategy that

uniquely minimizes (6) requires one to code v⇤TX with

v⇤ =
1

p

tr (⌃
X

)



�2

sign(⇢) · �1

�

. (12)

Proof. By Lemma 1 we know it su�ces to constrain the search space of Dc to those
we can describe by means of (11). Hence, we can plug (11) into (6) and minimize over
all v such that vTv = 1. To find the optimal v it su�ces to look at arg min

Q

k=1,2 D
c
kk:

arg min
v

:vT v=1

✓

�2
1 � 1 � e�2R

c

vT⌃
x

v

�

⌃
X

vvT⌃
X

�

1,1

◆

·
✓

�2
2 � 1 � e�2R

c

vT⌃
x

v

�

⌃
X

vvT⌃
X

�

2,2

◆

For a 2 ⇥ 2 matrix, one can work out the expression above by hand; it is not hard,
but for length constraints we choose to omit this from this paper. Its derivative with
respect to v has a clear root at (12), regardless of Rc. The sign(⇢) then ensures one
picks the minimum rather than a maximum.

As a closing comment, let us briefly explain where v⇤ comes from and what it entails.
The vector can be found at the border case of Rc = R⇤ by setting (11) equal to (9)
and solve for v. As for the intuition, every positive semidefinite matrix can be uniquely
represented by the ellipsoid E

A

= {v : vTA�1v = 1}. Its semiprincipal axes match the
eigenvectors of A and have lengths equal to

p
�i. In Figure 2 we plot both E⌃X and

E
D

⇤ . Recall that D⇤ is the covariance matrix with the largest possible determinant
that still satisfies Dc � ⌃

X

without having any correlation. Since it is the border case,
E⌃X and E

D

⇤ touch (that is the impact of having Dc � ⌃
X

rather than Dc � ⌃
X

).
Even more so, the vector where these ellipses touch is the orthogonal complement to
our coding vector v⇤; the cache provides information on all directions spanned by the
source, except the one orthogonal to the one we coded.

A second consequence is that, since one should use the same vector to code v⇤TX
for all Rc  R⇤, all resulting E

D(R
c

) touch E⌃X at this same orthogonal complement.
In other words, E

D

c(R
c

) is sandwiched between E
D

⇤ and E⌃X. The result is that for a
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∗

EΣX

ED∗

Figure 2: Ellipse of ⌃
X

and D⇤, together with the coding transform vector v⇤ (dashed)
and its orthogonal complement 1/

p
tr (⌃X)[�1, �sign(⇢)�2]T (dotted) that intersects the

points where both ellipses touch. The thinner ellipses in between are the optimal
Dc(Rc) for increasing Rc, coded with the same v⇤, showing the ordering of (13).

sequence of cache rates 0  R1  R2  · · ·  R`  R⇤, the caching strategies that
minimize (6) admit a semidefinite ordering:

⌃
X

⌫ Dc(R1) ⌫ Dc(R2) ⌫ · · · ⌫ Dc(R`) ⌫ D⇤. (13)

Hence, as a conclusion that stands apart from the goal of this paper, the Gaussian
coding strategies that minimize the gap on the Hadamard Inequality for increasing
rates form a Markov chain and are because of this successively refinable.
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Abstract

Tissue microarray (TMA) is a widely used histological technology to analyze
protein expression in various tissue samples at once. Combined with slide scan-
ning and image analysis, this approach enables accurate quantitative analyses of
protein biomarkers. To take into account the clinical data related to the tissue
samples, it is necessary to store and to link meta-information with each sample
included in the TMA. In this paper, we propose a method to make this spe-
cific linking between such information and TMA slide images. This method is
then combined with a registration process to merge information from images of
consecutive TMA slides.

1 Introduction

Tissue microarray (TMA) is a widely used histological technology to analyze various
tissue samples at once [1]. It consists of a para�n block in which hundreds of small
cylindrical tissue samples (cores), extracted with a needle from larger tissue blocks, are
arranged into arrays. Submitting TMA slices to immunohistochemistry (IHC) makes
possible to evidence protein expression patterns in large collections of tissue samples in
a standardized way. Combined with slide scanning and image analysis, this approach
enables fast and accurate quantitative analyses of protein biomarkers, which are useful
indicators for diagnosis, prognosis and therapeutic decisions [2]. As detailed below,
TMAs are grids of tissue cores. Each core consists of a specific tissue sample, which
is described by means of metadata (such as the patient ID, the lesion diagnosis, etc.)
held in a ”Design” file (required to carry out the TMA block). Depending of the tissue
sample origins and characteristics, the data extracted from the cores can be processed
di↵erently. That is why each core is considered as a region of interest (ROI) in the
image and its correct identification is critical for further analyses. Linking manually
the metadata to each core is time consuming and error prone. Most of the commer-
cially available solutions provide interactive grid fitting tools with limited tolerance to
deformation [3]. These solutions rapidly require numerous manual interactions when
TMA slides present defects, in particular when cores are shifted or lost. Thus we devel-
oped a tool which automatically identifies or interpolates the (present or absent) cores
and locates each of them in the TMA grid to correctly link it with its own metadata.
Characterizing complex cellular mechanisms, such as those involved in cancers, often
requires to evaluate the colocalization of several biomarkers. This information can be
collected by imaging and registering adjacent sections from the same TMA block and

⇤This research unit was funded by the Fonds Yvonne Boël (Brussels, Belgium), the European
Regional Development Fund and the Walloon Region.
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which evidence di↵erent proteins revealed by IHC. Algorithms for registration of whole-
slide images have recently been proposed [4–7]. However, a TMA image significantly
di↵ers from a whole-slide image (grid of very similar circular samples with geometrical
distorsions and sample losses, see Figure 1). We thus developed a tool which takes
into account the particular layout of a TMA to ease and to accelerate the registration
process. A short version of this study has been submitted to EMBC2015.

2 Material

To test our tool we used 7 TMA slides consisting of lymph node and rectal tissue cores
organized in several subgrids. These 4- m-thick slides were processed using IHC to ev-
idence in brown (using DAB) expression of di↵erent proteins (↵-SMA, IGF1, IGFBP2,
IGF1R, Ki67, BAX and BCL2, see Table 2) whereas the tissue is counterstained in blue
(HEM). The slides were then scanned using a Hamamatsu Nanozoomer 2.0-HT. The
TMA coordinate system is also very specific. Each TMA grid is divided into subgrids
containing the cores. Each core is associated to a alphanumeric coordinate as shown in
Figure 1. The TMA organisation into subgrids is mentioned in the design file (required
for constructing the TMA block).

Shortname Long name Location
↵-SMA Alpha smooth muscle actin Myofibroblasts and smooth

muscle cells in vessel walls,
gut wall.

IGF1 Insulin-like growth factor 1 Extracellular
IGFBP2 Insulin-like growth factor-binding pro-

tein 2
Extracellular

IGF1R Insulin-like growth factor 1 receptor Present on the membrane of
epithelial cells.

Ki67 / Nuclear staining in prolifer-
ating cells

BAX BCL2-associated X protein Widely distributed cytoplas-
mic staining. Present in B-
lymphocytes

BCL2 B-cell CLL/lymphoma 2 Present on the membrane of
B-lymphocytes.

Table 1: Detailed description of the proteins targeted by IHC.

3 Method

The method used to extract the TMA core positions and to register core images is
organized into 6 steps:

1. Tissue detection and core labeling

2. Identification of the 2D orientation of the TMA grid and average inter-core dis-
tance computation

3. Subgrid clustering
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4. TMA core addressing

5. Missing core identification

6. Color deconvolution and fine registration of TMA image pairs

3.1 Tissue detection and core labeling

The low-resolution image (typically 2000x1200 pixels) is smoothed using a median filter
and segmented in BLOBs (Binary Large Objects) using an Otsus threshold [8]. Labels
are assigned to each BLOB, which is then filtered using its convex area. The bounding
box and the centroid (mean position) of each filtered blob are then extracted.

3.2 TMA orientation Identification and inter-core distance
computation

To detect the main directions of the whole grid (and so identifying its 2D orientation),
we first compute the pairwise distances between the blobs using the properties extracted
in the previous step (Figure 2A). We then pick the 4-nearest neighbours (Figure 2B-C).

Those neighbours are clustered into two categories according to their angles: the
neighbours aligned horizontally and the neighbours aligned vertically. The median
orientation is then extracted for each of the two groups. Those two values are considered
as the main directions of the TMA grid.

When working with TMAs, the orientation matters. In particular, undetected
section flipping leads to incorrect linking between the cores and the metadata. This is
the reason why the last subgrid is let partially or totally empty (see Figure 1). To detect
the (partially) empty subgrid the BLOB centroids are projected on the main directions
computed in the previous step. Local density of the core is then approximated (see
Figure 3). By comparing the mean density in the first half and the mean density in
the second half of each chart we can e�ciently detect in which quadrant of the image
the (semi-)empty subgrid is.

3.3 Subgrid clustering

Subgrid clustering is done using the two charts obtained from the previous step (see
Figure 3) for the two main directions. The TMA design file provides the number of
subgrids in the image and their position relative to each other. If there are x subgrids

Figure 1: The coordinate system used in TMAs and a corresponding TMA image
(where missing cores are located). A letter is assigned to each subgrid starting from
the upper left corner. Each row is assigned to a letter and each column to a number.
The last subgrid is partially or totally empty and acts as mistake proofing.
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Figure 2: A. Pairwise distances between all the BLOB centroids are computed. B. The
4-nearest neighbours of one core. C. The nearest neighbours for all the cores.

Figure 3: The approximation of the local density for the grid in one direction.

per row, we search the x�1 lowest local minima in the chart. Those minima correspond
to the spaces between the subgrids. In Figure 3, the three local minima (corresponding
to 4 subgrids per row) are easy-to-identify.

3.4 TMA core addressing and missing core identification

Once the subgrids have been detected, each core needs to be addressed according to
the coordinate system. This step is straightforward when all the cores are present since
the position of each subgrid and the direct neighbours of each core are known.

However, TMA sections are fragile and some cores can move or even completely
disappear from the section. In such case, it is important to be able to track these (moved
or missing) cores because false linking between a core and its metadata can lead to
incorrect analyses (see Figure 1). In order to detect such problems, our method looks
at the 4 nearest neighbours of each core. If the nearest neighbour in one direction is
too far or not enough (vertically or horizontally) aligned with the core (to be identified
without any ambiguity), this neighbour is considered as being missing. Each missing
core so identified is placed in a reasonable interpolated position with respect to its
detected neighbors, subgrid orientation and inter-core average distance.

3.5 Color deconvolution and fine registration

As detailed in section 2, 7 di↵erent IHC markers are used to reveal in brown protein
expression in di↵erent cells or structures in the TMA sections, which are counterstained
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in blue. Since image registration e�ciency depends on the similarity of the input im-
ages, removing the brown staining from the images should improve the results. Stain
separation is obtained using color deconvolution. Color deconvolution consist in pro-
jection of the original RGB colorspace, into a new space where two axes represent
respectively the brown (DAB) and the blue (HEM) chromaticities, as described in [9],
complemented with a third normal axis. Because the intensities in each of the RGB
channels do not depend linearly on the concentration of the stain, the pixel value is
converted into optical density (OD), which also normalizes the pixel value with regard
to the glass slide background, using this formula:

OD = �log(
I

I0

) (1)

with I the intensity of the pixel located in the tissue area and I0 the background
intensity. Each pure stain needs to be defined by its own specific unit vector in the
OD-converted RGB space. For this purpose, we designed and imaged two tissue slides,
one stained with DAB and the other with HEM only, from which we extracted two
stain-specific 3D scatter plots in the OD space. For each stain, the specific unit vector
constituting the deconvolution matrix should be on an axis going through the origin
of the coordinate system and fitting at best the main direction of the corresponding
scatter plot in the OD space. One usual way is to point at the centroid. We also
extracted the axis passing by the origin and which ensures the best representation of
the data according to the least-square criterion. A projection can be written as:

xxx0
i = aivvv = vvvTxxxivvv (2)

where xxx is a point in the OD space and vvv is the unit vector of the straight line on
which we project the point. The least-square criterion to minimise can be written:
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n

X
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(3)

where MMMkj =
P

i xkixji. Hence, the solution is the unit vector vvv which maximizes
vvvTMMMvvv. This is a constrained optimization problem:

maxvvv(vvv
TMMMvvv) subject to (vvvTvvv = 1) (4)

The Lagrange function is:

L = vvvTMMMvvv + �(1 � vvvTvvv) (5)
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and the condition needed for optimality is:

@vvvL = 0 (6)

Hence we get:
MMMvvv = �vvv (7)

With vvvTMMMvvv = vvvT�vvv = � to maximize. So the solution is the eigenvector vvv of MMM
with the highest eigenvalue, �. In practice, we observed that this method results in
vectors close to the ones obtained using the centroid. Figure 4 shows the deconvolution
results obtained with pure staining.

Figure 4: A. Sample of the pure DAB stained section. B. Sample of the pure HEM
stained section. C. The pixel distribution in the deconvoluted color space.

Pairs of corresponding core images (i.e. labeled with the same grid location) from
adjacent TMA slices are extracted and their orientation is matched using the TMA
grid orientation (extracted in Section 3.2) to initialize the registration step. Those
core images are then registered using the open-source Elastix framework [10] applied
on the HEM (deconvoluted) channel of these images. The Elastix parameters are
those determined in previous developments leading to successful registration of high-
resolution fields of view from whole tissue sections [7]. To validate the registration
method control points (CP) were manually placed and matched on di↵erent cores in
the acquired TMA slide images. We evaluated registration accuracy per core using the
root mean square error (RMSE) computed on the CPs.

4 Results and discussion

The automatic TMA grid fitting was successfully applied on the 7 slides without requir-
ing any manual adjustment. The registration results obtained for pairs of consecutive
slides show RMSE values corresponding to the diameter of a cell nucleus, i.e. about
5 m. These results are illustrated in Figure 5. Intermediary results also confirm the
e�ciency of the Elastix-based registration step. Indeed, after matching the TMA grid
orientations and before fine registration, the RMSE values are of 35 m, i.e. slightly
higher than the cell diameter (about 20 m). The above data show that our image
registration approach applied to consecutive TMA slides exhibiting di↵erent IHC mark-
ers has performances that enable accurate colocalization of protein expression. This
approach is much more flexible than the one which consists in carrying out multiple
staining IHC on one slide, using di↵erent chromogens to reveal the expression of dif-
ferent proteins. Indeed, this latter approach requires that the antibodies used in IHC
come from di↵erent species (to avoid cross-reaction) and that the targeted proteins
are expressed in di↵erent cells or cell compartments to avoid color overlay, which is
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di�cult to distinguish in brightfield microscopy. In addition, multiple staining is tech-
nically more di�cult to set up and may cause staining artifacts as those we observed
experimentally.

In our future works, we will use TMA core registration to match histologically
relevant structures from an image to another, by using either a specific marker of the
targeted structures or an annotation (made manually by an expert or resulting from
a pattern recognition algorithm). Registered with a consecutive slide exhibiting the
expression of another protein, e.g. specific of a cellular function (such as proliferation),
this approach enables a compartmentalized analysis of the expression of the functional
protein (e.g. inside and/or outside of the histological structures of interest).

Figure 5: From left to right: original slide images where orange lines represent the
orientation detected by the algorithm; results of the grid fitting on the images of two
consecutive TMA slides (showing ↵-SMA and IGF1 expression in brown and negative
tissue in blue) where absent vs. present cores are shown in orange vs. green; extraction
of a pair of corresponding core images ; the HEM channel of the deconvoluted IGF1 core
image after grid orientation matching; registration result of the blue (HEM) channel of
the IGF1 image showing structure matching with the deconvoluted ↵-SMA core image.
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(a) (b) (c)

Figure 1: Results from an unadjusted geometrically model: (a) reference colorization
given by the device software (with visible artifacts), (b) our colorization, and (c) a
combined color quality maps of (b) (in red the poorest quality, in green the best).

Abstract

The acquisition of a complete architectural or archeological model with a cor-
rect textures is still a problem. The fieldwork is often spread out over su�ciently
large periods of time, to result in brightness or lighting changes in captured pic-
tures (due to the inability to completely control the environment). Our promoted
approach is defined to take into account all candidate color source to obtain ho-
mogeneous colorization. The process pipeline is designed to easily integrate new
data (new photographic and geometric acquisitions) and to minimize memory
footprint. Image stitching and weighting method are adapted to perform fine
per vertex depth maps colorizations and to obtain a global quality evaluation.
Each contribution is weighted using a quality measure of the information. A se-
rie of quality maps are defined based on the distance between the geometry and
the source, the relative orientation of the photographs to the surface, the visi-
bility of the model from the point of view, the internal silhouette or the surface
boundaries, and the image vignettings. We define and evaluate a set of transfer
functions, relying on the best visual results to combine these maps.
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1 Introduction

Preservation of cultural heritage benefits of the nowadays increase in interest for three-
dimensional models as an information and communication medium. The digitization
of existing objects and sites is a really fast and e�cient way to obtain a very large
amount of data of di↵erent kinds (shape, geometric size, appearance, surface reflec-
tivity. . . ). But obtaining a visually correct rendering of the appearance for a digital
models remains an open issue in this field.

In order to get a complete model of a wide site and to minimize the so called geomet-
ric shadows, it is necessary to perform several geometric and colorimetric acquisitions
during the field work from a variety of viewpoints. In natural uncontrolled climatic and
light conditions, such as archaeological and architectural outdoor sites, the spacing in
space of the colors measurements leads to consider multiple data sources whose quality
depends on the surface distance and relative orientation, while the spacing in time
induces risks of changes in the natural lighting conditions (i.e. e↵ects due the suns
positions or the weather changes). The variations of the brightness, the lightning and
the acquisition parameters can induce significant di↵erences in the visual appearance
of a given scene. Without additional processing, such a multiview rendering models
leads to a poor appearance, including artifacts such as color discontinuities (see Fig.
1a).

We promote in our work a method that produces visual representations of archi-
tectural sites with less visual artifacts (errors due to noise in the geometry or aberrant
colorization. . . ) and with a consistent and homogenous colorization. A real-time ap-
proach, compatible with fieldwork, enables to preview the results during the scanning
procedure itself and thus allows to refine the acquisition parameters and to select new
interesting viewpoints to improve the geometry and / or the colorization.

For models composed of large scans series, the outcomes exhibit a uniform coloring
and no significant visual artifacts. The result also delivers a global measure of the color
quality, also taking into account the number of contributing sources. The method allows
to identify weaknesses in the model and the possible new interesting viewpoints, from
which the acquisition should be completed.

2 Approach

In previous work [8], we have presented the more relevant approaches and identified
several existing methods. Algorithms that require specific data or hardware were dis-
carded. We also limit the methods to those suitable for point cloud on full-scale scene
model and a reasonable computation time for real time application. We consider the
class of weighing methods [1, 2, 3, 7] as the best existing candidate. We adapt this
method in order to take into account several important features impacting the coloriza-
tion quality of the produced model.

A object digitizing consists two types of data:

• a point cloud that is built by the successive addition of new scans, acquired from
di↵erent viewpoints and registered into a single coordinate system;

• a series of pictures acquired by a 6M pixel camera.

Data are acquired in parallel to the colorization process by iterative and alternating
phases of geometry and pictures capturing. In this work, three-dimensional registration
of the scans (i.e. sensor’s position and orientation matrix) and pictures registration
relative to the point cloud (extrinsic and intrinsic parameters for each image) are
assumed known. A large litterature covered these both themes [4, 6].

Our main goal is to quickly obtain a rendering, with a coherent colorization, of ar-
chitectural or archaeological site models, which can be geometrically very complex and
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have significant volumes, like the “Hôtel de Ville de Bruxelles”, used for illustrations in
this paper. We need to acquire data (three-dimensional scannings and photographies)
from a large number of viewpoints for such acquisitions (for our model, 43 scans com-
posed of 716M points, coupled with 211 pictures). Textures artifact-free are di�cult
to obtain during the fieldwork, it is thus important to work with pictures taken in
arbitrary conditions (i.e. variable lighting and positioning conditions).

Our approach must meet three conditions:

• a homogeneous colorization calculated from pictures taken under varying condi-
tions;

• a real-time computation relating to the acquisition time on the field;

• a manipulation of a large and growing amount of data (three-dimensional models
and HD pictures).

We define a color source like the color value of a pixel in an image. For a 3D point,
we could readily determine the related potential color sources in each image, based
on the knowledge of the extrinsic and intrinsic parameters of the camera and on the
perspective projection principles.

Our colorization approach consists of computing for each 3D points three informa-
tion by considering all available colors sources :

• the evaluation of the global color quality of the sources relative to the geometry;

• the number of truly contributory pictures to the final color;

• the color, calculated as an average of the available sources weighted according to
its respective quality.

Our notion of real-time is related to the fieldwork process. The computation time
to colorize the complete model considering all the picture is lower than the time re-
quired to perform all measurements. To achieve this, we update the model information
incrementaly with the new acquired data (3D geometry and pictures). Indeed, the
knowledge of the previous information is used to calculate the new ones without repro-
cessed without any recalculation.

The manipulation of a large and growing amount of data is also a major di�culty.
Our proposition is thus to keep the scans division of the entire model without merg-
ing all the three-dimensional data, and to adapt the colorization pipeline to consider
independently each scan during the process.

A scan is basically a depth map and can therefore be seen as an “image”. The
depth map has the property to define a simple neighborhood notion without requir-
ing heavy computation (i.e. the 2D neighboring element in the map can be seen as a
neighboring point in the 3D space). This facilitates and speeds up calculations such
as normals estimation, surface boundaries extraction,. . . by considering large neighbor-
hood (defined by a radius around the point) in the image-space. These calculations can
be refined using a variable radius (depending on the point depth) to take into account
the geometry.

The proposed method consists of per vertex depth maps colorizations taking into
account all available colors sources. Each contribution is weighted using a quality
measure of the information. With this consideration, we compute score for each color
sources (i.e. pictures).
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3 Scores

A serie of scores is defined to weight each contribution. Inspired by Callieri et al.
[3], we suggest to use a geometric mean of the normalized measures to combine these
metrics. Each normalization is based on a transfer functions described bellow with the
definition of his respective metrics.

The combination approach allows to obtain eventually better realistic visual results
by extending the method to consider specialized weighting factors depending to the
images content (focus [3], contrast, or saturation [7]) or the amplitude images [5].

We limits our scores evaluation to the more relevant ones (see Fig. 3) :

• Visibility. A portion of the depth map is invalid due to the limitations of the scan-
ner, such as a limited range of use and di�culties with shiny, reflective or trans-
parent surfaces. Pictures and geometry are acquired from di↵erent viewpoints.
We compute the visibility mask by simulating and merging several z-bu↵ers with
decreasing resolutions.

• Distance.The distance between a color source and the geometry is an important
score to reflect :

– the amount of light that reaches the geometry

– the pixel/surface ratio

– the illumination due to nearby light such as flash

We promoted the use of a normal function, centered in a parameter, defined both
to mitigate the e↵ects of overexposure due to flash light for close geometry and
of remote sources. In general, the remote sources contribute less to the final color
than other elements.

• Silhouette. Silhouette correspond to part in geometry located near a sharp vari-
ation in distance (i.e. border). Color is usually ill defined on these part since
parallax problem can cause important error even for small aligment discrepan-
cies. Silhouette score reflects the characteristics of complexity and uncertainty,
both in terms of position and for the consistency of the colorization where the
visibility of a surface can change.

The internal silhouettes are defined as the set of points of the surface whose nor-
mal is perpendicular to the view vector. We used a cosine function to weight this
value; sources value approaches or exceeds 90 degrees have a bad weight and do
not contribute to the colorization. We use a hyperbolic tangent to obtain a rapid
decreasing in range values near 90 degrees, and to avoid abrupt discontinuities.

• Orientation. The orientation is evaluated by computing the angle between the
surface normal and the optical axis. This reflects that a picture oriented parallely
to a surface should have a better score. Similarly to the Lambert’s cosine law,
the normalization of the orientation is based on a cosine function.

• Vignetting. An important roll-o↵ in the photograph quality is measurable to-
wards the borders and the corners, depending on the internal structure of the
lens. We approximates this with a normalized distance map of the picture.

4 Global Color Quality Evaluation

In each 3D points, as illustrated in Fig. 4, we evaluate a global color quality as the
square root of the product of :
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2: Normalized data corresponding to one picture: (a) color, (b) visibility, (c)
distance, (d) silhouette, (e) orientation, (f) vignetting mask, and (g) obtained combi-
nation. The masks are standardized to use the color wheel defined in the HSV color
space.

• the overall quality score, computed by combining the scores of all color sources;

• the number of contributive sources, defined as the number of non null scores.

(a) (b) (c)

Figure 3: Global color quality evaluation steps: (a) the overall quality, (b) the number
of contributive sources, and (c) the quality evaluation. No geometry pre-processing
was applied on the architectural model

This representation illustrate the weakness in the colorization (in red). New in-
teresting viewpoints and camera orientation can be identified. In order to identify a
possible new acquisition place, we can simulate the expected quality before the ac-
quisition itself. Indeed, we can produce the quality map for the simulated viewpoint
based on the already acquired geometry and estimate the number and the quality of
contributing color sources.
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5 Conclusion

The rendering computation times, necessary to our solution to obtain good visual
quality, is compatible with fieldwork. The integration of a new image in the process is
near to one seconds, which allows us to test potential new captures.

For models composed of large scans series, the produced results exhibit a uniform
coloring and no significant visual artifacts. The system also delivers a global measure
of the color quality, also taking into account the number of contributing sources. The
method allows to identify weaknesses in the model and can simulate the contribu-
tion of a new acquisition, and therefore enables to select better viewpoint during the
acquisition campaign.
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Abstract

Score level fusion is an appealing method for combining multi-algorithms, multi-
representations, and multi-modality biometrics due to its simplicity. Often,
scores are assumed to be independent, but even for dependent scores, accord-
ing to the Neyman-Pearson lemma, the likelihood ratio is the optimal score level
fusion if the underlying distributions are known. However, in reality, the dis-
tributions have to be estimated. The common approaches are using parametric
and nonparametric models. The disadvantage of the parametric method is that
sometimes it is very di�cult to choose the appropriate underlying distribution,
while the nonparametric method is computationally expensive when the dimen-
sionality increases. Therefore, it is natural to relax the distributional assumption
and make the computation cheaper using a semiparametric approach.

In this paper, we will discuss the semiparametric score level fusion using
Gaussian copula. The theory how this method improves the recognition perfor-
mance of the individual systems is presented and the performance using synthetic
data will be shown. We also apply our fusion method to some public biomet-
ric databases (NIST and XMVTS) and compare the thus obtained recognition
performance with that of several common score level fusion rules such as sum,
weighted sum, logistic regression, and Gaussian Mixture Model.

1 Introduction

Multi-biometric system or biometric fusion is a combination of several biometric sys-
tems or algorithms in order to enhance the performance of the individual system or
algorithm. In general, it can be characterized into six categories [15]: multi-sensor,
multi-algorithm, multi-instance, multi-sample, multi-modal and hybrid. Several stud-
ies [7, 14, 15, 18] show that combining information from multiple traits or algorithms
can provide better performance. For example, Lu et al. [7] combining three di↵erent
feature extractions (Principle Component Analysis, Independent Component Analysis
and Linear Discriminant Analysis) which is related to the multi-algorithm biometric
fusion. In the fingerprint biometric field, Prabhakar and Jain [13] use the left and right
index fingers to verify an individual’s identity which is an example of the multi-instance
biometric fusion.

Biometric fusion can be done at the sensor, feature, match score, rank and decision
levels either for verification or identification. In this paper, we will focus on the match
score level for person verification. This means that scores from multiple biometric
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matchers for every pair of two subjects (user and enrollment) are transformed to a
new score (a scalar) as a combined score. Once the new score has been generated,
one has to decide whether the user and enrollment are from the same person or not.
To do this, a threshold has to be set such that a score greater than or equal to the
threshold is recognized as genuine score which means that the user and enrollment
are the same subject while a score less than the threshold will lead to the conclusion
that the user and enrollment are di↵erent people which will be called by impostor score.
This threshold is determined using a set which is called the training set and is evaluated
using a disjoint set which is called the testing set

There are three categories in biometric fusion: transformation-based [5], classifier-
based [8], and density-based. The last category would be optimal if the underlying
densities were known. However, in practice, such densities have to be estimated from
the training set so that the performance relies on how well these two densities are esti-
mated. The parametric models su↵ers from the limitation in choosing the appropriate
parametric model to the data. The most successful parametric approach is the Gaus-
sian Mixture Model (GMM) [10]. However, the number of the mixture components
which is the most important part in estimating GMM is very hard to be determined.
The author in his paper used GMM fitting algorithm proposed in [3] that automatically
estimates the number of the mixture components using an EM algorithm and the min-
imum message length criterion. However, the computational cost is time consuming
when the sample size is big or the the number of mixture components increases. On
the other hands, the nonparametric models have a problem in choosing bandwidth and
computational cost when working in the multidimensional space.

This paper focuses on the fusion strategy for dependent matchers. Using synthetic
data, we will show that our approach is robust in handling the dependent classifiers
even with an extremely high dependence structure. We will also apply our method on
the public databases NIST-BSSR1 and XM2VTS. The rest of this paper is organized as
follows. In Section 2, we will review the theory of Gaussian copula, why it is suitable to
be chosen and how to do Gaussian copula based fusion. Some experimental results on
the synthetic data are presented in Section 3 to show the robustness of our method in
handling the dependence issues and the results on the public database will be provided
to show the applicability of our method in the real world. Finally, this paper will be
closed by our conclusions.

2 Gaussian Copula Fusion

2.1 Likelihood ratio based fusion

Suppose we have d matchers and let X = (X1, · · · , Xd) denote the d components of the
matching(similarity or distance) scores where Xi is the random variable corresponding
to the i-th match score where X takes its values in ⌦ ⇢ Rd. The decision function is
a map  : Rd 7! {0, 1} where 0 and 1 corresponds to negative and positive decisions
which are denoted by H0 and H1, respectively. A system can make two types of
error(false): accepting an impostor score or rejecting a genuine score. The probability
of accepting impostor score P ( (X) = 1|H0) is called by False Acceptance Rate (FAR)
while the probability of rejecting genuine score P ( (X) = 0|H1) is called by False
Rejection Rate (FRR). From the definition of FRR, it can be understood that the
probability of accepting genuine score that will be called by True Positive Rate (TPR)
is TPR = 1 � FFR. In application, the FAR has to be set very small since the cost
of accepting an impostor may be much more expensive than the cost of rejecting a
genuine user. For example, in security, allowing a forbidden person to access a secret
place is much more dangerous that rejecting a ”nice” person to access it. Therefore,
for every given FAR, our fusion has to maximize the TPR.
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Neyman and Pearson established the most powerful test based on the likelihood
ratio [11]. Let fgen and fimp be the density of genuine and impostor scores, respectively.
The likelihood ratio at a point x = (x1, · · · , xd) is defined by

LR(x) =
fgen(x)

fimp(x)
. (2.1)

According to the Neyman-Pearson theorem, in order to get the maximum TPR for
every fixed FAR, say ↵, we have to decide

 (X) = 1 () LR(x) � ⌘ (2.2)

where ⌘ is implicitly defined by

P (LR(X) � ⌘) = ↵. (2.3)

As a consequence, the optimal performance can be reached by defining the fused score
as the likelihood ratio of the vector consisting of all matching scores.

2.2 Gaussian copula

Computing (2.1) means that the estimation of fgen and fimp is a must. Let H be any
distribution function on Rd with density h. A classical result of Sklar [17] shows that H
can be uniquely factorized into its univariate marginal distributions and a distribution
function on the unit cube [0, 1]d in Rd with uniform marginal distributions which is
called by copula:

Theorem 2.1 (Sklar (1959)). Let d � 2 and suppose H is a distribution function on
Rd with one dimensional continuous marginal distribution functions F1, · · · , Fd. Then
there is a unique copula C so that

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) 8(x1, . . . , xd) 2 Rd. (2.4)

This paper assumes that C is determined by a multivariate normal distribution with
standard normal marginals and correlation matrix R. Note that this assumption is more
flexible than assuming H to be multivariate normally distributed. The main di↵erence
is that each marginal of the multivariate normal has to be normally distributed while
each marginal of a Gaussian copula can be any continuous distribution function. In
section 3, we will see that our generated data follow a Gaussian copula distribution
with normal and weibull marginal.

The key concept of the Gaussian copula is the assumption of the existence of a
componentwise transformation ⌧ : Rd 7! Rd such that ⌧(X) ⇠ N(0, R). Here, each
component ⌧i of ⌧ is a monotone continuous function. One can show that

⌧i(xi) = ��1(Hi(xi)) (2.5)

for i = 1, . . . , d where � and Hi denote the standard normal distribution function and
the marginal distribution of the i�th component.

This means that (2.4) can be rewritten as

H(x1, . . . , xd) = �R(��1(u1), . . . ,�
�1(ud)), (2.6)

where ui = F (xi), � the one-dimensional standard normal distribution function, and
�R the d-dimensional standard normal distribution function with correlation matrix
R. Consequently, the density function of H is

h(x1, . . . , xd) =
1

|R|1/2 exp (�1

2
uT (R�1 � I)u)

d
Y

i=1

fi(xi), (2.7)

with u = (��1(F1(x1)), · · · ,��1(Fd(xd)))T .
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2.3 Gaussian copula based fusion

Our fused score using the Gaussian copula approach is defined by (2.1) with the nu-
merator fimp and the denominator fgen as in (2.7), i.e.,

LR(x1, . . . , xd) =
|Rimp|1/2 ⇥ exp (1

2
u
gen

T (R�1
gen � I)u

gen

) ⇥
Qd

i=1 fgen,i(xi)

|Rgen|1/2 ⇥ exp (1
2
u
imp

T (R�1
imp � I)u

imp

) ⇥
Qd

i=1 fimp,i(xi)
. (2.8)

Here, Rgen and Rimp denote the correlation matrices of transformed genuine and im-
postor scores, respectively, u

gen

and u
imp

are given by

u
gen

= (��1(Fgen,1(x1)), · · · ,��1(Fgen,d(xd)))
T

and
u
imp

= (��1(Fimp,1(x1)), · · · ,��1(Fimp,d(xd)))
T ,

respectively. To obtain the LR value as given by (2.8), we need to estimate the correla-
tion matrices Rgen(Rimp), the marginal densities fgen,i(fimp,i) and marginal distribution
functions Fgen,i(Fimp,i) using a training set. Given a training set, we can extract to the
genuine and impostor scores. Note that the scores often are dependent within the group
of genuine scores, within the group of impostor scores, and between these two groups.
However, we shall proceed as if all scores are independent. The resulting estimators
are still reliable because most scores will be independent.

Let W1, . . . ,Wn
gen

and B1, . . . , Bn
imp

be the two samples representing the genuine
and impostor scores, respectively.

2.3.1 Matchers dependence

As stated above, some genuine and impostor scores are dependent. However, we are
interested in the correlation matrices of the match scores, which we will assume to be
the same, Rgen = Rimp = R. We shall estimate R using the combined sample, i.e,

(X1, . . . , Xn) = (W1, . . . ,Wn
gen

, B1, . . . , Bn
imp

)

with n = ngen + nimp. Our experiments show that such restriction will improve the
performance of the fused score. It is reasonable since we are estimating the matchers
dependence not only the genuine or impostor scores dependence. Klaasen and Wellner
[6] give an explicit formula to obtain an optimal estimator for the correlation matrix

R via normal rank correlation by taking R̂ =
⇣

⇢̂(n)
rs

⌘

where

⇢̂(n)
rs =

1
n

n
P

j=1

��1
⇣

n
n+1

F(n)
r (Xrj)

⌘

��1
⇣

n
n+1

F(n)
s (Xsj)

⌘

1
n

n
P

j=1

⇥

��1
�

j
n+1

�⇤2
(2.9)

where � denotes the one-dimensional standard normal distribution function while F(n)
r

and F(n)
s are the marginal empirical distributions of Fr and Fs, respectively, is an

e�cient estimator for ⇢rs for every 1  r < s  d.
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(a) Two face matchers scores from NIST-Multimodal (b) Two face matchers scores from NIST-Face

Figure 1: Score transformation and Boundary decisions at 0.01% FAR

2.3.2 Marginal density estimation

To estimate the marginal density functions, we use the kernel bandwidth optimization
as studied by Shimazaki and Shinomoto [16]. This method has two di↵erent kinds of
choosing the optimal bandwidth. The first bandwidth choice is similar with the regular
bandwidth selection but it performs much faster than the built-in ksdensity matlab.
The second one is a local bandwidth optimization. This approach works very well in
handling the data that have ”spikes”.

2.3.3 Marginal distribution function estimation

The empirical distribution function is an optimal estimator for the marginal distri-
bution function and very easy to be implemented and very fast to be computed (see
Figure 1a for example in biometric). The empirical distribution function, F̂ , is the
distribution function that puts mass 1/n at each data point xi where n is the number
of the observation. In this paper, since we need to compute the quantile of the stan-
dard normal, then to avoid singularity, we prefer to put mass 1/(n+1). Explicitly, the
empirical distribution function of genuine and impostor scores are given by

F̂gen(x) =
1

ngen + 1

n
gen

X

i=1

(1)[W
i

x] and F̂imp(x) =
1

nimp + 1

n
imp

X

i=1

(1)[B
i

x]. (2.10)

3 Experimental Results

To study the robustness of our method in fusing biometrics scores related to the classi-
fiers dependence, genuine and impostor scores are generated that follow three di↵erent
distribution functions and have three di↵erent dependence levels. Here, we assume that
there are 1000 subjects with 2 biometric specimens for each subject, one is put as user
and the other for enrollment. We also assume that we have 2 di↵erent biometric sys-
tems. Therefore, the size of genuine and impostor scores are 2⇥ 1000 and 2⇥ 9999000,
respectively which we will use as training data. The testing data are obtained in the
same way. The parameters for generating the data are:

• multivariate normal scores with correlations 0.99, 0.5 and 0.1 with genuine means
[1, 3]T , [5, 3]T and [5, 3]T , respectively. All impostor means are set to be [0, 0]T .

• Gaussian copula with correlation value 0.9, 0.5 and 0.1. The genuine and impostor
marginals of the first matcher are set to follow weibull distribution with the shape
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parameters 3 and 1, respectively, and the common scale parameter 4. For the
second matcher, the genuine and impostor marginals follow normal distribution
with parameter (5, 1) and (1, 0), respectively.

Once all data have been generated, for every pair of training and testing set, the
exact likelihood ratio is computed which is called by true fusion. The next step is
performing the sum rule with min-max and z-norm normalization and also the weighted
sum using Fisher criterion [2]. Subsequently, we pick the best results. For the logit
fusion, we use nonlinear logistic regression as given by W. Chen and Y. Chen[1]. The
performance of several methods compared with the true fusion is provided in Table
1. The bold value is the best non-true fusion which indicated the TPR (%) at 0.01%
FAR. We can see that our method is the most robust approach especially for the data
with high dependence.

Table 1: Influence of Dependence in Biometric Fusion

Methods
High Moderate Low

MV GC Gu MV GC Gu MV GC Gu
True Fusion 90.70 93.20 99.90 91.00 90.70 97.40 96.90 90.90 84.70
Best Linear 89.80 90.40 94.00 91.00 90.20 90.90 96.90 89.90 83.50
Logistic Regression 00.10 88.20 87.60 90.60 90.50 87.40 96.90 90.80 82.80
Gaussian Copula 90.10 92.80 99.70 89.80 90.70 93.50 96.50 90.60 84.70

*MV: Multivariate Normal, GC: Gaussian Copula, Gu: Gumbel Copula.

We will also apply our method on the public databases: NIST-BSSR1 [9] and
XM2VTS [12]. The NIST-BSSR1 database has three di↵erent set:

• NIST-Multimodal: Two fingerprints and Two face matchers applied to 517 sub-
jects,

• NIST-Face: Two face matchers applied to 3000 subjects,

• NIST-Finger: Two fingerprints applied to 6000 subjects.

For every experiment, each set is split up randomly into two subsets, one is used for
training and the other is used for testing. Then the naive sum rule with min-max
normalization, naive sum with Z-normalization, weighted sum with Fisher criterion,
nonlinear logistic regression, and our method are performed and the TPR at 0.01% is
computed for every fusion strategy. This procedure is repeated 20 times and the average
of all TPR at 0.01% for each fusion strategy is provided in the Table 2. We do not
include the Gaussian Mixture Model (GMM) fusion strategy because the computation
is very time consuming when it is done on a normal computer. However, we also
provide the result of the GMM strategy as reported in [10] and we compare the 95%
Confidence Interval on increase in TPR at 0.01% as given by Table 3. We can see that
our approach outperforms all other fusion strategies (the bold value is the best one) even
with GMM fusion which is computationally expensive. Also for the XM2VTS database
that contains match scores from five face matchers and three speech matchers applied
to 295 subjects with the partition of the training and testing set have been defined in
[12], our method is the highest among all reported TPR at 0.01% FAR.
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Table 2: TPR (%) values for di↵erent methods at 0.01% FAR on the public databases

Method
NIST
Multi
modal

NIST
Face

NIST
Finger
print

XM2VTS

Naive Sum min-max 97.97 76.47 91.33 97.50
Naive Sum Z-norm 97.87 76.48 91.33 97.50
Weighted Sum 97.97 76.48 91.40 97.50
Logistic Regression 98.74 76.48 91.46 98.50
Gaussian Mixture Model[10] 99.10 77.20 91.40 98.70
This paper 99.48 77.21 91.60 99.00

Table 3: Comparison with LR fusion using Gaussian Mixture Model on the NIST-
BSSR1 database

Database
Mean TPR (%)
at 0.01% FAR

95% Confidence Interval
on increase in TPR (%)

at 0.01% FAR
BSM GMM GC GMM GC

NIST-Multimodal 85.30 99.10 99.48 [13.50,14.00] [13.51,14.84]
NIST-Face 71.20 77.20 77.21 [ 4.70, 7.30] [ 4.69, 7.32]
NIST-Fingerprint 83.50 91.40 91.60 [ 7.60, 8.20] [ 7.63, 8.57]

*BSM: Best Single Matcher, GMM: Gaussian Mixture Model, GC: Gaussian Copula (used in this paper).

4 Conclusion

The Gaussian copula is a semiparametric model which is easy to be implemented,
cheap in computation, and able to handle the dependence structure that usually ap-
pears in multi-algorithm fusion. Using several synthetic data, we have shown that our
approach performs very well in dependent classifiers fusion even for extreme depen-
dence structures when the performance of other approaches drops dramatically. We
also see that our method works well when it is applied on the NIST-BSSR1 database
(see Figure 1b for the comparison of the boundary decision with another approaches
on this database) and even on the XM2VTS it reaches the highest TPR at 0.01% FAR
among all reported results. However, it has limitations in estimating the tail density
because estimation is based on the kernel density method. Our experiments show that
although our approach works well at 0.01% FAR, it is sometimes much worse than
individual classifiers at 0.001% FAR.
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Abstract 

In this paper, we propose a facial recognition based on the LBP operator. 
We divide the face into non-overlapped regions. After that, we classify a 
training set using each region at a time under different configurations of the 
LBP operator. Regarding to the best recognition rate, we consider a weight 
and specific LBP configuration to the regions. To represent the face image, 
we extract LBP histograms with the specific configuration (radius and 
neighbors) and concatenate them into feature histogram. We propose a 
multi-resolution approach, to gather local and global information and 
improve the recognition rate. To evaluate our proposed approach, we 
considered the FERET data set, which includes different facial expressions, 
lighting, and aging of the subjects. In addition, weighted Chi-2 is considered 
as a dissimilarity measure. The experimental results show a considerable 
improvement against the original idea. 

1 Introduction 

Because of a wide range of applications in security, safety and access control, biometric 
pattern recognition has been a great challenge for researchers and scientists [1, 2]. In recent 
years, Local Binary Patterns (LBP) and its extensions, as a texture feature extractor, have 
been one of the most popular and successful applications. LBP [3] is the most widely used 
for the face detection, face recognition, facial expression analysis, and other related 
applications. Numerous approaches have been proposed based on LBP. For example, 
Ahonen et al. [4] proposed an LBP-based facial image analysis by dividing the face into 
some non-overlapping regions and concatenation of the LBP features that are extracted 
from each region. They assigned a weight to each region based on the importance of the 
information it contains. Zhang et al. [5] proposed a non-statistics based face representation 
approach, Local Gabor Binary Pattern Histogram Sequence (LGBPHS), with no training 
procedure to construct the face model. Chan et al. [6] proposed a face representation 
approach derived by the Linear Discriminant Analysis (LDA) of multi-scale local binary 
pattern histograms. Shan et al. [7] introduced Fisher Discriminant Analysis (FDA) of the 
LBP (LGBP) spatial histogram. Zhang et al. [8] encode Gabor phase through LBP and 
local histograms in addition to magnitudes of Gabor coefficients. Tan et al. [9] introduced 
local ternary patterns (LTP) to generalize of the LBP descriptor. Nikisins [10] proposed a 
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face recognition methodology, which is based on the combination of the texture operator, 
namely Multi-scale Local Binary Pattern (MSLBP), face image filtering and feature 
weighting algorithms. Ishraque et al. [11] proposed local directional pattern Variance 
(LDPv), to represent facial components.  

In this paper, we have two contributions. First, we propose a new approach to assign a 
weight to the sub-regions of a face image. Second, a multi-resolution approach, to capture 
the local and global information of the face, is proposed. In addition, we have a discussion 
on the non-overlapped and overlapped regions. Finally, we compare our method with other 
state-of-the-art methods. In the experiments, Chi-2 similarity measurement is implemented 
for unsupervised classification. In addition, the FERET data set [12, 13] is considered to 
generalize our experimental results. The rest of this paper is organized as follows: Section 
2 is related to local binary pattern operator. Section 3 presents the proposed approaches. 
Experimental results and discussions are given in section 4. Section 5 concludes the paper. 

2 Local Binary Pattern Operator (LBP) [14] 

Due to impressive computational efficiency and good texture discriminative property of 
LBP operator[3], it  has gained considerable attention since its publication. The LBP has 
already been used in many other applications including visual tracking, texture-based 
segmentation, image retrieval, face recognition, and texture classification. The LBP 
operator works in a 3×3 neighborhood, using the center value as a threshold. An LBP code 
is produced by multiplying the threshold values with weights given by the corresponding 
pixels. After that, the binary LBP code is converted to decimal number by using equations 
(1) and (2) to represent a unique spatial pattern:  

                     
     (1) 

           
     

   (2) 

Where the gray value of the central pixel is    and    is the value of its neighbors, P is the 
number of neighbors and R is the radius of the neighborhood.        

   operator [3], defined 
by Equ. (3), removes effect of rotation.          performs a circular bit-wise right 
rotation j times on the P-bit number x. A majority of LBP patterns in a texture is termed 
"uniform" binary patterns that have limited number of transitions between zero and one. U 
value of an LBP (       

   operator) as shown by Equ. (4).        
     operator is based on a 

circular symmetric neighborhood. In theory, it is invariant to any monotonic grey-scale 
transformation[15].  
 

       
                                     (3) 

       
                                                            

      (4) 

Where the gray value of the central pixel is    and    is the value of its neighbors, R 
refers to the distance to the center, P stands for the number of sampling pixel in the 
neighborhood, and together they form the circularly symmetric neighborhood. 
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3 Proposed Approach 
3.1 Fusing weight 

We divide the face into some non-overlapping regions and calculate the LBP 
information of the regions as a feature vector. Regarding the recognition rate of each 
region on a training set, we define a weight for each region. We calculate the recognition 
rate of the regions in different LBP configurations (R and P). The best recognition rate 
under the specific LBP configuration makes the weight of each region. Figure 1 depicts the 
weights of regions under some configurations. The block size of the regions was 
considered 21×18 similar to [4]. Figure 2 depicts the best recognition rate of the regions 
along with the LBP configurations (fusing weight matrix). 

 

 

 

2.06 1.55 2.06 1.03 2.06 1.55 2.06 

1.55 3.61 8.76 2.06 8.76 3.61 1.55 
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0.52 0.52 0.00 0.00 0.00 0.52 0.52 

0.52 0.00 0.52 0.00 0.52 0.00 0.52 

0.52 0.52 0.52 0.00 0.52 0.52 0.52 

0.00 2.06 1.55 0.00 1.55 2.06 0.00 
 

7.73 0.52 4.64 3.09 4.64 0.52 7.73 
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10.82 1.55 1.55 2.06 1.55 1.55 10.82 

5.67 13.92 32.47 3.09 32.47 13.92 5.67 
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0.00 4.64 2.06 7.22 2.06 4.64 0.00 

0.00 2.58 5.15 4.12 5.15 2.58 0.00 

(a) WP4R1 (b) WP8R2 (c) WP16R3 
Figure 1 Weight values of the regions in some LBP configurations (P and R) with block size 21×18. (a) 
Weight under R=1 and P=4. (b) Weight under R=2 and P=8. (c) Weight under R=3 and P=16. 
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Figure 2 Fusing weight matrix: the best recognition rate of the regions in different LBP configurations. (a) 
Fusion of region weights according to P and R configurations. (b) Weight values presented by the color bar. 

3.2 Feature calculation method 

For calculation of the feature vector in fusing weight approach, the face is first divided 
to sub regions. Regarding to the best LBP configurations in the fusing weigh matrix, the 
LBP information is calculated from all regions and concatenated together to make the 
feature vector. To reduce the feature dimensionality, we can eliminate the regions with low 
recognition rate. For example, the edge regions (in the bottom, in the left and right side of 
Figure 2.b) have very low efficiency and can be eliminated.  

4 Experimental result and Discussion 
4.1 Data set  

The CSU Face Identification Evaluation System [12] was used to test the performance 
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of the proposed approaches. The CSU follows the procedure of the FERET test for semi-
automatic face recognition algorithms [13] with slight modifications. Each set contains at 
most one image per person. These sets are fa, fb, fc, dupI, and dupII. The fa set (gallery set) 
contains frontal images of 1196 people. The fb set contains 1195 images. The subjects 
were asked for an alternative facial expression than in fa photograph. The fc set with 194 
images was taken under different lighting conditions. The dup I set (722 images) were 
taken later in time and dup II set contains 234 images. This is a subset of the dup I set 
containing those images that were taken at least a year after the corresponding gallery 
image. 

4.2 Face recognition results 

The recognition rate of the FERET data set under different LBP configurations (P and 
R) and their respective weight of the regions are shown in Table I. As we can see, under fix 
LBP configuration, the best result can be obtained using P=10 and R=3. While, fusing 
weight approach improves recognition rate slightly better than the fix configuration 
approach.  

Table I Recognition rate on the FERET data set under different weight calculation and LBP configuration 
with block size (21×18). The best scores are marked in bold. 

  Fb fc** dupI dupII Weight 
R=1 P=4 94.06 55.67 45.43 31.20 WP4R1 

 P=8 96.07 74.23 54.99 41.88 WP8R1 
 P=4 94.64 69.07 57.76 55.56 WP4R2 

R=2 P=8 96.99 (96.82*) 79.38 64.40 (65.7*) 63.68 WP8R2 
 P=10 97.32 84.54 64.27 64.53 WP8R2 

R=3 P=4 94.23 71.13 54.85 55.13 WP4R3 
 P=8 96.90 83.51 63.99 63.25 WP8R3 
 P=10 97.66 87.63 66.48 65.38 WP10R3 
 P=16 96.65 87.63 63.16 66.67 WP16R3 

Fusing Weight Approach 97.74 86.60 66.62 67.09  
* Ahonen’s symmetric weighting approach taken from original paper [4] 
** fc images from 1110 to 1206 

4.3 Pyramid representation approach 

In recent researches, pyramid representation has been used for achieving an effective 
local binary patterns texture descriptor [16], improving the scene categorization [17, 18], 
semantic concept retrieval [18], robustness against noise [19], and image classifying by the 
object categories they contain [20]. In the results, it can be seen that the feature selection 
from more pyramid representations can gather more information from an image. Further, 
more accuracy is attained by more pyramid representations. Therefore, apart from better 
accuracy we will have higher dimensionality. Of course, the researchers have shown 
peculiar effect that as the number of variables (feature dimensionality) is increased, the 
classification performance of the resulting decision surface initially improved, but then 
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began to deteriorate [21]. In this experiment we combine features of the first and the 
second pyramid representations with feature of original image. To keep the region size 
(21×18), we consider no down-sampling in pyramid representations. The weights of 
regions have been calculated similarly to before. The experimental results are shown in 
Table II.  Regarding to [21], it can be seen that there is a slight improvement in recognition 
of some sets.  

Table II Recognition rate under pyramid representation approach. There is no down-sampling in 
representations. The region size 21×18. 
 fb fc dupI dupII 

      +       (1) 98.08 81.44 68.14 67.09 

      +      +      
(2) 97.91 77.32 69.39 66.24 

    +     (3) 98.07 82.47 68.70 67.52 
    +    +     (4) 97.91 76.29 69.25 67.52 

(1) Feature Vector = < Original Image under P=10;R=3, Image @ PL=1 under P=16;R=3 >. (2) Feature Vector = < Original Image under 
P=10;R=3, Image @ PL=1 under P=16;R=3, Image @ PL=2 under P=16;R=3 >. (3) Feature Vector = < Original Image under fused 
weight1, Image @ PL=1 under fused weight PL1 >. (4) Feature Vector = < Original Image under fused weight1, Image @ PL=1 under 
fused weight PL1, Image @ PL=2 fused weight PL2 > 

4.4 Effect of using weights calculated in different configurations 
(Alternative weight) 

In this experiment, we use the weight of the regions calculated under different values of 
R and P (e.g. WP4R1, WP8R1, …, WP16R3) for all LBP configurations. As we can see in the 
Table III, there is not a very huge variation in the recognition rate. The fb gallery with 
1195 samples and fc gallery with the smallest samples (97 faces) have the lowest and the 
highest variance of recognition rate, respectively. Using alternative weight, the most 
recognition rate for fb, fc, dupI, and dupII have been obtained 98.16%, 89.69%, 66.48%, 
and 70.09%, respectively. 

Table III The Effect of other region weights (Alternative weight).  
Operator fb fc dupI dupII 
       92.62  0.83 64.26  4.19 47.71  1.00 36.75  2.70 
       95.23  0.56 73.88  1.93 55.02  1.07 46.72  3.15 
       94.82  0.56 67.92  4.23 55.36  1.50 52.90  3.15 
       96.76  0.61 79.38  3.18 63.05  1.21 63.87  3.39 
        97.31  0.56 83.05  2.78 63.90  1.13 63.68  2.76 
       95.04  0.56 65.06  4.30 55.32  1.46 51.47  3.00 
       96.93  0.61 82.13  2.82 63.28  1.30 60.45  2.89 
        97.31  0.53 86.03  2.07 64.68  1.46 62.68  2.79 
        96.90  0.54 87.97  1.26 62.94  1.45 66.05  3.60 

4.5 Overlapped regions against non-overlapped regions 

Ahonen et al. [4] split the image into some non-overlapped regions and extract the LBP 

images from each sub-images. Because of the small size of the regions (21×18), in their 
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approach we cannot use a large radius (R) for extraction of the LBP information. In the 

overlapped approach, we first calculate the LBP information of the image. After that, we 

split the image into the sub-regions and extract the LBP feature (histogram) from each sub-

region. In the non-overlapped approach, shown in Figure 3.a, the dimension of the original 

image is 147×126 (21×18×7×7). The number of patterns under R=1, 2, and 3 will be 

14896, 11662 and 8820. While, in the overlapped approach, shown in Figure 3.b, the 

number of patterns are 18944, 18396, and 17856 that are 27%, 58%, 102% more than non-

overlapped approach. Table IV depicts the recognition rate of the overlapped approach. 

Better results than non-overlapped approach are marked in bold and improvement value 

have been shown in the parentheses. As we can see, regardless to have a more patterns in 

overlapped approach and improvement in the weight of the regions, there is not significant 

improvement in accuracy.  We calculated the number of non-uniform and uniform patterns in non-

overlapped and overlapped approaches. We saw that the relation on non-uniform to uniform 

patterns in both approaches are almost the same. It means that using the uniform LBP operator 

(     ), we will not have a significant improvement in the recognition rate.  

  
R=1, P=8 R=2, P=8 R=3, P=8 R=1, P=8 R=2, P=8 R=3, P=8 

(a) (b) 
Figure 3 Non-overlapped and overlapped approaches. (a) Non-overlapped approach: A region with size 
21×18 reduce to 19×16, 17×14, and 15×12 under R = 1, 2, and 3, respectively. (b) Overlapped approach: 
The number of patterns for R=1, 2, and 3 is 148×128, 146×126, and 144×124, respectively.  

 
Table IV Recognition rate for overlapped regions approach on the FERET data set. Better scores than non-

overlapped approach are marked in bold. 
  fb fc dupI dupII 

R=1 P=4 92.80 58.76(+1.26) 46.54 (+1.11) 32.48 (+1.28) 
 P=8 94.98 71.13 55.26 (+0.27) 41.45 
 P=4 91.97 50.52 50.97 42.31 

R=2 P=8 97.32 (+0.33) 71.13 59.83 55.13 
 P=10 97.82 (+0.50) 73.20 62.47 58.12 

R=3 P=4 92.47 48.45 57.06 (+2.23) 50.00 
 P=8 96.99 (+0.09) 70.10 63.30 60.26 
 P=10 97.74 (+0.08) 78.35 66.48 64.10 
 P=16 97.91 (+1.26) 82.47 66.90 (+3.74) 66.24 

Fusing Weight Approach 98.33 (+0.59) 83.51 68.56 (+1.94) 70.51 (+3.42) 
      +       (1) 98.16 (+0.08) 83.51 (+2.07) 69.67 (+1.53) 69.23 (+2.14) 
      +      +      

(2) 98.16 (+0.25) 79.38 (+2.06) 69.81 (+0.42) 67.09 (+0.85) 
(1) Feature Vector = < Original Image under P=16;R=3, Image @ PL=1 under P=16;R=3 >. (2) Feature Vector = < Original Image 

under P=16;R=3, Image @ PL=1 under P=16;R=3, Image @ PL=2 under P=16;R=3 > 
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Comparison of the best verification rate of the proposed approaches with other state-of-
the-art methods have been shown in Table V. The methods use different cores of similarity 
measure and the comparison is not fair. However, we can see that the proposed approaches 
with simplest similarity measurement (Chi-2) have acceptable scores. 

Table V Comparison of the best verification rate of the proposed approaches with other state-of-the-art 
methods. 

Method fb fc dupI dupII Core of Similarity measure 

LBP [4] 93.39 50.5 61.4 49.6 Chi-2 (LBPu2) 

LBP Weigthed [4] 96.82 79.4 65.7 63.7 Chi-2 (LBPu2) 

LGBPHS [5] 98 97 74 71 WHIS 

Multi-Scale LBP [6]  98.6 71.1 72.2 47.4 LDA 

LGBP [7]  99.6 99 92 88.9 EPFDA 

ELGBP (Mag+Pha) [8] 99 96 78 77 WHIS 

Gabor+LBP [9]  98 98 90 85 KDCV 

MSLBP (+ mean filter) [10] 96.8 (97.8)    MBDFW+WNNC (LBP) 

MSLBP + MF + FW (+ BW) [10] 98.1 (99.2) - - - MBDFW+WNNC (LBP) 

MSLBP + MF + FW + BW + PCA [10] 99.1 - - - MBDFW+WNNC (LBP) 

LDPv weighted [11] 0.97 0.74 0.64 0.59 Chi-2 (LDP) 

LDPv un-weighted [11] 0.97 0.71 0.6 0.57 Chi-2 (LDP) 

The best result in our approaches 98.33 89.69 69.39 70.51 Chi-2 (LBPu2) 

5 Conclusion 

Experimental results have been shown that the most recognition rate on the FERET data 
set can be obtained under LBP configuration P=10 and R=3 and weighted region approach. 
The experimental result depicted that fusing weight approach improves the recognition 
rate. Pyramid approach makes a slight improvement in recognition rate with huge 
computation cost. In addition, with the overlapped regions, partial recognition rate (or 
weight of regions) has been improved and we significantly save image patterns.  

For the future works, we should use other similarity measurements that have been used 
in other state-of-the-art methods to compare fairly with the proposed approaches. To 
reduce the feature dimensionality we can eliminate ineffective regions and use feature 
reduction methods like PCA. 
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Abstract

We investigate the decoding delay performance of a communication network in
which a single source is transmitting data packets to a single receiver via multiple
routers. Network coding is applied to all data packets at the source at each
transmission opportunity. Receiver receives network coded packets from routers
and decodes them. We define the delay as the time between arrival of a data
packet at the source and decoding of all the packets served in the busy period
of the source queue starting from the arrival of that data packet. We show that
the delay can be expressed in closed-form.

1 Introduction

In modern communication networks, data packets are transmitted from the gateway
to user equipments via base stations. In principle, each base station is responsible of
transmitting data packets to users that are present in its coverage. In practice, there
are many areas that are covered by multiple base stations. Depending on channel
conditions, it may be more viable for the user equipment to receive data packets from
di↵erent base stations at di↵erent transmission opportunities. At some occasions, it is
possible that same data packets are requested by multiple users. Then, we can come
up with an alternative way of transmitting data packets to these users as in [1], [2], [3].
In these works, it is shown that sending random linear combinations of all data packets
is another way of transmitting all data packets and this alternative data transmission
scheme is called network coding.
The system consists of a single source transmitting data packets to a single receiver
via multiple routers. The source refers to gateway, routers refer to base stations and
receiver refers to user equipment. New data packets arrive at the source according
to a Poisson process. The intermediate network consists of two routers that receive
packets from the source and forward these to the receiver. The source and the routers
have exponential service rates. The source transmits network coded packets through
the network. In particular, at each transmission opportunity, the source transmits
a random linear combination over all data packets that are present at the source at
that time. Each network coded packet is then transmitted to one of the routers with
probabilistic routing. Once a network coded packet is transmitted to one of the routers,
the source drops the data packet that is located at the head of the queue as proposed
in [4], [5], [6].
As the receiver obtains network coded packets from multiple routers, it is necessary to
decode these network coded packets in order to retrieve the data packets. Decoding
is only possible when the number of network coded packets is at least equal to the
number of data packets involved in the received linear combinations. We show that
once the source queue becomes empty and all network coded packets that have been
generated so far have been received by the receiver, it decodes all these network coded
packets and retrieve data packets.
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Figure 1: Queueing network for the system.

This work mainly focuses on analyzing the delay where the delay is defined as the time
between arrival of a data packet at the source and decoding of all the packets served
in the busy period of the source queue starting from the arrival of that data packet.
Note that even though sending network coded packets do not save any resource over
sending data packets for unicast transmissions, it is still useful to analyze the delay for
the unicast system in order to prepare a baseline for future research.

2 Model and Problem Statement

We define the source and the routers as independent M/M/1 queues. Data packets
arrive at the source according to a Poisson process with rate �. The source queue is
called Queue 1 (Q1) and has an exponential service rate µ1. At each transmission
opportunity, network coding is applied to all data packets at the source, namely each
data packet that is present at the source at that transmission opportunity is multiplied
with a random coe�cient and the sum of them forms a network coded packet. Then
the network coded packet is routed to one of the two routers called Queue 2 (Q2) and
Queue 3 (Q3) with probabilistic routing with parameter p. Namely, the network coded
packet that is ready to be transmitted from the source is routed to Q2 with probability
p, and to Q3 with probability 1 � p. The system is shown in Figure 1.
As the routers transmit network coded packets to the receiver, the receiver must decode
these network coded packets in order to retrieve the data packets. Q2 and Q3 have
exponential service rates µ2 and µ3 respectively. The receiver can decode the data
packets when it receives as many network coded packets as at least equal to the number
of data packets involved in the received linear combinations. Once a network coded
packet is transmitted to one of the routers, the source drops the data packet that
is located at the head of the queue. Then, when the source queue becomes empty
and all network coded packets that have been generated so far have been received by
the receiver, this condition is satisfied. We assume that all linear combinations that
have been generated are independent. Probability of receiving identical network coded
packets is neglected. This probability can be made arbitrarily small by making the
field size over which network coding is performed su�ciently large. In this work, the
delay which is defined as the time between arrival of a data packet at the source and
decoding of all the packets served in the busy period of the source queue starting from
the arrival of that data packet is analyzed.

3 Preliminaries

At this section, we will list the specifications and necessary tools that we will use to
analyze the system that is the shown in Figure 1. The source and the routers form a
Jackson network. From the tra�c equations of the Jackson network, it follows from [7]
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that arrival rates to the routers are �2 = p� and �3 = (1 � p)�. We denote ⇢1 = �/µ1,
⇢2 = p�/µ2 and ⇢3 = (1 � p)�/µ3. Throughout the paper, we assume ⇢1 < 1, ⇢2 < 1
and ⇢3 < 1 for stability.

Lemma 1. It follows directly from [7] that equilibrium distribution of the system is
defined as

⇡(n1, n2, n3) =
3
Y

i=1

(1 � ⇢i)⇢
n
i

i

where n1, n2 and n3 are the number of packets located at Q1, Q2 and Q3 respectively.

Based on the proposed performance parameter, we need to define the probability of
a departure from Q1 when n1 = 1 so that Q1 becomes empty after this departure and
then the receiver can decode the packets that it has received from the source in Q1’s last
busy period. In order to do so, we need to define Palm probabilities. Palm probability
is used on defining a specific transition by characterizing the past and future of a
Continuous Time Markov Chain (CTMC) at such a transition. The issue deals with
how to evaluate any probability for a CTMC conditioned that a specific transition
occurs. Since the occurrence of any specific transition at any time has probability
0, conventional conditional probabilities cannot be used. Instead these conditional
probabilities must be formulated as Palm probabilities. Then, the Palm probability
of a stationary CTMC conditioned that a specific transition occurs at any time is the
ratio of the expected number of that specific transition at which that specific transition
occurs in a fixed time interval divided by the expected number of all possible transitions
in the interval.

Theorem 1. Palm probability PH(C) of event C given that H occurs for an M/M/1
queue follows directly from [8] as:

PH(C) =

P

(n,n0)2C ⇡(n)q(n, n0)
P

(n,n0)2H ⇡(n)q(n, n0)
, C ✓ H

where n is the current state, n0 is the next state, ⇡(n) is the equilibrium distribution
and q(n, n0) is the transition rate.

4 Analysis

The system can be defined as a three dimensional Markov chain with state space
S = (n1, n2, n3) where each non-negative value corresponds to number of customers
in Q1, Q2 and Q3 respectively. Q1, Q2 and Q3 become busy and idle sequentially
as shown in Figure 2. Transitions between these states are the crucial moments as
specified earlier. At time A1, busy period of Q1 started. At B1, last packet is served
from Q1 and it becomes empty again. Hence, B1 �A1 is a busy period duration for Q1.
At B1, all coded packets that have been served in the busy period [A1, B1] are routed
to Q2 and Q3. Then, Q2 becomes empty for the first time after Q1 finishes its busy
period at B0

2 and Q3 becomes empty at B00
1 . Hence, we define two time parameters

defined as T2 = B0
2 � B1 and T3 = B00

1 � B1. When Q1 finishes its busy period, Q2
becomes empty after T2 and Q3 becomes empty after T3. To conclude, the receiver
can decode all packets served in [A1, B1] in Tdec = B1 � A1 + max{T2, T3}. Once the
distribution of the number of packets at Q2 and Q3 is known at the end of the busy
period of Q1, we can find the maximum of T2 and T3.
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Figure 2: Timeline for the system.

Lemma 2. The distribution of the number of packets at Q2 and Q3 at the end of the
busy period of Q1 is equal to

P (N2 = n2, N3 = n3|N1 ! 0) =

8

<

:

R
�

p⇢n2

�1
2 ⇢n3

3 + (1 � p)⇢n2

2 ⇢n3

�1
3

�

if n2 � 1, n3 � 1
Rp⇢n2

�1
2 if n2 � 1, n3 = 0

R(1 � p)⇢n3

�1
3 if n2 = 0, n3 � 1

(1)
where R = (1 � ⇢2)(1 � ⇢3).

Proof. We will use Theorem 1 here. We define the event C as one packet from the
source is transmitted to one of the two routers when n1 = 1 and the event H as all
possible transitions from Q1 when n1 = 1.
For n2 � 1, n3 � 1,

P (N2 = n2, N3 = n3|N1 ! 0) =
⇡(1, n2 � 1, n3)pµ1

P1
j=0

P1
k=0 ⇡(1, j, k)µ1

+
⇡(1, n2, n3 � 1)(1 � p)µ1
P1

j=0

P1
k=0 ⇡(1, j, k)µ1

=
⇢1⇢

n
2

�1
2 ⇢n3

3 p
P1

j=0

P1
k=0 ⇢1⇢

j
2⇢

k
3

+
⇢1⇢

n
2

2 ⇢n3

�1
3 (1 � p)

P1
j=0

P1
k=0 ⇢1⇢

j
2⇢

k
3

=
⇢n2

�1
2 ⇢n3

3 p
1

1�⇢
2

1
1�⇢

3

+
⇢n2

2 ⇢n3

�1
3 (1 � p)
1

1�⇢
2

1
1�⇢

3

= R
�

p⇢n2

�1
2 ⇢n3

3 + (1 � p)⇢n2

2 ⇢n3

�1
3

�

.

For n2 � 1, n3 = 0,

P (N2 = n2, N3 = 0|N1 ! 0) =
⇡(1, n2 � 1, 0)pµ1

P1
j=0

P1
k=0 ⇡(1, j, k)µ1

=
p⇢1⇢

n
2

�1
2

P1
j=0

P1
k=0 ⇢1⇢

j
2⇢

k
3
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=
p⇢n2

�1
2

1
1�⇢

2

1
1�⇢

3

= Rp⇢n2

�1
2 .

And similarly, for n2 = 0, n3 � 1,

P (N2 = 0, N3 = n3|N1 ! 0) = R(1 � p)⇢n3

�1
3 .

Theorem 2. We know that for each queue every single service time is exponentially
distributed and service times between n occurrences are Erlang-distributed with the
number of packets n, rate parameter �Er with mean µEr = n/�Er and cdf

F (t) = 1 �
n�1
X

j=0

(�Ert)j

j!
e��

Er

t, t � 0.

We have T2 s Er{n2} and T3 s Er{n3} where n2 and n3 are number of customers
at any moment in Q2 and Q3 respectively. We need to determine the expected value
of Tmax = max{T2, T3}.

Lemma 3. We have

E[Tmax] =
p (µ2 + (1 � p)�)

µ2 (µ2 � p�)
+

(1 � p) (µ3 + p�)

µ3 (µ3 � (1 � p)�)
� p(1 � p)�(µ2 + µ3)

µ2µ3(µ2 + µ3 � �)
.

Proof.

E[Tmax] = E [E[Tmax|N2, N3]]

= E [E[max{T2, T3}|N2, N3]

=
1
X

n
2

=0

1
X

n
3

=0

E[max{T2, T3}|N2 = n2, N3 = n3]P (N2 = n2, N3 = n3|N1 ! 0)

=
1
X

n
2

=1

pR⇢n2

�1
2

Z 1

0

P (T2 > m)dm

| {z }

S
1

+
1
X

n
3

=1

(1 � p)R⇢n3

�1
3

Z 1

0

P (T3 > m)dm

| {z }

S
2

+
1
X
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2

=1

1
X

n
3

=1

R
�

p⇢n2

�1
2 ⇢n3

3 + (1 � p)⇢n2

2 ⇢n3

�1
3

�

Z 1

0

P (T2 > m)dm

| {z }

S
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+
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X
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1
X
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3

=1

R
�

p⇢n2

�1
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3

�

Z 1
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1
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We split (2) into 5 pieces and compute these terms separately. We start with computing
S1 as follows

S1 =
1
X

n
2

=1

pR⇢n2

�1
2

Z 1

0

P (T2 > m)dm

=
1
X

n
2

=1

pR⇢n2

�1
2

Z 1

0

"

n
2

�1
X

i=0

1

i1!
e�µ

2

m(µ2m)i
#

dm

=
1
X

n
2

=1

pR⇢n2

�1
2

n
2

�1
X

i=0

1

i1!



Z 1

0

e�µ
2

m(µ2m)i
�

dm

=
1
X

n
2

=1

pR⇢n2

�1
2

n
2

�1
X

i=0

1

µ2

=
1
X

n
2

=1

pR⇢n2

�1
2

n2

µ2

=
p(1 � ⇢3)

µ2(1 � ⇢2)
.
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Then we use (2) to compute E[Tmax] as follows

E[Tmax] = S1 + S2 + S3 + S4 � S5

=
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Now we are ready to state the main result.

Theorem 3. The total expected delay for the time that is needed to decode all the
packets served in a single busy period of Q1 is equal to

E[Tdec] =
1
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+

p (µ2 + (1 � p)�)

µ2 (µ2 � p�)
+
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µ2µ3(µ2 + µ3 � �)
.

Proof. All packets served in a busy period of Q1 will certainly be decoded in E[Tdec]
which is computed as follows:

E[Tdec] = E[BPQ1] + E[Tmax]

=
1

µ1 � �
+

p (µ2 + (1 � p)�)

µ2 (µ2 � p�)
+

(1 � p) (µ3 + p�)

µ3 (µ3 � (1 � p)�)
� p(1 � p)�(µ2 + µ3)

µ2µ3(µ2 + µ3 � �)
.

For � = 1, µ1 = 4, µ2 = 2, µ3 = 0.5, expected delay vs. probabilistic routing
parameter p graph is shown in Figure 3. Delay can be computed only for the case
when all queues are stable and it is infinity otherwise. For this specific example, Q3
has a lower service rate. Q3 receives more packets as p decreases. When (1�p)� > µ3,
Q3 is not stable anymore and the queue is exploded. This means that receiver will not
be able to decode data packets. As p increases, Q2 starts receiving more packets and
delay decreases since Q3 has a lower service rate compared to Q2.

5 Discussion & Conclusion

In this work, we have presented a network scenario containing a source transmitting
network coded packets via multiple routers to a receiver. The receiver must receive
enough number of packets to decode network coded packets and retrieve data packets.
We define the delay as the time between arrival of a data packet at the source and
decoding of all the packets served in the busy period of the source queue starting from
the arrival of that data packet. We show that for the proposed network scenario, the
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Figure 3: Expected delay vs. p for � = 1, µ1 = 4, µ2 = 2, µ3 = 0.5.

delay can be expressed in closed-form. In practice, as the service rates of the routers
change due to channel conditions, it is possible to minimize the delay by changing the
probabilistic routing parameter p.
Even though sending network coded packets do not save any resources over sending
data packets for unicast transmission scenarios, it is still useful to analyze the delay
for the unicast system in order to prepare a baseline for future research. Various
systems with di↵erent network coding techniques and comparisons between coded and
non-coded systems will be analyzed in the future.
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Abstract

Detecting pain in infants is of vital importance in healthcare. This work investi-
gates two di↵erent systems for automated continuous facial analysis for detection
of stress and pain in infants. The first system uses an Active Appearance Model
(AAM) and a three-class SVM classifier. The second system detects three Re-
gions Of Interest (ROI), aiming at detecting the presence of the brow bulge, eye
squeeze and the nasolabial furrow. For this system, the resulting pain/stress
level is detected with an accuracy of 67%. The second system follows directly
the PIPP pain scale form and is able to detect the facial regions, even with oc-
clusions like feeding tubes. The first (AAM-based) system is not able to handle
occlusions, but has an accuracy of 92%, classifying the facial expressions into
comfort, discomfort and the Primal Face of Pain (PFP).

1 Introduction

Infants cannot communicate verbally and are therefore unable to report about their
discomfort and pain. Frequent and long-term pain can cause severe complications, such
as a delay in development or a change in the nervous system. Therefore, continuous
monitoring of infants for possible signs of pain and discomfort is necessary.

Research on detection of acute pain in infants by analyzing the facial expressions
is reported in [1] and [2]. However, these studies do not automatically find the face
and do not exploit the properties of a video sequence but use photographs, on which
the user has to manually indicate the region of interest. Another study focuses on
discomfort detection for infants or small children [3]. Unfortunately, the method in
this study is only tested for discomfort and not for acute pain. Furthermore, the face
detection in this study is not always robust [3].

Many challenges arise when developing an automated pain detection system for
infants. The systems available for adults ([4] [5]) cannot be used because these systems
are trained on adults and the image frames only show the face without any other
objects near the face such as hands, pacifiers or toys. The reported systems also need
specific features like eyebrows or pupils to be present, which is not always the case for
infants. Infants often do not have visible eyebrows and have their eyes closed, which
makes the eyes and face harder to detect. This means that the system needs to be
trained and designed specifically for infants in order to work properly.

This study contributes in several ways. We show that it is possible to create an
automated pain and stress detection system for infants, adopting information from
the PFP. Also, we are the first to translate a part of a clinical pain scale form, the
Premature Infant Pain Profile (PIPP) [6], to a computer system and we select features
that are able to extract necessary information from the face or from specific parts of
the face.

In this paper, we present and discuss two novel systems for pain detection. The
AAM-based system of earlier work [3] is extended to detect the PFP as a whole,
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Figure 1: Primal Face of Pain.

while a second ROI-based system detects individual facial expressions according to the
PIPP pain scale and combines those to obtain the intensity of the pain. Both systems
automatically find the face and the position of the eyes and mouth, even with closed
eyes, and analyze the facial expression with respect to pain and stress.

This paper contains the following sections. Section 2 explains and discusses the
design of our systems. The performed experiments and the comparison of the two
systems are shown in Section 3. Section 4 contains the overall conclusions and a
discussion of possible future work.

2 Methodology

2.1 Face detection

Both systems apply the same face detection algorithm, which is explained first. Face
detection is an important part of an automatic pain recognition system. First, the
position of the face is detected. After this, the eye and mouth positions are identified
inside the face area. To find the eye and mouth positions, we use the method of
Fotiadou et al. [3]. The face detection technique combines the Gaussian skin detector
with a Viola-Jones algorithm. If a face is found with the Viola-Jones algorithm and its
color does not coincide with the skin-color region, the face is discarded. This reduces
false positives of the Viola-Jones algorithm.

2.2 AAM-based system

The AAM-based system aims to split facial expressions into three groups: normal,
stress and the primal face of pain. The block scheme of this system is shown in Figure
2a. This system consists of three parts: the face detection/tracking, feature extraction
and classification. We address these parts briefly.

2.2.1 Face detection/tracking

For the AAM-based system, the tracking of the face is achieved using an AAM (Active
Appearance Model) [4]. During a training phase, a statistical model of the object
shape and the appearance is created. For each new infant, this training phase has to
be repeated and the landmark points have to be manually annotated for the di↵erent
facial positions. This AAM face tracking method is also used for infant discomfort
detection in [3] with the exception of the initialization, where the eye and mouth
positions are found as described in the previous section.

51



(a) AAM-based system. (b) ROI-based system.
Figure 2: Proposed pain detection systems.

2.2.2 Feature extraction/classification

For feature extraction, we apply the same features as investigated and explained in
[3]. The first feature is the similarity-normalized shape obtained from the AAM algo-
rithm. The second feature consists of Elongated Local Binary Patterns (ELBP) with
similarity-normalized appearance. The third feature also uses ELBP, but here the
canonical-normalized appearance is used.

Using these features, a 3-class SVM classifier is generated with the following classes:
comfort, discomfort and the Primal Face of Pain (PFP). If the input features are
calculated, a one-versus-all SVM classifier (first step) is applied, in order to distinguish
comfort from pain and stress. The images that do not belong to the comfort class are
inserted to the next SVM classifier (second step) which distinguishes discomfort from
the PFP. For both steps, all three features are used. Each feature is trained with an
individual SVM classifier and the outputs of these classifiers are combined.

2.3 ROI-based system

In order to create the ROI-based system, we have analyzed several pain scale methods
in the hospital. The PIPP scale form [6], used to find pain in neonates and small infants,
is of high interest for our research because every parameter of this scale can be observed
by the monitor, or is visible in the facial expressions. Our ROI-based system interprets
several PIPP scale form parameters by means of video analysis. These parameters
are the brow bulge, eye squeeze and the nasolabial furrow. This system is shown in
Figure 2b.

2.3.1 Facial region extraction

To interpret the facial analysis part of the PIPP score, three di↵erent facial actions
have to be recognized. Corresponding parts are called the Regions Of Interest (ROI).
To extract the ROI, we start with the eye and mouth positions and the detected face.
Firstly, the face has to be rotated using the positions of the eyes. Now we calculate
the distance between the eyes Deyes in the x direction and the distance between the
eyes and mouth De/m in the y direction. We employ this information to calculate the
upper and lower borders of the brow bulge area using the relation

bbup = Peye,y � De/m

↵
, (1)

for the upper border, where the scaling parameter ↵ is determined empirically and
with Peye,y being the position of the eyes in the y direction. For the lower border of
the brow bulge, we add the upper and lower borders of the eye area, devide them by
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2 and substract Peye,y with the resulting value. For the left and right borders of the
brow bulge area, we define the same borders as used for the eye area.

For the upper bound of the eye area, we specify that

eyeup = Peye,y � De/m

�
�  � (

Peye,y � D
e/m

� �  � bbup

�
) (2)

with Peye,y denoting the position of the eyes in the y direction,  a number of pixels
which have to be determined experimentally and � and � scaling parameters which
have to be evaluated empirically. For the lower bound of the eye, we define

eyedown = Peye,y +
De/m

�
. (3)

For the left border, we specify

eyeleft = PeyeL,x � Deyes

2
, (4)

where PeyeL,x defines the positions of the left eye in the x direction. For the right
border, we use the same equation but with a positive sign and the position of the right
eye.

The eyes are split into the left and right eye using the middle point of the mouth.
This point is calculated as follows. We first compute the area where the mouth is
located based on the previously computed mouth point. For the upper or lower border,
we subtract or add De/m/� to the y position of the mouth. Parameter � denotes a scaling
value, which is determined empirically. For the left and right border, we subtract or add
De/m/↵ to the x position of the mouth. From this region, the saturation is calculated
and thresholded to find mouth points. The middle of the mouth is found by taking the
mean of all mouth points.

The nasolabial furrow area uses the bottom border of the eyes as upper border and
the middle of the mouth in y direction as lower border. The left and right border of
the nasolabial furrow region NFz is then calculated by

NFz = eyez
3

4
+ mouthx

1

4
, (5)

with z referring to either left or right and mouthx representing the middle of the mouth
in the x direction.

For each region, di↵erent features are evaluated (but not discussed here) to select
the best performing feature and are used as an input for the SVM classification. In
the sequel, we only elaborate on the best feature for each region.

2.3.2 Detecting the ROIs

First, we detect the presence of the brow bulge. In Figure 3b and 3a, an example
is shown of the brow bulge region, both with and without the presence of the corre-
sponding facial expression. When the brow bulge appears, the texture between the
eyes changes. Therefore, we describe this ROI with HOG features. Prior to feature
extraction, a 5⇥5 median filter is applied, so that the image is optimally pre-processed
for further analysis.
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(a) Brow bulge not
present

(b) Brow bulge
present

(c) Eye squeeze not
present

(d) Eye squeeze
present

(e) Nasolabial furrow
not present

(f) Nasolabial fur-
row present

Figure 3: Examples of facial actions

The second ROI, the eye squeeze, is the most di�cult facial expression to detect.
An example of an eye with and without eye squeeze is shown in Figure 3d and 3c. In
order to facilitate the detection, we first consider if the eye is open or closed using HOG
features. If the eye is detected as a closed eye, HOG and ELBP features are extracted to
determine the presence of the eye squeeze. We concentrate on HOG and ELBP because
HOG gives texture information and the eyes have an elliptic shape which corresponds
to the ELBP neighborhood. For both features, separate SVM classifiers are trained
which are combined using a simple summation.

Lastly, we analyze the nasolabial furrow. When present, two lines between the nose
and the corners of the mouth appear, as shown in Figure 3f. HOG features are applied
to the total nasolabial furrow region.

2.3.3 Scoring of ROIs

In this part, we show how the di↵erent facial sections are combined in a score from 1
to 3 with 1 being minimal pain or stress and 3 being maximal pain or stress. We first
analyze the separate regions for presence of a facial action for 30 seconds. After this,
we score the separate sections from 0 to 3. If the facial action occurs less than 10%
of the time, we score a 0, less than 40% yields a score of 1, less than 70% a score of 2
and if the facial action is present for 70% or more, the score is 3. We now have three
scores and add them to obtain a score from 0 to 9. This is equal to the extraction
of facial action scores in the PIPP pain scale form. Finally, the score is assigned to
an interval corresponding with the strength of the facial expression. For example, the
first strength level corresponds to a score between 0 and 2, the second level to a score
between 3 and 6 and the third strength level to a score between 7 and 9.

3 Experimental results for both systems

3.1 Database

For testing, a database is created using videos recorded at the Maxima Medical Cen-
ter (MMC) in Veldhoven. Videos are recorded of the faces of infants, experiencing
pain from an invasive procedure (prick) or from post-operative pain. Videos are also
captured of the same infants in a relaxed state. For additional information about the
di↵erence between stress and pain, infants who experience stress but no pain, are also
recorded. The age of the 50 recorded infants ranges between 2 days and 17 months.
Out of the 50 infants, 31 experience a painful stimulus. Our database consists of 177

54



videos with a frame rate of 30 frames per second and a spatial resolution of 1280⇥ 720
pixels. For training, we also apply the database obtained from and used by E. Fotiadou
[3]. All tests are performed using Matlab on a 2.5-GHz dual-core processor.

3.2 AAM-based system performance

In this section, we discuss the performance of the AAM-based system. Face detection
is discussed first, after this, the classification performance is shown.

3.2.1 Face detection

Here, face detection is examined based on the combination of Viola-Jones with skin
color. A face is considered to be successfully detected if the AAM algorithm is able
to track it correctly. The Viola-Jones algorithm consists of 10 stages with a false
alarm rate of 0.3 and is trained using 352 images of 28 di↵erent infants. For detection
performance testing, 20 videos from 8 di↵erent infants with a total of 17,132 frames
are used. The combination with Viola Jones can correctly track 61.6% of the frames.
This is higher than when using the skin color method only, where 40.1% of the frames
would be tracked correctly.

3.2.2 Classification

The performance of the 3-class SVM classifier system is analyzed. For training, 24 videos
of 16 infants with 12,552 correctly tracked frames are used, all showing one or more
states in one video. Of these videos, 22 show comfort, 17 show stress and 12 of the
movies have images with the PFP. Testing is performed on the same infants using
leave-one-out cross validation. The accuracy of this system is 91.9%, the specificity is
94.3% and the sensitivity is 68.4%.

3.3 ROI-based system performance

In this section, we discuss the performance of the ROI-based system in a similar way
as the AAM-based system. However, specific tests for infants with occlusions are
performed and results are shown.

3.3.1 Face detection

Here we present the performance of the face detection using the ROI-based system.
For the parameters mentioned in the equations from Section 2.3.1, we have determined
the following optimal parameter settings: ↵ = 1.2, � = 5, � = 3,  = 8 and � = 4. In
the system, a frame can only be used if the Viola-Jones algorithm is able to identify a
face. A face is detected properly if all three regions shown in Section 2.3.1 are detected
correctly. We use visual inspection to determine the percentage of correctly tracked
frames. From the 400 tested frames, 77.5% are found correctly and 11% false positives
occur.

3.3.2 Classification

The performances of the three facial region detectors are investigated for di↵erent
features. For the experiments concerning the separate regions, 400 clearly di↵erent
test samples are used. First, we evaluate the performance of detecting the brow bulge
using the optimal brow bulge size, as shown in Section 2.2.2. The accuracy of the brow
bulge detection is 73.3%. The eye squeeze is detected with an accuracy of 76.5%. The
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Table 1: Performance of the ROI-based system

Accuracy Sensitivity Specificity
Nurse and non-medical scores compared 91.7% 85.7% 100%
System using nurse scores as ground truth 56.0% 53.9% 83.3%
System using non-medical scores as ground truth 64.0% 63.6% 85.7%
Modified system using nurse scores as ground truth 62.5% 57.1% 90.0%
Modified system using non-medical scores as ground
truth

66.7% 66.7% 91.7%

last facial region is the nasolabial furrow. This ROI performs best with an accuracy of
87.0%.

Table 1 presents the performance of the total ROI-based system as shown in Fig-
ure 2b, using 26 unaltered videos of 30 seconds from 9 di↵erent infants. For ground
truth, we have used scores from a healthcare professional and from a non-medical, but
algorithm expert who looked at the video frames separately.

The nasolabial furrow detection has the highest performance. Therefore, we give
this region a two times higher weight. We call this approach the modified system. The
modified system o↵ers an accuracy of 66.7%. The brow bulge region analysis leads
to the lowest performance. The infants and lighting conditions di↵er and this causes
changes in the texture of the brow bulge. By manually splitting the infants into three
groups, based on lighting conditions and appearance of the infant, the overall accuracy
is improved to 73.9%.

3.3.3 Occlusions

In order to apply a pain detection system in a clinical setting, occlusions such as
hands, pacifiers and breathing tubes have to be dealt with. In majority, we focus on
infants with feeding tubes. Frames from 5 di↵erent infants are used with a total of
1,394 frames and the infants vary in gestational age from 34 to 37 weeks. The system
performs best for infants with open eyes (81.8% correctly tracked) and with the feeding
tube between the eyes (59.4% correctly tracked). If the eyes are closed, the system has
a low tracking score (16.0% correctly tracked). Furthermore, the system performs best
when the infant is seen in frontal view. Moreover, as expected, the lighting conditions
have a clear impact on the image quality and thus on the detection performance.

3.4 Comparison of ROI- and AAM-based systems

In this section, we compare the performance of the two systems, using the combination
of skin color and Viola-Jones for face detection. We first look at the percentage of
correctly tracked frames. For the AAM system, this means that the AAM mask is
created correctly. For the ROI system, it means that all regions are correctly detected.
Both systems are tested using 1,100 frames from 9 di↵erent infants. From this set,
the ROI system is able to find 77.5% of the frames while the AAM-based system finds
71.0% of the frames.

When comparing the performance of the pain/stress classification, we see that the
accuracy of the AAM-based system is 25.3% higher than the accuracy of the ROI-
based system but it cannot handle occlusions. We note that the ROI-based system
currently includes only the facial expression analysis, which is only a fraction of the
PIPP Parameters. This enables further improvement, which is addressed below.
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4 Conclusions and discussion

In this paper, we have presented two innovative systems for stress and pain detection
for infants, which are capable to automatically detect facial expressions belonging to
pain. The proposed algorithms and the results bring us closer to the objective of
continuous and fully automatic monitoring of facial expressions of infants for possible
signs of pain.

The two investigated systems are an AAM-based system using the conventional
AAM model with ELBP features, and a ROI-based system exploiting individual facial
expression in a direct way. The ROI-based system is able to handle occlusions such
as hands near the face, feeding tubes and pacifiers. The three strength levels of the
facial expressions are detected with an accuracy of 66.7%. In contrast, the AAM-based
system is not able to handle occlusions but detects the Primal Face of Pain with an
accuracy of 91.7%. This makes the AAM-based system better for pain classification
provided that occlusions are absent. While the AAM-based model has a high accu-
racy for pain detection, the system requires a tedious manual annotation of the AAM
shape parameters for each head position and various lighting conditions. This infant-
dependent AAM model is therefore less desirable for an application in a clinical setting.
The ROI-based model is a better choice here because it is designed to be completely
infant-independent.

Although its lower score, the ROI-based system can still be further improved when
the classification of the separate regions is optimized. For example, it is possible to split
the infant videos in smaller groups based on age or lighting conditions, or changing and
optimizing the input features or classification algorithm. An alternative for improving
the pain detection is to include other parameters from the PIPP pain scale form to the
ROI-based system. We can also convert the whole PIPP scale form to an unobtrusive
automated monitoring system, which continuously checks the facial expressions, heart
rate and oxygen saturation for signs of pain.
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Abstract

In this paper, we review an unconditionally secure quantum authentication scheme
for authenticating a classical message in the presence of an online, semi-trusted
arbiter. This scheme is classified as a quantum protocol among two distrustful
parties. The scheme respects the non-repudiation property (by both sender and
receiver), is secure against a malicious receiver and o↵ers dispute resolution. We
present an analysis of the scheme and propose an amelioration for it by empha-
sizing on the issue of reusing the shared keys.

1 Introduction

Authentication of information is of vital concern in several applications of information
exchange. The receiver of a message must be able to verify that it was deliberately
created by the sender and that it has not been substituted or altered during transmis-
sion. Authentication schemes o↵er a solution to this problem, but when they are based
on symmetric key principles, and the transmitter and receiver do not trust each other,
we need an authentication scheme with arbitration. In such schemes, a trusted third
party called an arbiter can help resolve disputes between the sender and the receiver.
Moreover, the scheme must provide a solution in case the third party wants to deceive
either the transmitter or receiver.

Unconditionally secure authentication schemes with an arbiter have been proposed
in the literature (e.g., [1, 2]) and this idea was extended in the context of quantum au-
thentication [3]. Compared to other arbitrated quantum schemes, the scheme respects
the non-repudiation property (by both sender and receiver) and is also secure against a
malicious receiver. Moreover, the arbitrator is not an inline-party (in contrast to other
arbitrated quantum schemes).

Unconditionally secure authentication schemes are secure against any adversary,
on the condition that the participants keep their shared keys completely secret. Such
schemes (of classical and quantum nature) normally have a high demand for fresh secret
key material, but in this scheme, this requirement is not needed.

Objectives of the paper. In this paper, we describe the set-up phase from the
scheme from [3], and analyze the issue of reusing the shared keys. Details on ap-
propriate hash functions will be given. We use di↵erent hash functions for each pair
of participants, together with quantum encryption. We compare the scheme with the
unconditionally secure authentication schemes from Wegman-Carter [4] and from Bras-
sard [5], both intended for classical authentication without the help of an arbitrator.

Paper outline. The paper is organized as follows. In section 2, we give a brief
description of the model of authentication with arbitration, and an informal description
of the quantum authentication scheme with arbitration from [3]. We focuss on the set-
up phase from [3] and present its analysis in section 3. Finally, we draw our conclusions
in section 4.
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2 Review of the quantum authentication scheme

2.1 Authentication with arbitration

We introduce the authentication model by given a brief description. The quantum
authentication scheme (see Section 2.2) is based upon the authentication model with
arbitration [2, 6], and translated to the context of quantum cryptography. In this
authentication model, not only attacks from an outsider (opponent) are considered, but
also attacks from the insiders (transmitter, receiver and arbiter). Figure 1 represents
the main components of this model.

Alice Bob

Eve

Trent

Channel

|mi |mi

KAB

KAT KBT

KA

Figure 1: General model of authentication with arbitration

Participants. In this model, we consider four di↵erent participants in the scheme:
Alice the sender (A), Bob the receiver (B) , Trent the arbiter (T ) , and Eve the outside
opponent (E) . The di↵erent parties taking part in the authentication protocol (Alice,
Bob and Trent) are guaranteed to follow the protocol honestly, but are interested in
breaking (some of) the requirements of the scheme. This means that they will try to
learn as much as possible during the execution of the protocol and that they will use
that information later on. Such participants are called honest-but-curious participants.
It is obvious that we do not allow the di↵erent participants to collude with each other.

Keys. Three shared keys are used in this model: the arbitrator will share two secret
keys KAT and KBT with Alice and Bob, respectively. Alice and Bob also share a secret
key KAB, unknown to the arbiter.

The arbiter. Unconditionally secure authentication schemes that permit arbitration
involve an arbiter that possesses some privileged information, i.e., information not
available to one or more of the other participants. He has however no access to the
information shared between Alice and Bob.

The arbiter in this scheme is a trusted party as far as arbitration between the
parties is concerned. However, he may have an interest in breaking some of the other
requirements of the scheme, e.g., impersonating a party. He is thus semi-trusted; this
means that a great trust is placed in the arbiter (e.g., concerning his arbitration), but
that his cheating can be proven (i.e., a verifiable third party [6]).

The arbiter is needed to settle a dispute, but the receiver should be able to verify
the validity of the messages on his own. This requirement means that the arbiter is
not an inline-party, but an on-line party.
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Requirements. The requirements for our scheme are the same as for other authen-
tication schemes with arbitration, more precisely: Verifiability, Unforgeability, Non-
repudiation and Resolution for disputes. The requirement for non-repudiation poses
the biggest problem, because we want this requirement to be respected by both the
sender and the receiver. This means that it should be impossible for Alice to disavow
an authenticated message created by herself. But secondly, we do not allow Bob to
falsely claim that the received message was not authentic. In case such disputes occur
among the participants, the arbiter can resolve the dispute [3].

Attacks. There are di↵erent kind of attacks which are possible in this model and we
refer to [2] for a detailed discussion. We can classify these attacks with respect to the
attacker: security against an external opponent (Eve) and security against a dishonest
participant (the arbiter, Alice or Bob). The attacks can be related to the quantum
nature of the scheme (thus performing quantum attacks), or to the classical parts of
the scheme. An informal security analysis of the scheme from Section 2.2 can be found
in [3].

2.2 Informal description of the scheme

In this section, we give a short description of the arbitrated quantum authentication
scheme from [3]. The problem of authenticating a classical message in the presence of
a semi-trusted arbiter is based upon a non-repudiation technique due to Asokan et al.
[6]. Following this technique, the authentication consists of two parts and they must
be used together in order to create the complete authentication for a certain message.

The scheme consists of four stages: (1) The initialization phase in which Alice, Bob
and Trent obtain the necessary shared keys and agree on two hash functions. Alice will
also construct her hash chain; (2) The setup phase in which a non-repudiation token
for Alice is created; (3) The authentication phase in which Bob receives a message and
wants to verify that the message is authentic; (4) The dispute phase in which Trent is
requested to resolve a dispute between Alice and Bob.

The di↵erent steps in the setup phase and authentication phase are as follows.
Firstly, Alice sends the message and other information to be authenticated together
with a one-time ticket to the arbiter. The arbiter verifies the received information and
computes a non-repudiation token over the received data. This token constitutes the
first part of the authentication. Alice receives the token from the arbiter and produces
her one-time signature (second part of the authentication). Finally, Bob receives the
information from Alice and verifies the correctness of the non-repudiation token. Then,
he verifies the second part of the authentication, i.e., Alice’s one-time signature.

3 Analysis of the scheme

During the initialization phase, all participants agree on two collision resistant one-way
hash functions. Those functions will remain unchanged during the complete execution
of the scheme. In [3], no details were given on the appropriate hash functions. Secondly,
quantum encryption is used whenever a message is sent from one participant to another
in order to hide the quantum information securely. Encoding a message into a quantum
string was done by using the shared keys KAT , KBT and KAB.

In this section, we discuss the hash functions together with the quantum encryption
and propose a method for reusing the shared keys.
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3.1 Universal hashing

Authentication is usually performed by sending a message together with a tag t. Veri-
fication is done by computing the tag of the received message, and comparing it with
the received tag.

We denote M the set of classical messages, T the set of tags and K the set of shared
keys. Let H = {hk : M ! T }k2K be a family of hash functions. From this family, a
hash function is chosen uniformly at random by means of the shared key k 2 K.

The authentication scheme commonly used in Quantum Key Distribution (QKD) is
the Wegman-Carter authentication scheme [4], because it o↵ers information-theoretic
security. The hash function is selected by the shared key from a family of ✏�ASU2

hash functions [8] and for each message, a new hash function will be chosen from this
family. The demand of fresh key material is thus very high.

When several messages must be authenticated, the same hash function can be used
each time, but the tag should be encrypted with a one-time pad (OTP). Alice thus
appends hk

1

(m) � r to her message m, where k1 is used for all messages and r is a
one-time pad. This second scheme uses less key material and is called an authentica-
tion scheme with key recycling. In this case, we use a weaker family of hash functions,
more precisely an ✏�almost XOR universal2 (✏�AXU2) family of hash functions [9].

Even though the second authentication scheme consumes less key material, we still
need a OTP in order to provide information-theoretic security. This requirement is im-
practical due to the need of synchronization between Alice and Bob. Therefore, Bras-
sard [5] proposed a modification to the Wegman-Carter scheme by replacing the OTP
with a pseudo random number generator (PRNG). The seed for this PRNG consists
of a shared secret key between Alice and Bob and Brassard showed that this authen-
tication scheme o↵ers computationally secure authentication. Remark that Brassard’s
scheme uses two secret keys: one key will be used as the seed for the PRNG and the
other key will select a hash function from an ✏�ASU2 family of hash functions. This
hash function remains unchanged during the execution of the protocol.

3.2 Discussion

In this section, we first discuss the choice of the two hash functions as explained in [3]
and then, provide more detailed information on a more suitable choice of the functions.

On the hash chain. During the initialization phase [3], the participants agree on a
one-way, collision resistant hash function: h (·) : {0, 1}⇤ ! {0, 1}n

1 which will be used
by Alice for generating a hash chain (see [3] and [6] for a detailed discussion). The
notation hi

A (·) can be seen as a keyed hash where the known key is the concatenation
of Alice’s identity (IDA or A) together with the counter, i (i = n � 1, n � 2, . . . , 1).

The signer Alice will select a random secret key KA and construct her hash chain,
starting with her secret key as seed: K0

A, K
1
A, K

2
A, . . . , K

t
A, where

K0
A = KA, K

i
A = hi

A (KA) = hA

�

Ki�1
A

�

and t denotes the number of messages Alice wants to authenticate.

The hash function h (·) must be selected at random, but needs to be known to all
participants. The security of the scheme is based on the one-wayness of the chosen hash
function and its collision-resistance, more precisely its second-preimage resistance.

61



On the second hash function. During the initialization phase, the participants also
agree on a second one-way, collision resistant hash function: H (·) : {0, 1}⇤ ! {0, 1}n

2 .
Besides transforming the information into a string of fixed length, the generated hash
indicates if the information sent from one participant to another was received correctly.

We will now elaborate on this second hash function H (·) and explain that it does
not have to be the same function for Alice, Bob and Trent. They can mutually agree
on di↵erent hash functions, only known to two participants each time.

The authentication schemes from Section 3.1 are based on symmetric key principles,
and therefore, they repose on the mutual trust between the participants. Since we
consider an authentication scheme for mutually distrusting and deceitful parties, we will
adapt the described authentication schemes and include the non-repudiation property.

In the key recycling authentication scheme from Wegman-Carter, the shared key
does not to be renewed for each message, but we still need to use a OTP for each
message (which can be seen as a new key for each message). Therefore, we will use the
authentication scheme from Brassard as starting point.

Assume Alice wants to send a message m to the receiver Bob. First, she needs
to contact Trent with the following information: the data to be authenticated, i.e.,
mp = (IDA, IDB,m, i), and a one-time ticket, Ki

A. This one-time ticket is defined by
the hash function and therefore only known to Alice. mp stands for the public classical
message, which is known to all participants. The di↵erent steps in the set-up phase
are as follows.

1. Alice computes the information she wants to send to the arbiter:

mT = Ki
A||Hk

1

�

IDA, IDB,m, i,Ki
A

�

,

where Hk
1

(·) is taken from a strongly universal family of hash functions. The
key k1 is a shared fixed key between Alice and Trent.

2. Instead of using the XOR operation from Brassard’s authentication scheme, we
encode the classical message mT into a quantum string by using the quantum
encryption for classical messages (see Table 1). Alice and Trent need to agree on
two orthonormal bases and a shared secret key will denote which basis is used
during the encryption. The shared key K, is obtained from the outcome of a
PRNG, where the seed was specified by a shared fixed key k2. Ki and mi

T denote
the i�th bit of the key K and the message mT respectively. For each bit of
the message, mi

T , the quantum state is determined by its value and the value of
the bit Ki. Note that for each bit of the message, another bit from the output
sequence of the PRNG is used and that the key K is completely independent
of the message mT . The key K used for the quantum encryption will thus be
renewed for every message. The length of K must be the same as the length of
the message mT , more precisely n1 + n2.
This means that the key KAT , shared between Alice and Trent, consists of the
concatenation of k1 and k2, i.e., KAT = k1||k2.

mi
T = 0 mi

T = 1
Ki = 0 |0i |1i
Ki = 1 |+i = 1

2
(|0i + |1i) |�i =

1

2
(|0i � |1i)

Table 1: Quantum encryption of classical messages

62



After applying quantum encryption on the message mT , Alice sends the quantum
message |mT i = EK (mT ), together with mp = (IDA, IDB,m, i) to the arbiter. The
classical information is sent through an unauthenticated public channel.

After reception of the quantum and classical information, the arbiter measures the
received qubits |mT i with the bases determined by the outcome of his PRNG and
he obtains m

0
T . The arbiter is interested in the one-time ticket Ki

A and therefore, he
computes Hk

1

(IDA, IDB,m, i,Ki
A) and verifies that this corresponds to the received

information from Alice.

We now analyze the security of this authentication method. For every message
exchanged between Alice and Trent, the hash function Hk

1

(·) will remain the same,
but the encryption key K will change, according to the sequence of bits generated by
the PRNG. The PRNG used by Alice and Trent is a deterministic (or cryptographic)
PRNG that produces a sequence of bits which distribution is indistinguishable from
the uniform distribution. The security of a PRNG is defined as the hardness to tell
the di↵erence between its pseudo-random sequence output and truly random sequences
(i.e., distinguishing attacks). A subclass of distinguishing attacks consists of state re-
covery attacks. A state recovery attack on a pseudo-random generator is an algorithm
that, given a pseudo-random sequence, recovers the seed [11]. In order to perform such
attacks, the adversary needs to know a subsequence of generated bits from the PRNG
(Direct Cryptanalytic Attack), or he needs to use some knowledge on the PRNG input
(Replayed-input attacks or Known-input attacks). Sometimes, the attacker can even
choose or manipulate the input to the PRNG (Chosen input attacks). Moreover, quan-
tum computing can be used for implementing e�cient algorithms to certain problems
where an e�cient classical algorithm is not known [12].

To attack a PRNG in quantum or probabilistic polynomial time, the adversary
needs to know some information on the sequence of output bits produced by the gener-
ator under attack. In our scheme, the output of the PRNG is hidden by the quantum
encryption. An attacker can perform some attack strategies, e.g., the intercept and
resend attack. The idea is to capture all or a proportion of the states sent by Alice to
Trent, and then prepare new quantum states (based on the measurement outcomes).
The attacker may learn something about the bases she chose by observing Trent’s
reaction.

The problem for Eve is that she can only access the public message mp and the
quantum encoded version of the message mT . By looking at the outcome from her
measurements on the quantum states, she cannot obtain enough information. The
probability that her interfering will not be detected is 75% on each qubit. But if
Trent accepts the message from Alice (intercepted by Eve), Eve doesn’t know if she
selected the correct basis or not. In 25% of the cases, Eve obtained the wrong classical
message outcome, without knowing. In order to verify this, she can try to compute
Hk

1

(IDA, IDB,m, i,Ki
A) and compare her outcome with the corresponding second part

of her intercepted message m0
T . However, Eve doesn’t know the key k1, needed to select

the correct hash function, and she doesn’t know the correct value of Ki
A. Therefore,

she can not verify her intercepted message and be certain of the outcome of the PRNG.
Attacking the PRNG in order to retrieve the secret key k2 is thus impossible.

If Eve wants to attack the authentication method of this round, she can use the
same strategies as for attacking the authentication method of Brassard, which was
proven to be computationally secure. Including quantum encryption of the classical
message will enhance the security of the protocol.

Once the arbiter accepted the received message from Alice, he checks that ht�i
A (Ki

A) =
Kt

A in order to verify if Ki
A was indeed correctly created by Alice. If a message from

Alice containing Ki
A has not been received by him, he considers Ki

A as consumed and
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will update i by i � 1.
As the last step in the set-up phase, Trent sends back a message that links m to

Ki
A such that it can only be verified by Bob, RT . This message is in fact the non-

repudiation token and constitutes the first part of the authentication. Trent creates
a message RT ||Hk

1

(IDA, IDB,m, i,Ki
A, RT ) by using the same hash function Hk

1

(·).
This message is encoded by quantum encryption and sent to Alice. The key used for
this second encryption is a completely di↵erent key than the one for the first encryption.

Alice verifies the received information and retains RT as the first part of her non-
repudiation token to Bob. This concludes the set-up phase.

For the rest of the protocol, we apply the same reasoning leading to a shared fixed
hash function H2 (·) between Alice and Bob. This function will be used for every mes-
sage sent between Alice and Bob. The encryption key, on the other hand, will change
for every message.

Since we use di↵erent hash functions for each pair of participants, and we encode
the classical information by quantum encryption, the scheme o↵ers more security than
the scheme from [3]. The shared keys can be reused, thanks to the construction of
Brassard.

4 Conclusion

In this paper, we reviewed an arbitrated quantum authentication scheme. The scheme
o↵ers authentication of classical messages and does not use entangled states. Just like
classical authentication schemes with arbitration, the scheme satisfies the property of
non-repudiation (by both the sender and receiver). Details on the scheme were given
with an emphasize on the hash functions and the issue of reusing the shared keys.
We compared the scheme with the unconditionally secure authentication schemes from
Wegman-Carter and from Brassard. Since we use di↵erent hash functions for each pair
of participants, and we encode the classical information by quantum encryption, the
scheme o↵ers more security than the analyzed scheme.
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Abstract

Parkinson's disease (PD) is a chronic disorder that is characterized by severe
joint cognitive-motor impairments, which are di�cult to evaluate on a frequent
basis. Home monitoring of PD extends and enhances the diagnosis process and
can lead to better treatment adjustment. In this paper we propose a video
monitoring system that measures the quantity and quality of two clinically rel-
evant motor symptoms. Our system separates the patients silhouette from the
background exploiting the HSV color-space properties. Further, the silhouette
is split into anatomical regions, which enables detection of the upper and lower
limb extremities. Finally, step length and arm-swing angles are measured to
assess Parkinson's disease severity. The experiments show that the system is
able to accurately measure the parameters (found tolerance 2-5%) related to PD
severity. Additionally, the results suggest that the system can be improved by
analyzing the dynamic behavior/patterns of the key parameters.

1 Introduction

Parkinson's disease is a progressive neurodegenerative disorder that has many motor,
as well as non-motor consequences. Amongst the various symptoms, slow movement,
postural instability, tremor and freezing of gait are characteristic to PD [1]. As the
disease progresses, it usually leads to deterioration of the physical functioning. In ad-
vanced disease states, patients with PD are rather dependent on daily home assistance.
Moreover, non-motor symptoms, including sleep disorders like disorder of REM sleep
behavior, cognitive problems and depression, are also frequently reported [2]. Because
of our ageing society, the absolute amount of PD patients is increasing. In addition,
the healthcare costs are 6-7 times higher for PD patients than for matched non-PD
individuals [3] and spending increases with disease severity. These factors have a major
social and financial impact on society.

Treatment with medicine can improve the motor symptoms, but after a few
years most patients experience a wear-o↵ e↵ect [4]. Monitoring clinical performance
of patients on the long term and finding a balanced treatment is di�cult for various
reasons. One of the reasons is the inability to evaluate symptom severity on a frequent
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basis. In the current clinical practice, the patient visits the neurologist once or at
most a few times per year. During these visits, medical treatment is adjusted based on
patients experience and clinical assessment. This method does neither take into account
day-to-day changes in symptoms severity, nor is it able to register changes in di↵erent
moments of the day. Proposed solutions based on wearable accelerometers or pressure-
sensitive mats require proper placement on the body or floor [6]-[8]. Additionally,
maintenance is needed and this can become a burden for the patient. A more elegant
solution is an unobtrusive video-based system. There are several visual monitoring
systems proposed for home surveillance with clinical purpose, but they either monitor
only one component of the human gait [9], or specially colored costumes have to be
worn [10].

In order to solve the current challenges in PD motor symptom assessment,
we are designing an unobtrusive video-based system for PD movement analysis. The
system registers a set of body motion parameters that are clinically relevant and the
movement behavior of body parts is then automatically analyzed according to the
current clinical practice. Our approach aims at considering the quantity and quality
of motor symptoms for later detailed evaluation, which improves the sensitivity for
changes from day-to-day and for changes during di↵erent moments of the day.

In this paper, we present an innovative algorithm that is able to provide
robust measurements of motor symptoms dynamics for PD patients. Section 2 of this
paper explains the details of the processing stages applied to the video sequences and
Section 3 presents our initial experimental results. The conclusions are presented in
Section 4.

2 System for PD patient monitoring

In order to quantify the degree of impairment caused by the PD symptoms, we develop
a system that detects and registers clinically relevant movement parameters. Due to
their biomechanical nature, accurate location of the limbs is necessary. The parameters
we extract are step length and arm-swing angle. We choose these two as a starting step,
because they are associated with disease severity and are also commonly evaluated in
current clinical practice [11]-[13]. Therefore, measuring these parameters properly is
crucial for both aspects.

Figure 1: Diagram of processing steps of the monitoring system, on the left. The input
image to the system is a patient video (first image) which goes through the processing
steps. The output consists of the input video combined with graphic elements indicat-
ing the measurements (last image). Example of the measured parameters (arm-swing
angle and step length), on the right.
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Let us now briefly discuss the video monitoring system in more detail. Our
video analysis algorithm consists of several steps (Figure 1, left). In the first step,
we employ a silhouette extraction technique based on background subtraction. This
separates the human silhouette from the background in the raw images. The back-
ground is obtained by averaging video frames in the beginning of the video, where the
human is not present, and then subtraction is performed in the HSV color space. This
color choice is motivated by the challenges that arise in the home-monitoring scenario.
These challenges include similar colors in the foreground and background, uneven il-
lumination and shadows. For better foreground segmentation, our technique exploits
the ability to independently di↵erentiate between color, saturation and brightness of
the foreground object and background, which are illuminated by the same light source.
These are favorable properties which are specific to the HSV color space [14]. The
di↵erences in each channel are normalized and then summed up to give a grayscale
image. Then, by applying a threshold on the newly formed image, a binary mask is
obtained. Noise and other possible movements of object that are part of the back-
ground also appear in the mask. Therefore, using the a-priori knowledge that video
monitoring is exploited in a home environment and that there is only one human in
the frame, the largest connected component is selected and preserved. Further, the
algorithm verifies the height and orientation of the selected component. If the height
is above a predefined value and the orientation is within the interval between -60 to
+60 degrees with respect to the vertical axis, then the blob is considered to represent
a standing human.

The following step is body-part delineation, where the silhouette is split into
regions of corresponding human anatomy. To achieve this, we apply proportions that
are derived from the height of the silhouette. The proportions are defined according
to the study of Plagenhoef et al. [15], who have determined relationships between the
height of a human and the average length of the other body parts. By applying these
findings, the silhouette is separated into head, shoulders, trunk, thighs and feet regions.

Once the anatomical regions are known, in the next stage several points of
interest are determined. These points are the center of the shoulder region and the
lateral extremities of the trunk and feet regions. The lateral extremities represent the
hands and feet during the walking motion. The center of the shoulder region is later
used as a reference point to draw the angle between the vertical axis and the line that
connects the hand and shoulder. This represents the arm-swing angle. The Euclidian
distance between the two extremities of the feet is expressed in pixels and represents
a measure of the step length. The examples of these measurements are presented in
Figure 1, on the right.

During the angles and distances registration step, these parameter values
are registered in a list from which plots can be drawn for later clinical evaluation.
Additionally, we visualize the detected points of interest and the measured parameters
on the input video. This helps the clinician to have an intuitive view over the measured
parameters and their temporal dynamics.

3 Experimental results

Our initial experiments are performed in an environment with various background
colors, where we record videos of a healthy volunteer. The parameters are evaluated in
two types of scenarios and they are registered only if certain conditions are satisfied.
The obtained data is then compared with the ground truth, by performing a Mean
Absolute Error (MAE) analysis.

The video sequences are captured with an HD Panasonic HC-V720 camera at
50 fps. The room contains background objects that are similar in color to the volunteers
clothes and the volunteer is asked to act and walk naturally in two di↵erent scenarios.
The first scenario assumes the individual is walking into the scene (Figure 2). In this
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case, the registration starts only when the human silhouette is not connected to the edge
of the image and when it is above a predefined height. The height threshold prevents
registration of wrong measurements, as the body proportions change when for e.g. the
individual is bent. In the second scenario, called timed up and go test, the individual is
sitting on a chair in the scene and then he stands up, walks a certain distance within the
scene, comes back and sits in the chair again (Figure 3). This is a standard clinical test
for PD patients in the gait laboratories. The action is usually timed by the clinician
between the moments that the patient stands up at the beginning, and sits down
again at the end. To reproduce this, our algorithm starts timing and registering the
parameters only when the silhouette height is above the predefined threshold, while
it is not connected to the edges of the image. The registered parameters are saved
and then used to obtain diagrams (Figure 4), from which gait patterns can be later
extracted.

Figure 2: System output for three di↵erent moments during monitoring. Example for
walking in the scene scenario with ground truth annotations of: step length (middle)
and arm-swing angle (left).

The camera is positioned such that the walking actions will be captured from
a lateral view, enabling correct detection and registration of the parameters. The field
of view of the camera covers, in this case, an approximate distance of 7 meters. For a
healthy individual, this results in an average of 6 steps, 4 arm swings and the time per
one direction walk is approximately 9 seconds.

To verify the accuracy of our system, the angles and distances are manually
annotated on the video sequence by a human observer at key moments of the human
gait (Figure 5). This is done with the help of Kinovea software, which is a component
from an open source library, commonly used for biomechanical analysis of human body
movement [16]. The annotated values are considered ground truth and further com-
pared with the values from our system, obtained for the same frames. We make use of
the MAE, which gives an indication of how close the measurements are to the ground
truth.

In this set-up, a total of 23 valid step lengths and 10 arm-swing angles have
been registered, for both scenarios. The remaining measurements, during stopping or
turning, are ignored because, for our investigation, these phases of human gait do not
possess any clinical value. The MAE comparison results in mean step-lengths of 241.9
and 240.3 pixels with an MAE of 8.6 and 5.3 pixels, respectively. The arm-swing angles
comparison yields a mean of 39.5 and 33.8 degrees with an MAE of 1.8 degrees, for
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Figure 3: System output for three di↵erent moments during monitoring. Example for
timed up and go scenario with ground truth annotation of: step length (right).

Figure 4: Diagrams of arm-swing angles in degrees (left) and step length in pixels
(right).

both scenarios.

4 Conclusions

In this paper, we have studied a home-monitoring system for PD patients in order to
quantify the degree of impairments caused by PD symptoms. The system is based on
an algorithm that first separates the human silhouette from the background, then splits
the body into anatomical parts and finally measures and registers clinically relevant
parameters. Our monitoring system requires relatively static background environment,
for deriving a mean background image. We have implemented a novel human body
segmentation method that approximates anatomical regions, which are further used to
detect parts of the upper and lower limbs.

The results show good compliance with the ground-truth measurements and
they suggest that the system can objectively measure symptoms in patients with PD
in the home environment. However, several technical challenges arise regarding the
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Figure 5: Examples of ground-truth annotations: step length (left) and arm-swing
angle (right).

possible motion interruptions and irregularities. Example challenges are an interrupted
walk, arm swing due to performing a task in daily routine, walking irregularities or
unequal arm swing. In these situations, analyzing the patterns associated with the
registered parameters will enhance the system. This improvement will allow the reliable
detection and analysis of more complex PD symptoms like arm-swing asymmetries and
freezing of gait, which is left for future work.

This work is only an initial study with positive implications. Our final objec-
tive is to create a monitoring system that can help clinical evaluation of PD symptoms
by bringing a diagnostic tool into the home environment. This will allow to further
refine and balance the decision-making process in the diagnosis and treatment of PD.
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Abstract

Long Term Evolution (LTE) has become one of the main cellular technologies
to cope with the tremendous demand for higher data rates in mobile commu-
nications. Typical LTE base stations are designed to operate continuously at
full power to meet this demand, while the diversity of the network load allows
however a large flexibility in the assignment of resources. Most schedulers are
designed with the goal of having benefits in terms of total throughput or fairness.
Nevertheless, the impact on energy consumption is rarely considered. Therefore,
it is of paramount importance to develop algorithms that allow base stations to
reduce their energy consumption by considering changes in the network load. To
tackle this problem, we propose two new scheduling algorithms that exploit the
users’ channel conditions to reduce the energy consumption. Using a state-of-
the-art base station power model, we show that by serving users at time slots
when they have favorable channel conditions, and delaying transmissions when
they have unfavorable channel conditions, we can use higher modulation and
coding schemes that increase the energy e�ciency of the base station. Still, we
guarantee a minimum QoS by setting a maximum delay time.

1 Introduction

Long Term Evolution (LTE) has become one of the main cellular technologies to cope
with the tremendous demand for higher data rates in mobile communications [1]. For
this purpose, typical LTE base stations are designed to operate continuously at full
power in order to meet the quality-of-service (QoS) of all the potentially connected
users, regardless of the operating conditions. This increases the operational expenses
for the network providers as well as the environmental impact, which has been a growing
concern in the ICT industry in the last years [2, 3].

In cellular networks there is a large variability in the network load due to the
changing number of users connected to the network. Also, the tra�c generated varies
drastically from application to application. This allows the base stations a large flexi-
bility in the assignment of resources.

Most schedulers are designed with the goal of having benefits in terms of total
throughput or fairness. For instance, users that have favorable channel conditions
or stringent QoS requirements are scheduled with higher priority since otherwise the
important performance metrics could be degraded. However, the impact on energy
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consumption is rarely considered. Therefore, it is of paramount importance to develop
algorithms that allow base stations to reduce their energy consumption by considering
changes in the network load without sacrificing the minimum QoS requirements. As
the base station downlink transmissions are amongst the largest contributors of energy
expenditure in cellular networks [4], we focus on the downlink transmissions in this
paper.

To tackle this problem, we propose two new scheduling algorithms that exploit the
users’ channel conditions to reduce the energy consumption. Using a state-of-the-art
base station power model, we show that by serving users at time slots when they have
favorable channel conditions, and delaying transmissions when they have unfavorable
channel conditions, we can use higher modulation and coding schemes that increase
the energy e�ciency of the base station. Still, we guarantee a minimum QoS by setting
a maximum delay time.

Our first proposed algorithm is based on proportional fairness, which favors a high
instantaneous data rate and penalizes a high average data rate. However, the proposed
algorithm penalizes a high average energy consumption instead, hence rewarding energy
e�ciency. The second proposed algorithm considers the period of time that a user has
not been served, hence rewarding users that are able to postpone their transmission.
Both of the proposed algorithms have been evaluated in a LTE standard-compliant
framework and compared against the most well-known scheduling algorithms for LTE.
Simulations show that our proposed algorithms have a lower energy consumption at
the cost of a small degradation in throughput, while guaranteeing minimum QoS con-
straints.

This paper is organized as follows. Section 2 describes the system model including
LTE radio interface characteristics and the baseline and proposed approaches. Section 3
shows the performance evaluation. Finally section 4 draws the conclusions.

2 System Model

2.1 LTE radio interface

In LTE, a physical resource block (PRB) is the minimum resource allocation unit for
a user. It is formed by 12 consecutive subcarriers, or 180 kHz, with a duration of one
time slot (1ms⇤). Each scheduled user is assigned by the base station a transmission
scheme composed of a certain modulation and coding rate. This transmission scheme is
based on the channel quality indicator (CQI) fed back by each user, which is computed
based on measurements of the reference signals (RS) transmitted by the base station
over the whole bandwidth. This value is computed for the whole bandwidth or per
PRB, as assumed in this paper.

Based on the RS, users compute the CQI as the index corresponding to the highest
modulation and coding transmission scheme that supports a block error rate not ex-
ceeding 10%. The CQI is hence a measure of both the signal-to-interference-and-noise
ratio and the receiver capabilities in a certain PRB [1]. The CQI can take one of 15
possible values as described in Table 1 [5]. After receiving the CQIs of all users, the base
station assigns the PRBs to each user with the modulation and coding rate indicated
by the CQI. Although the CQI feedback procedure is standardized, the assignment of
PRBs to users is the manufacturer’s choice of implementation and it is done at each
base station independently.

⇤Although 3GPP defines the duration of a PRB as 0.5ms, the minimum resource allocation unit
for a user is 1ms. Hence, in this paper we assume the duration of a PRB to be 1ms without loss of
generality.
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SINR (dB) CQI Modulation Coding rate for

a 1024 size block

Energy per

information bit (µJ/bit )

-6.937 1 QPSK 78 5.43

-5.148 2 QPSK 120 3.53

-3.181 3 QPSK 193 2.20

-1.253 4 QPSK 308 1.38

0.761 5 QPSK 449 0.95

2.699 6 QPSK 602 0.71

4.694 7 16QAM 378 0.57

6.525 8 16QAM 490 0.44

8.573 9 16QAM 616 0.35

10.366 10 64QAM 466 0.31

12.289 11 64QAM 567 0.26

14.173 12 64QAM 666 0.22

15.887 13 64QAM 772 0.19

17.813 14 64QAM 873 0.17

19.828 15 64QAM 948 0.16

Table 1: SINR and CQI mapping with energy consumption.

2.2 Base station power model

The PRB assignment has an impact on the energy e�ciency of the base station. Intu-
itively, a high modulation order and a large coding rate can transmit more information
bits in each subcarrier, hence minimizing the energy consumed per information bit.
This can be seen in the last column of Table 1 [6].

To compute the energy per information bit, we use the EARTH power model [4, 7],
which is based on the individual power consumption of each of the components forming
the transceiver of a base station. These components are grouped as power amplifier
(PA), radio frequency (RF), baseband processor (BB), digital converter (DC), cooling
system (CO), and main supply (MS). The power consumption of these components
varies according to the network load, the bandwidth, the number of antennas, and the
type of base station: macro, pico, or femto. For a macro base station with 2 transmit
antennas and 10 MHz bandwidth, the power consumption of the di↵erent components
of the base station is as shown in Fig. 1.

One of the main features of this power model is the scalability it provides based
on the network load, which allows to reduce the energy consumption when the base
station is not operating in fully loaded conditions.

2.3 Baseline scheduling algorithms

In this section, we present the most common scheduling algorithms used in cellular
networks. We assume that each PRB can be assigned to a di↵erent user and that the
time slot duration is 1ms.

2.3.1 Round Robin [8]

The PRBs are assigned in a circular fashion without taking into account the users’
channel conditions. Every PRB is assigned to a di↵erent user until all the PRBs are
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Figure 1: Average power consumption of a macro base station with 2 transmit antennas
using 10 MHz bandwidth as a function of the network load [6].

assigned. If more PRBs remain to be scheduled, every user is assigned another PRB,
and so on.

2.3.2 Maximum CQI (Max-CQI) [8]

Each PRB is assigned to the user which reported the highest CQI in each PRB, max-
imizing in this way the total throughput. This means that at time slot t, PRB k is
assigned to the user i that has the highest ratio:

i = arg max rki (t), (1)

where rki (t) is the number of information bits per time slot of user i when using the CQI
computed for PRB k. This value can be obtained from Table 1 using the corresponding
modulation and coding rate.

2.3.3 Proportional fairness (PF)

This scheduling algorithm presented in [9] sacrifices maximum throughput at the cost
of achieving fairness for all the users. With this algorithm, at time slot t, PRB k is
assigned to the user i that has the highest ratio:

i = arg max
rki (t)

(Ri)�i

(t)
, (2)

where Ri represents the average number of information bits of user i from the assign-
ment of PRBs from previous time slots and

�i(t) = msign[(m�1)(rk
i

(t)�rk
i

(t�1))], (3)

where

m =
rki (t) � rki (t � 1)

r̄i(t) � r̄i(t � 1)
, (4)

and where r̄i(t) is the average number of information bits from all the PRBs assigned
to user i in time slot t.
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2.3.4 Minimum CQI (Min-CQI)

This scheduling algorithm is used only as a bottom line and we assume that it assigns
the PRBs to the user which has the lowest non-zero CQI. This results in achieving
the minimum throughput and corresponds to assigning PRB k to the user i with the
lowest ratio:

i = arg min rki (t). (5)

2.4 Energy-e�cient scheduling algorithms

In order to increase the energy e�ciency of the base station, we propose two algorithms.
The main idea of both is to exploit the users’ channel conditions to reduce the energy
consumption. Specifically, by serving users at time slots when they have favorable
channel conditions, and delaying transmissions when they have unfavorable channel
conditions, we can use mostly higher modulation and coding schemes that increase
the energy e�ciency of the base station. In our simulations we assume favourable
conditions if the CQI reported by a particular user for each PRB is above 5.

Whenever the transmission to a user is delayed, the EARTH power model allows the
base station to reduce the energy consumption because of the reduced network load.
To avoid starvation of resources for a user with continuously poor channel conditions
and to avoid disturbance in the retransmissions, a transmission is delayed only if it
is not a retransmission from a previously erroneous packet, and if the user has not
delayed transmissions for more than 10 time slots. By setting this maximum delay
time, we are able to guarantee a minimum QoS to each user.

2.4.1 Power-based proportional fariness (PPF)

This algorithm is based on the PF approach. However, instead of using the average
number of information bits per user, we use the average consumed energy per user.
In this way, this algorithm favors a high instantaneous rate of information bits and
penalizes a high average energy consumption. This means that at time slot t, PRB k
is assigned to the user i that has the highest ratio:

i = arg max
rki (t)

(Ei)↵i

(t)
, (6)

where Ei is the average energy consumed from the assignment of PRBs from previous
time slots to user i and

↵i(t) = nsign[(n�1)(ek
i

(t)�ek
i

(t�1))], (7)

where

n =
eki (t) � eki (t � 1)

ēi(t) � ēi(t � 1)
, (8)

and where eki (t) is the energy consumed from the assignment of PRB k to user i in
time slot t obtained from Table 1 and ēi(t) is the average energy consumed from all
the PRBs assigned to user i in time slot t.

2.4.2 Window-based proportional fairness (WPF)

This algorithm considers the period of time that a user has not been served, hence
rewarding users that are able to postpone their transmission. Similarly as PPF, it
favors the instantaneous rate of information bits, but it rewards a long transmission
delay. This means that user i is scheduled if

i = arg max rki (t)(T
i)n, (9)
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Parameter Value

Number of users 15

Bandwidth 1.4 MHz

Simulation time 2s

Maximum speed 50 km/h

Minimum speed 3 km/h

Channel profile ITU pedestrian B

Number of transmit antennas 1

Number of receive antennas 1

Table 2: Simulation parameters.

where T i represents the window of time since the last time slot in which user i was
scheduled. The variable n is a factor that tunes the weight of this period of time. In
our simulations we set it to 2.

3 Performance evaluation

In this section we analyze the performance of the baseline and proposed scheduling
algorithms in terms of power consumption and throughput using the parameters of
Table 2. The power consumption is computed based on the energy per information bit
of Table 1 for each assigned PRB, while the throughput is computed based on the rate
of information bits obtained from the modulation and coding rate per PRB of Table 1.
For our simulations, we use a LTE standard-compliant framework and the EARTH
power model [4].
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Figure 2: Power consumption of the baseline and proposed scheduling algorithms.

Fig. 2 shows the total power consumption of the base station. Max-CQI and PF
lead to the largest power consumption as they both serve users with the highest instan-
taneous rate of information bits, regardless of the energy consumption. As expected
Min-CQI leads to the lowest energy consumption, while RR shows an average perfor-
mance.
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The proposed energy-e�cient algorithms, on the other hand, are able to drastically
reduce the energy consumption of the base station compared to Max-CQI and PF. This
comes at the cost of a decrease in the total throughput as seen in Fig. 3. As expected,
Max-CQI o↵ers the largest total throughput as it maximizes the instantaneous rate of
information bits. PF o↵ers a lower throughput as it achieves fairness for all the users
by sacrificing maximum throughput. The proposed energy-e�cient algorithms o↵er
a throughput higher than RR for all SNR values and higher than PF for some SNR
values.

−4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

SINR (dB)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s)

 

 

RR

Max−CQI

PF

PPF

WPF

Min−CQI

Figure 3: Throughput of the baseline and proposed scheduling algorithms.

Nevertheless, the previous analysis gives no indication of how the throughput is
distributed among the users. For this purpose, we plot the cumulative distribution
function (CDF) in Fig. 4.
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Figure 4: CDF of the baseline and proposed scheduling algorithms.

Evidently, Max-CQI o↵ers the best performance in terms of the probability of
achieving a certain throughput, while Min-CQI and RR o↵er the worst performance.
PF o↵ers the same performance as Max CQI for low throughput, which shows the
fairness achieved by this approach. However, the proposed energy-e�cient approaches
are able to achieve a performance close to Max-CQI for low and high throughput and
better than PF for high throughput.
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4 Conclusions

In this paper we have proposed two energy-e�cient scheduling algorithms for downlink
transmission in LTE networks that exploit the users’ channel conditions to reduce the
energy consumption. Using the EARTH base station power model, we show that by
serving users at time slots when they have favorable channel conditions, and delay-
ing transmissions when they have unfavorable channel conditions, we can use higher
modulation and coding schemes that increase the energy e�ciency at the base station.
Still, we guarantee a minimum QoS by setting a maximum delay time. The simulations
show that we can drastically reduce the energy consumption with a small sacrifice in
total throughput.
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Abstract

We study the e↵ect of Wi-Fi or other forms of interference on unicast multihop
802.15.4 tra�c in a sensor network, based on a layered state-driven Markov chain.
The probability of a successful transmission attempt is treated as a conditional
probability that depends on the state, that is, on the previous experience that the
packet had with the presence of harmful interference. This allows us to evaluate
end-to-end success probabilities.

1 Introduction

The increasing popularity of wireless sensor networks has led to a rapid growth in the
number of devices that use the IEEE 802.15.4 standard. To allow for fast deployment,
the IEEE 802.15.4 opted for the 2.4 GHz ISM band. However, the presence of other
wireless technologies like Wi-Fi (IEEE 802.11) or Bluetooth (IEEE 802.15.1) across
the same band potentially causes coexistence issues, leading to loss of reliability for
the network or ine�cient use of the radio spectrum. Wi-Fi transmitters are the more
concerning since they are commonly used in o�ce or residential environments.The co-
existence of 802.15.4 and Wi-Fi has been a subject of many previous papers. Most
papers focus on the power di↵erences and the large di↵erences in time constants be-
tween the slow 802.15.4 and the fast 802.11 in accessing the channel [1, 2]. Publications
on interference within an 802.15.4 network are also relevant. In [3], the back-o↵ state
of a node has been modeled as a Markov Chain. We adopt a similar model, but with
a number of di↵erences: We include the impact of Wi-Fi interference but initially ne-
glect interference from other ZigBee nodes. We consider a unicast multihop network,
in which packets follow a particular route, that is, we extend the model to include
more than one hop. The probability of sensing the channel busy is assumed in [3] to
be a constant, that is, independent of the history of the packet in the network. We
extend this by considering a conditional probability of sensing the channel busy, which
depends on whether it has experienced idle or busy channels in the past. The rest of
the paper is structured as follows. The network interference is modeled in section 2.
Section 3 provides an overview of the IEEE 802.15.4 protocol with the aim to derive
an accurate model for our analysis. A layered Markov model is formulated in section
4. Each-subsection includes a layer describing a di↵erent protocol operation. Finally,
concluding remarks are given in section 5.

2 The Interference Model

The network interference, for instance from Wi-Fi, will be modeled as a stochastic
process C 0(t) that is independent of the packet network. This implies the assumption
that the 802.15.4 network does not a↵ect Wi-Fi devices, which is true for a specific
distance range (region R3 in [2]). We will compare two di↵erent models in the following
sub-sections.
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2.1 Markovian Interference Model

Here, we assume that the interference is a binary on-o↵ process alternating between
active and idle periods. Let {Cth(t) : t � 0} represent a stochastic process with discrete
state space S = {1, 0}, 1 representing a clear channel (idle state) and 0 the busy state.
The process transitions from idle to busy state, independent of the past, according to a
continuous-time Markov chain. This process can be fully described by the finite state
space S = {1, 0}, the transition matrix PI(t) and the holding-time rates ↵k, k 2 S.
Every time that state k is visited, the chain spends on average t̄k = 1/a

k

units of time
there before moving on. Once we choose particular t̄1 and t̄0, that is, the average inter-
frame idle time between two consecutive IEEE 802.11 packets and the average time
that the Wi-Fi tra�c is on respectively, not only we fix the holding rates, but also the
probability �0 is defined as �0 = Pr(Cth(t) = 1) = t̄

1/(t̄
0

+ t̄
1

).
The transition probabilities can be calculated by solving the Kolmogorov backward
equations for the CTMC with transition matrix PI(t). For the given two state CTMC
the transition matrix are of the following form:

PI(t) =
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2.2 Interference Tra�c Model based on measured data

In this tra�c model, we assume that the interference pattern is characterized by mea-
surements at a survey site. Let Cm(t) be a stochastic process that describes the channel
status at instant time t, t 2 [0, T ].

Cm(t) =

(

1 if E(t) < Eth

0 if E(t) � Eth

(2)

In the above equation, E(t) is the measured interference power level at time t and
Eth is the threshold value above which we assume that 802.15.4 communication is
disrupted. The clear channel rate (�0 = Pr(Cm(t) = 1) is obtained directly from
measured realizations cm(t), t 2 T of the stochastic process Cm(t) in a sampling window
of length T .

3 IEEE 802.15.4 Standard Overview

We review the IEEE 802.15.4 protocol in order to derive a simplified but su�ciently
accurate model. IEEE 802.15.4 employs CSMA/CA for medium access control. When
a node has a packet to transmit, it backs o↵ for a random number of backo↵ slots
(each slot lasts for Tbs = 0.32 msec) chosen uniformly between 0 and 2BE �1. After the
backo↵, the channel is checked using a clear channel assessment (CCA). If the channel is
sensed idle, the node starts transmitting its packet. This transmission can be successful
or run into a collision, for instance because Wi-Fi is ignorant of 802.15.4 tra�c. These
transmission failures can be remedied by a positive acknowledgment scheme (ACK),
that is, the packet is retransmitted up to a maximum number of retries R, if no
acknowledgment packet is received. If the the maximum number R is exceeded, the
protocol terminates with a communications failure. On the other hand, if the channel
is found to be busy, the backo↵ exponent (BE) is incremented by one and the node
waits for a new random number of back o↵ slots until the channel can be sensed again.
This procedure continues up to a maximum number N of allowed back-o↵s and the
protocol terminates with a channel access failure.
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4 Formulation of the protocol model

The protocol operations, as described in section 3, are modeled in the form of a layered
Markov Chain presented in Fig.1. A detailed description of each layer is provided in
the following sub-sections.

Figure 1: Layered state transition diagram for protocol operations

4.1 The Random Delay Mechanism

The random delay mechanism in CSMA/CA can be approximated by means of a
discrete-time transition chain as shown in Fig. 1a. The random back o↵ period be-
fore attempting a CCA is represented by a transition to one of the Delayd states,
d 2 [0, 2BE � 1]. We assume that the conditional idle probability Pr(C|D = d) for a
clear channel assessment depends on previous observations and the observation delay
⌧ = dTbs, i.e., on how long ago these previous observation have been done. In this
paper, we are not (yet) interested in latency. Thus we have no need to consider time-
driven Markov chains and we will further collapse this into an event-based Markov
chain. We use the model of Fig. 1a to calculate the probability of sensing the channel
idle during CCA.

Pr(C) =
2BE�1
X

d=0

Pr(C|D = d)Pr(D = d) =
1

2BE

2BE�1
X

d=0

Pr(C|D = d) (3)

We can distinguish two di↵erent cases:

Initial back-o↵: No evidence about channel status

In the case of the first attempt to access the channel, we have no previous knowledge
about the channel status. Thus, the probability Pr(C|D = d)) to sense the channel
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idle after the backo↵ time ⌧ = dTbs is assumed independent on time ⌧ and equal to the
clear channel rate for both interference models.

Pr(C) =
1

2BE

2BE�1
X

d=0

Pr(C|D = d) =
1

2BE

2BE�1
X

d=0

�0 = �08d 2 [0, 2BE � 1] (4)

Channel assessment following a busy detection

When a node is attempting to access the channel given that it was sensed busy in
the previous attempt, we know that there was an on-going Wi-Fi transmission in the
medium. We assume that probability Pr(C|D = d) to sense the channel idle given a
previous busy detection after the back o↵ waiting time ⌧ = dTbs depends on the result
of the previous CCA attempt. This probability will be estimated for the two tra�c
models:
i. Markovian Interference tra�c model

The probability to sense the channel idle (state 1) after time ⌧ = dTbs given that
now is in state 0 is given by the (2, 1) entry of the transition matrix PI(⌧). Thus
according to Eq.3:

Pr(C) =
1

2BE

2BE�1
X

d=0

Pr(C|D = d) =
1

2BE

2BE�1
X

d=0

PI
2,1

(dTbs), d 2 [0, 2BE � 1] (5)

ii. Interference tra�c model based on measured data:

Similarly, we are interested in the conditional probability of an idle channel assess-
ment at time t + ⌧ given that the previous CCA at time t indicated a busy channel.

Pr(C) =
1

2BE

2BE�1
X

d=0

Pr{Cm(t + dTbs) = 1|Cm(t) = 0} (6)

Fig.2 shows the probability Pr(C) of a channel idle assessment after backo↵ time ⌧ given
a previous busy channel detection for the two interference models. The calculations in

(a) Markovian Interference tra�c model (b) Measured data tra�c model

Figure 2: Probability Pr(C) of a channel idle assessment given a previous busy channel
detection

84



Fig.2b are based on measured data collected from a survey site in an o�ce environ-
ment in Shanghai [4]. In both models, we can observe that the previous busy channel
detection provides us with information about the consequent channel assessment, i.e.,
the probability to sense the channel idle is lower than the unconditional probability �0

(red line). The green dots in Fig.2b present the results from the Markovian interference
model assuming the same average busy time (t̄0).

4.2 Back-o↵ state Markov Model

Extending the backo↵ state bn as proposed in Fig.1b, a Markov Chain is constructed.
We start from the first attempt to access the channel, till either the channel is sensed
idle and the packet is transmitted or the maximum number of back-o↵ stages N has
been reached and the protocol terminates. We use the following notation: bn denotes
the nth back-o↵ attempt, n 2 [1, . . . , N ], pt a packet transmission and the CAF state
denotes protocol termination with a channel access failure. Finally, B(t) represents a
stochastic process such that:

B(t) = {bn, pt,CAF}, n 2 [1, . . . , N ] (7)

Let PB be the transition matrix of the Markov chain with transition probabilities⇤:

PB(bn|bn+1) = 1 � cn (8)

PB(bn|pt) = cn (9)

PB(bN|CAF) = 1 � cN (10)

The transition probabilities cn are the idle probabilities Pr(C) as calculated in the
previous sub-section (c1 from Eq.4 and cn from Eq.5-6. Filling in the transition matrix
PB, enables us to determine the overall probability f to terminate the protocol with
a channel access failure (reach CAF state in Fig.1b). This probability is presented in
Fig.3. for a di↵erent number of allowed backo↵ attempts N . The dashed lines present
probability f in the case that we do not consider conditional probabilities. That is,
the probability to sense the channel idle (cn) given a previous busy detection does not
depend on history and is considered equal to the clear channel rate.
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Figure 3: Probability f to terminate the protocol with a channel access failure

⇤For sake of notational simplicity, we shorten PB(B(t) = a)|B(t + 1) = b) as PB(a|b).
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4.3 Single Hop Markov Model

In order to model the packet re-transmission attempts, we extend the backo↵ state
ar as proposed in Fig.1c, starting from the first transmission attempt, till either the
packet has been successfully transmitted to the next hop or the maximum number
of allowed retries has been reached. At any point in time, a packet is in one of the
following states: state ar, during which a node is contending to access the channel, state
ptr, where a packet is being transmitted in the current retry, the s state denoting a
successful packet transmission or in the CAF or CF states that denote a channel access
failure or a communications failure respectively. Finally A(t) represents a stochastic
process such that:

A(t) = {ar, ptr, s,CF,CAF}, r 2 [1, . . . , R] (11)

Let PA be the transition matrix of the Markov chain with probabilities:

PA(ar|ptr) = 1 � f (12)

PA(ar|CAF) = f (13)

PA(ptr|s = sr (14)

PA(ptr|ar+1) = 1 � sr (15)

PA(ptR|CF) = 1 � sR (16)

Filling in the transition matrix PA, enables us to determine the probabilities fCAF
(reach CAF state in Fig.1c) and fCF (reach CF state in Fig.1c). Transition prob-
abilities f are calculated as in sub-section 4.2 and probability sr (successful packet
transmission after a clear CCA) will be estimated in the following sub-sections:

i. Markovian Interference tra�c model
In this case, a lossless channel is assumed, i.e., we do not take into account any form
of packet losses that may occur during the transmission (sr = 1). Since a packet is
always transmitted successfully, for the Markovian interference, we do not model the
ACK packets and we do not consider any packet retransmissions (R = 1). Thus, the
overall probability to fail to transmit the packet in a single hop is as presented in Fig.3a.

ii. Interference tra�c model based on measured data:
We adopt a similar approach to [5], in order to consider a packet failure after a clear
CCA. Let S(t) be a stochastic process denoting the availability of the channel for a
transmission of duration tp starting at instant t, t 2 {0, T � tp}.

S(t) =

8

>

>

>

<

>

>

>

:

1, if
t+t

p

R

t

Cm(t)d⌧ = tp

0, if
t+t

p

R

t

Cm(t)d⌧ < tp

(17)

where tp denotes the time duration that the channel needs to be free of interference.
The clear channel rate �t

p

is defined as �t
p

= Pr{S(t) = 1}.
Surprisingly, experiments in [4] revealed that the probability to find a clear time slot
for a successful packet transmission is virtually not correlated with the outcome of
the preceding CCA. Using this as an approximation, the probability of a channel clear
assessment and the probability of a successful packet transmission become independent.
Thus the probability for a successful packet transmission (sr) is equal to the clear
channel rate �t

p

.
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Figure 4: Estimated failure rate of the 802.15.4 32-byte packet transmission in a single
hop under Wi-Fi interference

Fig.4 shows the overall probability to fail to transmit the packet in a single hop (fCAF +
fCF ). A number of repetitive re-transmission attempts significantly reduces the failure
rate. The circles in Fig.4a present measured failure rates from a lab test in Shanghai [4].
Our theoretical estimation of the failure rate in a single hop is very close to the fitted
curve of the above mentioned measured rates, denoting the accuracy of the model.
From Fig.4b we can observe that at low clear channel rate the protocol mostly fails
during CCA. However, as the clear channel rate increases transmissions fail even if
CCA denoted a clear channel.

4.4 MultiHop Markov Model

At the highest layer of abstraction, a Markov chain is constructed that follows the
packet as it passes over multiple hops. At any point in time, a packet is in one of
the following states: state mh, including the channel access mechanism and the packet
transmission in the current hop h, the s state denoting a successful transmission or in
the CAF or CF states that denote a channel access failure or a communications failure
respectively. M(t) represents a stochastic process such that:

M(t) = {mh, s,CF,CAF}, h 2 [1, . . . , H] (18)

Let PM be the transition matrix of the Markov chain with transition probabilities:

PM(mh|mh+1) = 1 � (fCAF + fCF ) (19)

PM(mm|CAF) = fCAF (20)

PM(mh|CF = fCF (21)

PM(mH|s = 1 � (fCAF + fCF ) (22)

Filling in the transition matrix PM , enables us to calculate the end to end probability of
a successful packet transmission in all hops as presented in Fig.5. As expected, as the
number of hops a packet has to pass through to reach the final destination increases,
the probability of a successful transmission decreases. The di↵erence in the two models
is due to the fact that in the case of the Markovian Interference, we assume that the
802.15.4 packets are always transmitted successfully (sr = 1).
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5 Conclusions

Our model was motivated by a need to analyze and predict the performance of IEEE
802.15.4 under IEEE 802.11 (Wi-Fi) interference. We adapted and extended a Markov
Chain analysis to account for Wi-Fi interference to a unicast multihop CSMA/CA
network. The main strength and novelty of this model is that it accounts for a chang-
ing conditional probability of successful transmission, as the node makes successive
attempts, given the history of earlier transmission attempts. Preliminary results in a
single hop, showed good agreement with the measured failure rates, indicating that
the model can be used in a multiple hops scenario. Results revealed that when the
channel is very busy (�tp < 0.4) the failure rate increases dramatically. Increasing
the re-transmission attempts R is not recommended,as most transmissions fail during
CCA. Other measures, like frequency agility, should be performed. At high �tp values,
transmissions fail even after a clear CCA, indicating that the channel should be free
of interference for a gap length at least equal to the 802.15.4 packet for a successful
transmission. Packet re-transmissions are now essential, however, increasing R too
much does not have a huge impact (recommended value between 3-5).
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Figure 5: End-to-end failure rate of the 802.15.4 packet transmission in many hops for
N=5 allowed back o↵ attempts and R=4 packet re-transmissions
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Abstract

We propose a digital signature scheme for dynamic coalitions. Particularly, we
enable members to join and leave. Our scheme does not need trusted or oblivious
third parties (TTPs or OTPs). In this distributed scheme there is a changing
secret group key dependent on the members in the group. Each member’s secret
key remains the same for all group compositions. The downside of this approach
is that we need to keep track of the signatures signed by each group composition
to prevent backlogging. We use One-Way Accumulators to minimise the amount
of information that needs to be saved for this.

1 Introduction

In various collaborative environments such as alliances for joint peacekeeping military
operations or joint emergency responses to the spread of e.g. an infectious disease such
as Ebola, coalitions are formed to achieve common objectives by resource sharing and
joint decision making. In practice the coalition members are dissimilar with regards to
their disposition. In the Ebola example they vary from private and non-governmental
organisations (such as the Red Cross and Doctors Without Borders), to governmental
organisations (such as the military, hospitals, local and federal government). In general
each of the coalition partners has its own policies and will participate in the joint
operation for a limited period of time. This makes the coalitions very dynamic. In
peacekeeping operations partners will join and leave the coalition. It is clear that
while they are participating in the coalition they should share information as e�ciently
as possible. However, if a partner leaves the coalition this partner should no longer
have access to the shared information. On the other hand if a new partner joins the
coalition it should have access to the shared information. In other words, access control
is essential. Therefore it should be possible to authenticate users that log on to the
combined information network. To authenticate a user it is essential that users have
their own private key and that the public keys are certified by a Certification Authority
(CA). The CA is a very important factor in the coalitions. It is more important still
that all partners take part in it, as in practice the coalition partners do not accept
one commonly trusted party that can be used to provide the coalition partners with
their secret signing keys. When the coalition partners want to be able to place a
signature jointly without addressing a Trusted Third Party (TTP), there are several
distributed key generation and signature protocols available. In 2014 Van der Lubbe et
al. [4] described a distributed (n, n) signature scheme for a dynamic coalition defence
environment, which can be expanded to a (n + 1, n + 1) signature scheme. A (k, n)
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threshold signature scheme requires k out of n group members to sign a message. So
in an (n, n) signature scheme all n group members participate in the signing process.
Their scheme is based on the modified ElGamal type signature scheme described by
Park and Kurosawa [3]. In order to avoid usage of one TTP they proposed the usage
of two OTPs . But the usage of OTPs has its disadvantage; if they work together there
are potential weaknesses in the scheme. In this paper we propose a dynamic (n, n)
scheme where OTPs are not needed.

Our aim is to create an (n, n) signature scheme for our dynamic coalition. N is
the current set of members of this coalition. Each member has an unique identifier
oi. We denote O as the set of unique identifiers of all members of N . More formally
O = {oi|i 2 N}. During every phase only the current set of members N can give out a
signature. This requires only the cooperation of every member in N . When the group
composition changes, members keep their own secret key.

In Section 2 we give a static protocol and the challenges to make it dynamic. Then
in Section 3 we present our dynamic protocol. Section 4 concludes the paper.

2 A static group N
First we will give a static signature scheme as introduced by Park and Kurosawa [3].
We refer to this as the static scheme. We will then expand this scheme to a dynamic
scheme, enabling members to leave and join the set N .

The following applies to both schemes: p and q are large primes such that q divides
p � 1. g generates the group Gq which is a subgroup of Zp, of order q. We assume p,
q and g are publicly known. In every case m is the message that all parties agree to
by signing. This can be e.g. a public key of an individual or information about the
changes in the group composition. We use h(m) to denote the hash value of m where
h is a publicly known hash function with a range from 1 to q � 1.

2.1 Static Initialization Protocol

First we give the initialization protocol for the static scheme. The protocol reads as
follows:

1. Each member i 2 N chooses a random secret xi from Zq.

2. Each member i 2 N broadcasts yi = gxi mod p to all other members.

3. Each member in N computes y =
Q

i2N yi = gx mod p.

Hence, in the initialization we have each member pick a secret key xi and share the
corresponding yi with each other. The shared secret x is defined as follows:

x ,
X

i2N

xi

This shared secret is not known by any member. However, the corresponding value of
y is known by all members.

2.2 Signature Issuing Protocol for a static group N
Secondly we give the signature issuing protocol in the static scheme. The protocol
reads as follows:
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1. Each i 2 N chooses a random secret �i from Zq.

� ,
X

i2N

�i

Here � is the shared random secret, not known by any member.

2. Each i 2 N broadcasts ci = g�i mod p to all other members.

3. Each i 2 N reveals ai = g�i where �i , wxi + h(m)�i mod q. Here w is equal
to v mod q with v =

Q

i2N ci = g� mod p.

4. Each member in N verifies that 8j, aj = (yj)w(cj)h(m).

5. Each member in N computes a =
Q

i2N ai =
Q

i2N g�i = g
P

i2N �
i = gt where

t = wx + h(m)� mod q.

The validity of the signature (t, w, y) is verified by

w ⌘ (gt/h(m)y�w/h(m) mod p) mod q

We have altered the original protocol slightly by revealing g�i instead of �i. We do
this so that it becomes harder to derive xi from this value.

2.3 Backlogging

Imagine we would use the static protocol for a dynamic group and have a group N
as well as a group N 0 = N [ {k}. Where k is the new member that is joining. The
initial group was N which gave out several signatures before admitting member k. In
this situation the group N can still give out signatures pretending k has not yet joined
because k has no way of knowing rather a signature given out by N 0 was created before
or after it joined. If a signature is given out by N after k joined it is backlogged. We
will prevent this backlogging using One-Way Accumulators.

2.4 One-Way Acummulator

A One-Way Accumulator (OWA) is a one way membership function. Depending on the
implementation only an identifier (such as the hash of a document) or and identifier
and a witness value need to be provided by the party identifying itself.

For our implementation, we require that the OWA has no trapdoor. This is because
if there were a trapdoor, there is no way for any group N to know rather the previous
groups know this trapdoor and as such can backdate additional signatures. Trapdoor-
less OWAs have been given by Lipema [1] and Nyberg [2]. It is ine�cient to have to
send the witness values to the certificate holders after the OWA is no longer being
updated. As such we choose to use an OWA that does not update the witness values
when more values are added. We use an OWA as given by Nyberg [2] that does in fact
not use a witness value at all but is instead based on bloom filters. This does mean
that the amount of memory required is linear to the amount of elements saved. When
the OWA is initialized the amount of items it can contain needs to be determined, the
size can not be increased later.
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3 A dynamic group N
We define two kinds of signatures: regular signatures and group signatures. Regular
signatures give out certificates to individuals using their identifying information e.g.
their public key. Group signatures on the other hand are used to confirm changes to
the composition of group N . We use the very similar signature protocols for these but
the message di↵ers. For regular signatures the message m is the identifying information
of the individual the certificate is issued to. For group signatures it contains the group
composition, the y value of the composition and the OWA.

In the following paragraphs we outline the protocols for initializing the group, hav-
ing a member join and having a member leave. In each of these cases a group signature
is created. These group signatures and their messages are kept by each group member
and past on to any new members. We will refer to the collection of group signatures
as the memberlog. The period between changes in the group composition is a phase.

We assume we have a public hash function h0, a security parameter ⌧ and maximum
number of items N for our OWA. Here e�⌧ is the probability of forgery. From N and
⌧ the required size of our boolean array follows. This boolean array together with the
hash function h0 forms the OWA. Every phase a new OWA z is made by every member
by initializing a new (empty) boolean array. For every regular signature that is given
out the value m is added to z. h(z) is the hash value of the boolean array. Z is denoted
as the collection of z values belonging to all previous groups.

3.1 Dynamic Initialization Protocol

In this subsection, we present the initialization protocol for the dynamic scheme. The
proposed protocol reads as follows:

1. Each member i 2 N chooses a random xi from Zq.

2. Each member i 2 N broadcasts oi and yi = gxi mod p to all other members.

3. Each member i 2 N computes y =
Q

i2N yi.

4. A group signature is issued by the members of N with m := (O, y).

Other than in the static protocol, we have the members initialize a memberlog with
the signature containing O. This information is later used to verify validity of the
memberlog.

3.2 Joining Protocol

In this subsection, we consider the situation in which a new member k joins the group.
The extended group N [ {k} is denoted by N 0. Additionally, O [ {ok} is denoted by
O0. The proposed protocol reads as follows:

1. k requests Z and the memberlog from a member i 2 N .

2. The member sends Z and the memberlog to k.

3. k verifies that the memberlog consists of a valid group signature sequence starting
with the initialization group signature.

4. k verifies that 8z 2 Z, z corresponds to the h(z) value in the memberlog and that
there is a z corresponding to each h(z) value in the memberlog.

5. Each member i 2 N sends oi and yi = gxi mod p to k.
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6. k chooses a random xk from Zq.

7. k broadcasts its ok value and yk = gxk mod p to each member i 2 N .

8. Each member in N 0 computes y0 =
Q

i2N 0 yi.

9. A group signature is issued by the members in N with m := (O0, y0, h(z)). It is
added to the memberlog.

10. A member i 2 N sends this signature and z to k.

11. k checks whether the group signature is valid for z.

12. A new phase starts with the group N 0: N := N 0 where O := O0, y := y0 and
Z := Z [ {z}.

By having the members in the group N sign the O0, the new member k has proof it
has been admitted by all members in N . This prevents the old members from silently
reverting back to before k joined. The h(z) value is signed in order to lock in the
signatures that have been signed in the phase by N preventing backlogging.

3.3 Leaving Protocol

Next we consider the situation in which a member j leaves the group. The reduced
group N \{j} is denoted by N 0. Additionally, O\{oj} is denoted by O0. The proposed
protocol reads as follows:

1. Each member in N 0 computes y0 =
Q

i2N 0 yi.

2. A group signature is issued by the members i 2 N with m := (O0, y0, h(z)). It is
added to the memberlog.

3. A new phase starts with the group N 0: N := N 0 where O := O0, y := y0 and
Z := Z [ {z}.

By having the group N sign a signature with O0, this new group has proof that j
agreed to leave.

3.4 New OWA Protocol

Because our OWA needs to be set up at the beginning of the phase and has a limited
size, it might reach this size. If this happens we add the old OWA to the memberlog
and start a new one.

1. A group signature is issued by the members i 2 N with m := (O, h(z)). It is
added to the memberlog.

2. Z is updated by each member: Z := Z [ {z}.
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3.5 Regular Signature issuing for a dynamic group N
Our signature issuing is similar to the static case. However, we add the value of h(m)
to z to prevent backlogging.

1. Each i 2 N chooses a random �i from Zq.

� ,
X

i2N

�i

Here � is the shared random secret, not known by any member.

2. Each i 2 N broadcasts ci = g�i mod p to all other members.

3. Each i 2 N reveals ai = g�i where �i , wxi + h(m)�i mod q. Here w is equal
to v mod q with v =

Q

i2N ci = g� mod p.

4. Each member in N verifies that 8j, aj = (yj)w(cj)h(m).

5. Each member in N computes a =
Q

i2N ai =
Q

i2N g�i = g
P

i2N �
i = gt where

t = wx + h(m)� mod q.

6. Each member in N adds m to z.

The validity of the signature (t, w, y) is verified by

w ⌘ (gt/h(m)y�w/h(m) mod p) mod q

We only use this signature to authenticate the message if its been given out in
the current phase. We check this by confirming that the most recent y value in the
memberlog matches that of the signature. Because of the potential for backlogging
using just the signature is only possible for the current group composition. If this is
not the case, we need to use our OWA and check rather h(m) is in Z. h(m) being in Z
su�ces for authentication in itself. However, we do not use the OWA for the current
group composition because it would require us to keep the OWA up to date at every
location at which we check credentials. By using the signatures for the current phase
we only have to update these locations when the group composition changes.

3.6 Group Signature issuing for a dynamic group N
In this final subsection, we give the group signature protocol:

1. Each i 2 N chooses a random �i from Zq.

� ,
X

i2N

�i

Here � is the shared random secret, not known by any member.

2. Each i 2 N broadcasts ci = g�i mod p to all other members.

3. Each i 2 N reveals ai = g�i where �i , wxi + h(m)�i mod q. Here w is equal
to v mod q with v =

Q

i2N ci = g� mod p.

4. Each member in N verifies that 8j, aj = (yj)w(cj)h(m).
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5. Each member in N computes a =
Q

i2N ai =
Q

i2N g�i = g
P

i2N �
i = gt where

t = wx + h(m)� mod q.

6. Each member in N adds (t, w, y) to the memberlog.

The validity of the signature (t, w, y) is verified by

w ⌘ (gt/h(m)y�w/h(m) mod p) mod q

When we issue a group signature we do not need to use the OWA. This is because the
memberlog contains successive signatures of di↵erent group compositions. In order to
alter anything about the memberlog one would need the secret keys of all the members
from the phase one wants to alter to the current phase to cooperate.

4 Conclusion

We have given a dynamic (n, n) signature scheme. There is no limit on the amount of
members that can join and members can leave till none are left. The secret key pieces
do not need to be updated when the group composition changes. In future work one
might incorporate threshold cryptography as in Park and Kurosawa [3]. Additionally,
the e�ciency might be increased, the amount of data communicated is quite high and
the OWA implementation requires memory linear to the amount of elements.

References

[1] Helger Lipmaa. Secure accumulators from euclidean rings without trusted setup.
In Applied Cryptography and Network Security, pages 224–240. Springer, 2012.

[2] Kaisa Nyberg. Fast accumulated hashing. In Fast Software Encryption, pages
83–87. Springer, 1996.

[3] Choonsik Park and Kaoru Kurosawa. New elgamal type threshold digital signature
scheme. IEICE transactions on fundamentals of electronics, communications and
computer sciences, 79(1):86–93, 1996.

[4] Jan C.A. van der Lubbe, Merel J. de Boer, Zeki Erkin. A signature scheme for a
dynamic coalition (defence) environment without a Trusted Third Party, Balkan-
CryptSec 2014, Istanbul, Oct. 16-17, 2014 (In: Lecture Notes in Computer Science,
B. Ors, and B. Preneel (eds.), Springer-Verlag, 2015)

95



DNA sequence modeling based on context trees

Lieneke Kusters Tanya Ignatenko
Eindhoven University of Technology

Dept. of Electrical Engineering, SPS group
Eindhoven, The Netherlands

c.j.kusters@tue.nl t.ignatenko@tue.nl

Abstract

Genomic sequences contain instructions for protein and cell production. There-
fore understanding and identification of biologically and functionally meaningful
patterns in DNA sequences is of paramount importance. Modeling of DNA se-
quences in its turn can help to better understand and identify such patterns and
dependencies between them. It is well-known that genomic data contains vari-
ous regions with distinct functionality and thus also statistical properties. In this
work we focus on modeling of such individual regions of distinct functionalities.
We apply the concept of context trees to model these DNA regions. Based on
the Minimum Description Length principle, we use the estimated compression
rate of a genomic region, given such models, as a similarity measure. We show
that the constructed model can be used to distinguish specific genes within DNA
sequences.

1 Introduction

The human genome contains information about human evolution and physiological
properties. The genetic research community put a lot of e↵ort in projects like the
human genome project, the 1000 genomes project and the HapMap project, in or-
der to collect, analyze and understand the human genome. These e↵orts resulted in
the human reference genome sequence (that is a general representation of the human
genome) and many new insights regarding population evolution, functional properties
of the genome, as well as genetically inherited diseases and disease predispositions, and
their treatment.
It is known that certain regions of the genome encode for proteins. In these regions,
triplets of nucleotides (codons) encode for the amino-acids that together construct a
protein of specific shape. Research on automatic detection of protein-coding regions in
the genome, includes spectral analysis techniques [1],[2],[3] and Markov models [4],[5].
However, besides the protein coding regions, there are also regions in the genome with
other functionalities, such as e.g. regulatory elements (control transcription of a nearby
gene). To the best of our knowledge, there exists no general model that can be used
to automatically identify and distinguish between various regions of di↵erent function-
alities within genomic sequences.
It is our goal to construct a generic statistical model for genetic sequences. Since vari-
ous regions in the genome have di↵erent functionality, their statistical properties also
di↵er within the genome. Therefore, as a first step in constructing a generic model,
we focus on determining individual models corresponding to the di↵erent functional
regions in the genome. In [6] it was shown that context trees can be used to model and
distinguish between the human chromosomes. We propose to use a similar approach,
and construct models that can help discriminate between smaller regions of di↵erent
functionality.We propose to use context trees [7] to model genetic sequences. We show
that the context tree model can be used to distinguish regions of similar statistics
within a sequence.
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This paper is organized as follows. In the next section we first explain the proposed
methods for constructing and evaluating the model. In Section 3 we present our ex-
perimental results for modeling of di↵erent types of sequences. Finally, we discuss our
findings and future work in Section 4.

2 Methodology

In this work we propose to use a two-pass method, to construct the model that we can
use for DNA modeling. With the two-pass method, we first construct the maximum
a posteriori model corresponding to a given sequence, and then apply the constructed
model to estimate the compression rate of a sequence given the model. We use the
resulting compression rate as criteria to make a decision whether the sequence was
generated by the given model, and thus is functionally similar to the sequence(s) used
to estimate this model. In the following, we first summarize the properties of the DNA
data. Next, in Sections 2.2 and 2.3 we introduce the context tree model and describe
the two-pass method that we use to construct the maximum a posteriori tree model
of a sequence. Finally, we describe the application of this two-pass method to DNA
modeling.

2.1 DNA Sequences

Human genetic information is encoded in deoxyribonucleic acid (DNA) sequences. The
DNA sequence is composed of four di↵erent symbols that correspond to the DNA
building blocks, called nucleobases, i.e. Adenine (A), Cytosine (C), Guanine (G) and
Thymine (T). DNA sequences vary across populations and generations. These vari-
ants occur due to mutations and generally occur once per thousand nucleotides in the
sequence. Typical genetic variations include substitution of one nucleotide for another
and insertion or deletion of a short subsequence of nucleotides.

2.2 Context Tree Model for DNA sequences

A DNA sequence is a string of concatenated quaternary symbols, where each symbol
can take on a value from a quaternary alphabet (A,C,G, T ) 2 A, corresponding to
the four di↵erent nucleobases. Let a DNA sequence x0x1x2 . . . xN�1 of length N be
denoted by xN

1 . We assume that the DNA sequence is generated by a tree source. For
a tree source the probability Pr{Xt = a} of a symbol Xt in the sequence to take on a
value a 2 A, is determined by its context, where the context is defined by at most D
preceding symbols in the sequence. Such a tree source can be described by a context
tree. A context tree is a set of nodes labeled with contexts s with 0  len(s) < D, and
a set of leafs that correspond to the contexts of maximum depth, len(s) = D, with
len(s) the length of the context s. An example context tree is shown in Figure 1. Given
such a context tree, we can determine the probability Pr{Xt = a|xt�1

t�D}, by starting at
the root � of the tree and moving along the nodes xt�1, xt�2, . . . until a leaf of the tree
is reached. In this leaf, s, we find the corresponding parameter ⇥s =

n

✓As , ✓
C
s , ✓

G
s , ✓

T
s

o

,
that are the conditional probabilities of a symbol to take a certain value from the
alphabet A, given its context s. Therefore, using the context tree with parameters,
we can find the conditional probability of our symbol as Pr{Xt = a|xt�1

t�D} = ✓as . The
su�x set, that represents the leafs of the tree, S is called the model of the source and
the corresponding parameters are stored in its leafs and denoted by ⇥. Furthermore,
we define the mapping from the context of depth D, to a su�x s in the model S as
!S(xt�1

t�D) = s 2 S.
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Θ𝐺𝐺

Figure 1: Context Tree S and model parameters ⇥.

Now, given the example tree model with parameters, in Figure 1, the probability of a
subsequence ACGTC, in xN

1 = (. . . CAAACGTCGG . . .), can be estimated as follows:

Pr{ACGTC|S,⇥} = ✓AAA✓
C
AA✓

G
CA✓

T
G✓

C
TG (1)

In general we do not know the actual source model that corresponds to the DNA se-
quence. In [7] the context tree weighting algorithm (CTW) is proposed to estimate
the unknown sequence distribution. In CTW they estimate a good coding distribution
that can be used to compress data in the sequential way. Instead, we want to find
the model that best describes the sequence and evaluate its performance. This can be
achieved by the CTW two-pass method [8], which uses the techniques to determine the
maximum a posteriori (MAP) model after observing the complete sequence. In [8] this
MAP model is first estimated and then used for compression of the sequence.
Here we propose to use this two-pass method to first estimate an optimized statisti-
cal model corresponding to a given training sequence. Then we evaluate the model
performance, based on the compression rate of a sequence, given this model.

2.3 Maximum a posteriori (MAP) model selection

In this section we summarize the algorithm that is used for the MAP model selection.
Our implementation is based on the two-pass method as proposed by Willems et al.
in [8]. First, we construct a context tree where we assume a maximum depth D.
Then, we process the training sequence sequentially, and estimate the probabilities
of the subsequences that correspond to each of the contexts s in the tree. Finally,
we evaluate the estimated sequence probabilities at di↵erent nodes in the tree to find
the MAP model, selecting the nodes as either leafs or nodes based on the estimated
probabilities.
First of all, for each context that corresponds to a node in the tree, we count the
symbols that occur with this context in the training sequence. We store the counts cas
that correspond to symbol a 2 A, occurring with context s 2 S in the corresponding
node. We use the KT-estimator from [9] to estimate the probability of the subsequence
P s
e with context s, given the counts in the corresponding node, as follows:

P s
e

⇣

cAs , c
C
s , c

G
s , c

T
s

⌘

=

Q

a2A(cas � 1/2)!

((
P

a2A cas) � |A|/2)!
. (2)

Where the probability of the next symbol is estimated as,

Pr{Xt = a|cAs , cCs , cGs , cTs } =
cas + 1/2

P

a02A ca0s + |A|/2 , (3)

for the symbol Xt with value a 2 A and given the counts of corresponding context s.
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In the next step, we use the method proposed in [8] to find the maximum a posteriori
tree model. That is, we estimate for each node the maximum a posteriori probability
of the corresponding subsequence,

P s
m =

(

max (↵ · P s
e , (1 � ↵) · Qa2A P as

m ) if depth(s) < D,
P s
e otherwise.

(4)

Where ↵ = |A|�1
|A| , is a penalty for the model complexity, increasing with the depth

of the tree, see also [9]. We find the nodes corresponding to the MAP model, by
tracking the above maximization procedure, starting from the root. If in a node s in
the context tree ↵ · P s

e � (1 � ↵) · Qa2A P as
m , this node is a leaf in the MAP model

and the corresponding context s is added to the model S. Otherwise this node is an
internal node in the MAP model and we continue to evaluate the children that are
deeper in the tree: {As,Cs,Gs, Ts}. In this way we find all the leafs corresponding
to the MAP model S. Finally, we can compute the parameters ⇥ of our model using
equation 3.

2.4 DNA sequence model evaluation

As explained in Section 2.2, the CTW two-pass algorithm for MAP model approxima-
tion, was originally developed for compression of the corresponding sequence. However,
we would like to apply this model to evaluate or to detect sequences of similar func-
tionality. The Minimal Description Length principle [10], states that the model that
describes the data in the shortest possible way is the model that produced the data.
Therefore, we use the estimated compression rate of a sequence, given the model, as
a measure of the correctness of the model. We can estimate the compression rate,
by using the constructed model S and corresponding probabilities ⇥, to estimate the
probability of the sequence given the model. We have shown in Section 2.2 how to
estimate the probability of a sequence (or a single symbol) given the model.
We estimate the compression rate of the sequence xt

1 as follows:

R(xt
1) = �

t
X

j=1

log2(✓
a
j

!S(xj�1

j�D

)
)/t, (5)

with !S(xj�1
j�D) 2 S the context of Xj (a symbol in the sequence) that corresponds with

a leaf in the model S, and ✓
a
j

!S(xj�1

j�D

)
the corresponding probability of the symbol Xj

having its corresponding value aj. Furthermore, we can also estimate the contribution
of a symbol Xt to the compression rate, as

R(Xt) = � log2(Pr{Xt = a|xt�1 . . . xt�D}) = � log2(✓
a
!S(xt�1

t�D

)
), (6)

with !S(xt�1
t�D) 2 S is the mapping of the context of Xt to a leaf in the model S, and

✓a
!S(xt�1

t�D

)
the corresponding probability of the symbol Xt = a. Finally, we note that

the compression rate is measured in bits per base-pair, which means that for our data,
a compression rate smaller than 2, i.e. log2(4), corresponds to actual compression of
the sequence.
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Figure 2: Achievable compression rates for coding and non-coding sequences, using
MAP context tree model. Two models were trained, one on coding (2a) and one on
non-coding (2a) DNA compound sequences. For both models the performance is shown,
when applied to the sequence used for training, when applied to a sequence of similar
functionality, and when applied to a sequence of the opposite functionality

3 Experimental results

We evaluate the performance of the maximum a posteriori tree model in two exper-
iments. In each experiment we first use the techniques explained in Section 2.3 to
construct the MAP model corresponding to the training sequence. Then we test the
performance of the model, by estimating the resulting compression rate for various
sequences.

3.1 Coding and non-coding sequences

In the first experiment we construct two MAP tree models for (protein) coding and non-
coding sequences respectively. We use a set of sequences from the Human Reference
Genome (build: GRCh38.p2) annotated as mRNA (coding) and ncRNA (non-coding)
in the NCBI Homo sapiens Annotation Release 107 [11].
First, we construct one coding and one non-coding sequence of 105 base-pairs long, by
compounding the subsequences of corresponding functionality from the annotated set.
We estimate the MAP model for each of the constructed sequences, assuming maximum
tree depth 7. We estimate the compression rate of each model on both sequences, the
resulting compression rates are shown in Figure 2. We can see that both models have
a good compression rate on the sequence that was used for the model training, and
they can be used to distinguish between the coding and non-coding training sequences.
Therefore, we may conclude that the resulting model provides a good estimate of the
source model of the sequences.
Now, we construct two more (’test’) sequences in a similar way as before, but from
other sets of the annotated ncRNA and mRNA sequences. When we apply the previ-
ously constructed coding and non-coding models to the new sequence of corresponding
functionality (Figure 2), the compression rate is above 2, which means that the se-
quences are not compressible at all (see Section 2.4).
In Figure 3, we estimate the compression rate per symbol for the models on their
corresponding training sequence. Now we can see, that the rate varies for di↵erent
regions in the sequence. We conclude that, though the constructed models do have a
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(a) MAP model of coding sequences.
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Figure 3: Achievable compression rates per symbol, for coding (3a) and non-coding
(2a) sequences using MAP context tree model. The dotted lines mark the regions
corresponding to di↵erent subsequences that were used to construct the total sequence.

su�cient overall performance to represent the entire sequence (Figure 2), the model
varies for di↵erent regions in the sequences and the overall model is actually a mixture
of models. Furthermore, we find that the variations in the compression rate are related
to the transitions between the subsequences (marked by the dotted lines) that jointly
form the total sequence.

3.2 MAP model for gene in mitochondrion

Now we concentrate on construction of the model for a sequence with a more specific
functionality than just coding or non-coding functionality. In this experiment we would
like to detect COX1 gene in the mitochondrial DNA and use our model to detect the
gene in a set of mitochondrial DNA variant sequences.
For this experiment we have used a set of mitochondrial DNA sequences from 20
individuals of various ethnicity (America, Africa, Europe, Asia)⇤. Between those se-
quences small variations occur in the form of substitutions, insertions and deletions
of nucleotides (see also Section 2.1). We use the sequence from two persons to con-
struct the MAP model, with initial context tree depth 5, for the COX1 gene (approx.
1500 bps long). Then we evaluate the performance of the model on the sequences that
correspond to the other 18 individuals. The estimated compression rate per symbol
is shown in Figure 4. We observe a very good compression rate of the subsequence
corresponding to the COX1 gene, when the learned COX1 model is used for mitochon-
drion compression. On the other hand, in the other regions no compression is achieved.
Therefore, we can clearly distinguish the COX1 gene in the sequences, using this model.
Furthermore, the model is generic in the sense that its performance is similar for all
sequences, despite the small variations that occur.

4 Discussion and Future Work

In this study we have shown that the context tree can be used to model the statistics
of DNA sequences. Though a model can be constructed to represent sequences of vari-
able length and functionality, it is not clear whether the model also implies information

⇤Sequences were downloaded from the mitochondrion database [12]
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Figure 4: MAP model applied to detect COX1 gene in mitochondrion. The region
corresponding to the COX1 gene is marked between the dotted lines.

about the functionality of the modeled sequence. The model can be used to recognize
sequences that have similar statistics to the original sequence. Besides functionality
analysis, other applications of such a model include read mapping and genome com-
pression.
In this work we assumed that non-coding and coding regions in DNA sequences are
stationary. However, our experiments imply that these regions have non-stationary
statistics. As a future work we plan to develop an algorithm that automatically rec-
ognizes a change in the model and constructs multiple models to accurately represent
the di↵erent regions in the source-sequence. These models can give more insight in the
statistics of the di↵erent regions and can be related to the functionality of the region.
As a final remark we state that the strength of the context tree model for DNA se-
quences, is that it has low sensitivity to variations in the sequence. We plan to further
explore this property for application in privacy-sensitive modeling of DNA sequences,
since variations are hidden in the model.
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Abstract

The rapid growth in the number of wireless devices like smart-phones, tablets
and wireless sensors have resulted in scarcity of available spectral resources. As
the availability of spectrum is limited, a huge interest is spawned in co-existence
solutions where new users can share the available spectrum along with the legacy
systems even in licensed bands. This demands development of new algorithms
which can provide satisfactory throughput to secondary users with less interfer-
ence to the legacy systems (Primary User). Open spectrum access is still an active
research problem. New technical standards should be established which will ac-
count for transmitter and receiver based regulations instead of legacy transmitter
centric spectrum regulation. A Spectrum Sharing Challenge [1] is organized by
IEEE keeping these motivations in mind. In this paper a reinforcement learning
based algorithm is proposed which will serve as a starting point for approaching
the problem statement mentioned in the Spectrum Sharing challenge. The pro-
posed algorithm does a single channel selection and adapts its transmission and
sensing actions. Simulation results revealed that the proposed algorithm yields
better throughput results over the Upper Confidence Bound [2] based strategies.

1 Introduction

Spectrum scarcity is a serious issue faced while devising new communication protocols
and standards. The next generation wireless systems will possibly be equipped with
algorithms which can make use of underutilized licensed spectrum assigned to a Pri-
mary User (PU). This allows coexistence of a Secondary User (SU) in a frequency band
which is licensed to a PU. Many studies have revealed that existing wireless systems,
for example 802.15.4 and 802.11, create interference resulting in reduced throughput
when operated on the same frequency bands [3]. A survey of various schemes appeared
in literature for solving coexistence issues are presented in [4]. The IEEE Spectrum
Sharing Challenge is hosted to motivate researchers and developers to come up with
innovative solutions for coexistence which will help in devising transmitter and receiver
based spectrum usage restrictions instead of providing licensed spectrum explicitly.

There are various surveys [5,6] which briefs various machine learning techniques
for dynamic spectrum sharing solutions. Some techniques make use of Reinforcement
learning [8] under the assumption that the SU-PU interaction forms a Markov Decision
Process (MDP). Other schemes studied in literature take care of scenarios when the
assumption is non-Markovian [5]. There are also ad-hoc methods where the problem is
modelled as a Multi-Armed Bandit problem and solutions are presented using strategies
based on Upper Confidence Bound [2].This paper details the problem stated in the
IEEE DySPAN 2015 Spectrum Sharing Challenge and discusses some of the approaches
that can be used to solve the problem.
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Figure 1: Spectrum challenge setup

The rest of the paper is organized as follows. Section 2 defines the problem state-
ment and the winning parameters. A brief overview of the reinforcement learning
framework is presented along with the proposed method is Section 3. Section 4 de-
tails the initial results from the proposed algorithm and comparisons with one of the
algorithms mentioned in literature. Shortcomings of the proposed algorithm, possible
enhancements and conclusions are presented in Section 5.

2 Problem Definition

The 5G spectrum challenge setup is detailed in Figure 1. A multi-channel radio which
will implement IEEE 802.15.4 PHY will be used as the primary user (PU). The PU
will be transmitting on four predefined frequency bands each of bandwidth 2 MHz
with channel spacing of 5 MHz. Another pair of radios which act as the SU will try to
achieve maximum throughput over the same 20 MHz which the PU is using. Both pair
of radios will be connected to the database (DB) which is responsible for providing

• Fixed length layer-2 packets for SU

• PU receiver feedback

• Performance monitoring

The final challenge score will be calculated as a product of SU throughput (TSU) and
PU satisfaction. The PU satisfaction (SPU) is calculated from the o↵ered PU through-
put (bTPU) and the delivered PU throughput (TPU) as given in equation 1. A maximum
throughput loss tolerance of 10% is admitted. More than 10% PU throughput loss will
result in no PU satisfaction at all.

Score = TSU ⇥ SPU

SPU = max
⇣

0,
10

9
TPU � bTPU

⌘ (1)

3 Reinforcement learning based score maximiza-
tion

For maximizing the score defined in the problem statement, only single channel selec-
tion algorithms are explored in this paper. That is, the SU will only try use only one
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Figure 2: Reinforcement Learning framework

frequency band of 2 MHz at a time which is best suited for maximizing the defined
score. In a multi-channel scenario, if the secondary user has information about the
channel occupancy of each channel in advance, it is always best to select the channel
with lower average occupancy which will e↵ectively maximise the SU throughput. As
the channel occupancy probabilities of the channels are typically unknown, the SU
should explore the channels to estimate the channel occupancies. The more the explo-
ration, the better will be the channel occupancy estimate. In the meantime SU should
also exploit the channel to maximize its throughput and cannot keep on exploring the
channel. This will result in an exploration-exploitation trade-o↵.

The aforementioned channel access problem is closely related to multi-armed bandit
problems which are discussed in detail in literature [7]. There exists various formally
justified techniques presented in literature which solve the bandit problem making
the assumption that the PU-SU interaction forms an MDP [8,9]. In [2] authors use
Upper Confidence Bound (UCB) based strategies to exploit the spectrum resources
intelligently. A real world implementation of the some of these algorithms can be found
in [10]. If the prefect system model is known in advance, then these kind of objective
maximization problems can be solved using dynamic programming [8,11]. Since we have
no priori information about the channel occupancies reinforcement learning framework
can be used to approach the problem. Reinforcement Learning allows unsupervised
learning by interacting with the environment.

In a reinforcement learning model, an agent interacts with the environment through
actions as depicted in Figure 2. The action will change the state of the environment
which is communicated to the agent as a delayed reinforcement or reward. A general
reinforcement learning based framework consists of

• A discrete set of states, S

• A discrete set of actions, A

• A policy ⇡ that maximizes the expected reward

The agent’s job is to come up with a policy that maximizes some measure of rein-
forcement. For example in the SU channel selection problem, a reinforcement frame-
work can be used to select the best channel which maximises the SU throughput. The
throughput feedback from the secondary user receiver can be used as a reinforcement,
which tells how good or bad the last channel selection action was.

3.1 Q-Learning

Watkins’ Q-learning algorithm [12], one of the most popular model free algorithms that
learns from delayed rewards, is used to model the spectrum challenge problem. The
basic QL update equation is given as
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Qt+1(s, at) = Qt(s, at) + ↵
⇣

r(s, at) + � max
a

Qt(s, a)

� Qt(s, at)
⌘ (2)

where ↵ is the learning rate and � is the discount factor. The Q-value Q(s, a) is the
expected discounted reinforcement for taking an action a in state s and then continuing
to act optimally by selecting suitable actions. The higher the value of ↵, the greater
the agent relies on the delayed and future rewards when compared to the current Q
value. Similarly the higher the value of � the greater the agent relies on the discounted
future reward compared to the delayed reward.

3.2 Proposed Method

The algorithm model proposed in this section is motivated from the algorithm presented
in [13] where the authors use multiple channels as the states, and sensing, transmitting
and channel switching as the actions. The proposed scheme tries to maximize the score
mentioned in challenge by

• Selecting the most reliable channel for transmission

• Adapting the number of sensing and transmission actions in the selected channel

The action and state space of the RL algorithm are selected as given below.

• Action set: {sense, transmit, channel switch}
• States: {0, .., n} where n is the number of available channels

The QL update equations for each action, the corresponding rewards and the policy
selection are explained below.

3.2.1 Expected sensing reward: Q(s, ase)

Qt+1(s, ase) = Qt(s, ase) + ↵
⇣

r(s, ase) + � max
a

Qt(s, a)

� Qt(s, ase)
⌘ (3)

r(s, ase) =

⇢

0 if channel is occupied
1 if channel is free

3.2.2 Expected transmission reward: Q(s, atx)

To maximize the score mentioned in the problem statement, the algorithm should
increase secondary throughput and primary user satisfaction. A reasonable assumption
is made that the reduction is primary throughput is only caused by secondary user
collisions. Based on the previous assumption we assign positive rewards based on the
instantaneous secondary throughput (TSU) and negative rewards (penalty) based on
the collision count (TCO) which will in turn maximize the score,

Qt+1(s, atx) = Qt(s, atx) + ↵
⇣

r(s, atx) + � max
a

Qt(s, a)

� Qt(s, atx)
⌘ (4)
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r(s, atx) = TSU � TCO.

. For example if the secondary user is transmitting 1 bit each in 4 slots and if 3 of
them resulted in collision, the reward is 1 � 3 = �2

3.2.3 Expected switching reward: Q(s, acs)

A state value V (s) is defined as

V (s) = Qt(s, ase) + Qt(s, atx). (5)

If a switching action is selected then the secondary user switches from state s to bs
such that

bs = arg max
h2S

V (h) (6)

The Q value for switching is calculated as a gain in terms of V (s), as

Qt+1(s, acs) = V (bs) � V (s). (7)

.
A higher Q(s, acs) for a state s indicates that there is another good state (channel)

which can give higher transmission gains.

3.2.4 Action selection policy: ⇡t(s, a)

At any time t the SU action in a state (channel) s an is selected based on a soft-max
selection policy. Here the parameter ⌧ is called the temperature. High temperatures
makes the selection of all actions to be nearly equi-probable. The soft-max selection
becomes the same as the greedy selection as ⌧ ! 0.

⇡t(s, a) =
eQt

(s,a)/⌧

eQt

(s,a
se

)/⌧ + eQt

(s,a
tx

)/⌧ + eQt

(s,a
cs

)/⌧
(8)

4 Experimental Results and Discussion

This section details some initial simulation results of the proposed algorithm. For
simulations, the entire available time duration is split into slots, each having a slot
duration of Tslot. An assumption is made that the channel switching time, Tcs << Tslot
and no time penalty is assigned for channel switching. For the QL algorithm, parameter
values ↵ = 0.8, � = 0.1, and ⌧ = 1 are used. For all the mentioned experiments a
transmission duration, Ttx = 4 ⇥ Tslot and sensing duration Tse = Tslot is used.

1. Exp1: A frequency hopping PU system is considered in this experiment. After
every 1000⇥Tslot the primary user will hop to a random channel. Figures 3a and
4a show the simulation progress and action statistics respectively.

2. Exp2: A simulation where only a single channel is free at a time. After every
4000⇥Tslot, a random channel is made free. Figures 3b and 4b show the simulation
progress and action statistics respectively.

From the initial simulation results its clear that the proposed algorithm provides
much improvement in the secondary user throughput which in-turn increases the spec-
trum challenge score. The improvement in throughput is due to the fact that QL
algorithm is able to reduce its sensing actions when the channel is free and transmis-
sion action is giving positive rewards. It can be also noticed that the channel switching
action is considerably reduced when compared to the UCB algorithm.
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(a) Exp1: Frequency hopping scheme (b) Exp2: Single free channel scenario

Figure 3: Sensing, transmission and collision progress
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(a) Exp1: Frequency hopping scheme (b) Exp2: Single free channel scenario

Figure 4: Transmit, sense and channel switch action count

5 Conclusion

In this paper a RL based approach is presented to solve the Spectrum Sharing Chal-
lenge problem. An adaptive scheme is developed which yields better throughput when
compared to the UCB strategies. It should be noted that the PU throughput is not
yet considered in the QL algorithm. The PU throughput feedback will be crucial when
PU is trying to transmit in a channel where SU transmission is in progress. The PU
PHY will be equipped with some carrier sense mechanism which will prevent it from
transmitting in the SU occupied channel. This will result in a reduced PU throughput
and satisfaction. The proposed algorithm considers only single channel selection. This
is obviously not an ideal solution for a frequency hopping PU as only one channel will
be occupied by the PU at a time. These two directions will be investigated in future
which may significantly improve the algorithm performance.
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Introduction

The collection of digital information by organizations has been an increasingly impor-
tant trend over the last decade. While it creates new opportunities for knowledge-based
decision making, it also raises new challenges regarding the privacy of the individuals
whose personal information is collected. In this context, privacy-preserving data pub-
lishing aims at releasing data in a way that it is practically useful (e.g. allows data
mining) while preserving individual privacy. In other words, it aims at trading util-
ity and privacy. A wide literature has investigated metrics for privacy, including the
well established k-anonymity [8] and its numerous refinements. By contrast, metrics
for measuring the utility of a database are sparser, and generally face the di�culty of
defining what is “useful data”. In order to be independent of the type of data processing
purposed, the typical solution is to follow the “principle of minimal distortion”. This
implies assuming that the database is useful anyway, and measuring a (pseudo) utility
based on this a priori, by quantifying the damage caused by the anonymization of the
data [5]. Quite naturally, it also means that any modification of the data is damaging
by definition/assumption. In this paper, we aim to investigate an alternative track
for measuring utility, based on recent advances in the certification of the information
leakage in cryptographic implementations [4]. More precisely, we propose to quantify
utility based on whether the statistical attributes of which the samples form a database
are “well characterized”. We further describe how to use the notion of Perceived Infor-
mation (PI) for this purpose. Intuitively, the PI captures the amount of information
that an adversary can extract from some observations, given a (possibly biased) model
of the data. If the model is perfect, the PI correspond to Shannon’s classical definition
of Mutual Information (MI). If the model is imperfect (as usually the case in practice),
the PI is the best approximation of the MI that is available to the adversary. Based on
this notion and using the tools in [4], we can trade the speed of convergence of a model
with its informativeness, and derive a perceptual utility metric for actual databases.
We use this metric to illustrate concrete situations where the anonymization of the data
does not have any utility cost. For example, the accuracy of an attribute’s observations
can be too high for being characterized with the number of available samples. In this
case, reducing the accuracy of the collected data is beneficial to individual privacy, but
does not reduce the perceptual utility. We also describe a couple of experiments that
allow us to discuss the impact of grouping users from the k-anonymity and perceptual
utility points-of-view, as well as the curse of dimensionality for the characterization
of attributes. Eventually, we conclude the paper by discussing why perceptual utility
could also be seen as a privacy metric (although not an anonymity one).

1 Definitions and framework

In this first section, we introduce the definitions and mathematical framework that al-
low us to reason formally about privacy and utility in databases. We use capital letters
for random variables, small caps for their samples, calligraphic letters for sets and sans
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serif fonts for functions. We start by defining a set of n users U = {u1, u2, . . . , un},
and m random variables X1, X2, . . . , Xm with (discrete or continuous) sample spaces
X1,X2, . . . ,Xm. We denote these random variables as attributes, that are specified by
their probability function p(x) in the discrete case, and probability density function
f(x) in the continuous case. We also use the more generic term probability distribution
to denote both p(x) and f(x), when we do not want to distinguish between discrete
and continuous random variables.
Deterministic data. In this context, we define a deterministic Data Structure (DS)
as a set of m attributes together with their probability distributions pi(x) or fi(x),
with 1  i  m. And we define a deterministic Data Base (DB) as the sampling of a
deterministic DS, i.e. a set of m⇥ n samples, one per attribute Xi and user uj.
Probabilistic data. In this context, we define a probabilistic DS as a set of m
attributes, each of them described by n probability distributions pji (x) or fji (x), with
1  j  n. And we define a probabilistic DB as the sampling of a probabilistic DS,
where we denote the number fo samples per user as m⇥ nu

j

, so that the total number
of samples in the DB equals m⇥

Pn
j=1 nu

j

(similarly to the deterministic case).
Both for deterministic and probabilistic data, we further denote any vector of m

samples corresponding to a line of a DB (excluding the user) as an observation. We also
define any subset of users that one may be interested to characterize as a group, and a
set of q groups as G = {g1, g2, . . . , gq}. Eventually, we call aggregation the process of
replacing an attribute Xi by an aggregated attribute Yi, such that the original sample
space Xi is replaced by a set of events Yi, with |Yi| < |Xi| if the attribute was discrete,
and Yi a discretized version of Xi if the attribute was continuous. Note that in concrete
case studies, the DS is always unknown, and the only thing that can be analyzed is
the DB (i.e. a sampling of the DS). However, it is sometimes interesting to consider
simulated DB where the samples are produced according to known distributions. The
latter context typically allows a better theoretical understanding.

2 Privacy metric(s)

As mentioned in introduction, numerous metrics were introduced to quantify various
aspects of privacy in databases, some of them being surveyed in [5]. Our goal is not
to argue about which metric to use in which context. We rather recall the popular
k-anonymity[8], in order to evaluate and discuss it in front of the utility notion in the
next section. We first denote an observation okj as the vector of kth samples obtained
for the m attributes of user uj as:

okj =: [x1(uj, k), x2(uj, k), . . . , xm(uj, k)]·

Secondly, we denote the set of observations O(uj) found in a DB for a user uj as:

O(uj) =: {okj | 1  k  nu
j

}·

Thirdly, we denote the anonymity set A(o) as the set of users for which a given obser-
vation o is in the DB as:

A(o) =: {uj | o 2 O(uj)}·
Based on these notations, we say that a DB preserves k-anonymity if:

k =: min
1jn

1kn
u

j

|A(okj )|·

Intuitively, the k-anonymity guarantees that an observation does not allow to (strictly)
distinguish (i.e. with probability one) a user from at least k� 1 other users in the DB.
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Concretely, this metric is usually computed with respect to deterministic attributes
that are supposed to be easier to collect for the adversary (e.g. the sex, ZIP code,
. . . ) in order to obtain sensitive information (e.g. some medical data). Note that
in probabilistic DB, the k-anonymity ignores the possibility that di↵erent users have
di↵erent probabilities given an observation. By denoting the number of apparitions of
an observation o in a DB as #o and its number of apparitions for user uj as #o|uj, we
can then define the pseudo-probability of a user uj given an observation o as:

P̃r[U = uj|O = o] =:
#o|uj

#o
.

The term pseudo-probability reflects the fact that P̃r[uj|o] is defined based the sampled
data of a DB, which does not mandatorily represents well the true distribution of
the attributes. Such pseudo-probabilities could be used to estimate other anonymity
metrics, such as the ones in [2]. Although our following discussions will focus on k-
anonymity for quantifying privacy, we will use this notion of pseudo-probability in order
to illustrate the conceptual di↵erences between anonymity and (perceptual) utility.

3 Perceptual utility metric

Approaches to guarantee privacy in DB generally imply a number of anonymization
operations, which include aggregation, noise addition, suppression, . . . This leads to
the complementary problem of determining if the sanitized data remains useful.

Both general purpose and specific metrics have been introduced to answer this
question [1]. On the one hand, general purpose metrics rely on the goal of minimal
distortion. That is, they start from the a priori that the DB is useful, and quantify
utility by measuring the distance between the original and anonymized DB. To some
extent, this approach resembles the one to quantify privacy in the previous section,
since it is also based on the sampled data of a DB, independent of its DS. We use the
term pseudo-utility to reflect this fact. Minimizing distortion does not guarantee that
an anonymized DB is useful, it only guarantees that it is nearly as useful as originally.
On the other hand, specific metrics aim at measuring utility based on the purpose of the
data collected (e.g. estimating some statistical moment for an attribute, or classifying
users based on this attribute). Compared to the previous case, such an approach su↵ers
from the complementary drawback that it hardly allows comparing the utility of data
collected for di↵erent purposes, and therefore requires knowing this purpose at the time
the data is published. Strictly speaking, this last drawback is unavoidable: utility is
indeed most accurately defined in function of a task to perform. However, we argue
next that an intermediate path is possible, by quantifying (perceptual) utility based
on whether the data collected represents well the DS (i.e. the true distribution of the
attributes). We first define the perceived information metric that we will use for this
purpose, and then provide the rationale behind our new approach.

3.1 The Perceived Information

The Perceived Information (PI) was introduced in the context of side-channel attacks
against cryptographic devices, of which the goal is to recover some secret data (aka
key) given some physical leakage [7, 10]. The PI aims at quantifying the amount of
information about the secret key, independent of the adversary who will exploit this
information. Informally, we will use this metric in a similar way, by just considering
users as the data to recover, and observations as leakages. Using the previous notations,
we can first define the Mutual Information (MI) between the users random variable U
and the observation random variable O:

MI(U ;O) = H[U ] +
X

u

Pr[u] ·
X

o

p(o|u) · log2 Pr[u|o],
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if the observations are discrete, and:

MI(U ;O) = H[U ] +
X

u

Pr[u] ·
Z

f(o|u) · log2 Pr[u|o] do,

if they are continuous. For conciseness, we use the notation Pr[X = x] =: Pr[x]
whenever clear from the context. In these equations, the last probability Pr[u|o] is
derived via Bayes’ theorem, e.g. Pr[u|o] = f(o|u)P

u

⇤ f(o|u⇤)
for the continuous case, and H[U ]

is computed based on the a priori distribution of the users (e.g. H[U ] = log2(n) if it is
uniform). Concretely though, and as previously discussed, the true distribution of the
attributes is always unknown. Therefore, it is not possible to compute the MI directly
(excepted in the case of simulated DB). In order to avoid this caveat, the approach
in side-channel analysis, that we repeat here, is to split the DB that one wishes to
evaluate in two parts: the first one, denoted as DBl is used for learning a model, the
second one, denoted as DBt is used to test it.⇤ The PI is then computed in two phases:

1. A probabilistic model p̂jmodel (resp. f̂jmodel) is estimated for each user uj, which we
denote with the conditional distribution p̂jmodel(o|uj) DBl (resp. f̂jmodel(o|uj) DBl).
Note that in the discrete case, such a model can be quite close to the previously defined
pseudo-probabilities. The main conceptual di↵erence is that this model is only built
from a (learning) part of the DB that will be tested on independent observations (in the
second phase below), and can be “simplified” (see, e.g. the example in Subsection 4.4
taking advantage of an independence assumption). In the continuous case, di↵erences
are generally more explicit, since the model will be based on a continuous distribution.

2. The model is tested by computing the PI estimate:

P̂I(U ;O) = H[U ] +
n

X

j=1

Pr[uj] ·
nt

u

j

X

k=1

1

nt
u
j

· log2 P̂r
model

[uj|okj ],

where nt
u
j

is the number of observations for user uj in DBt, and P̂r
model

[uj|okj ] is derived

from p̂jmodel (resp. f̂jmodel) via Bayes’ theorem, as in the classical MI computation. In
the ideal case where the model is perfect, the PI is an estimate of the MI (i.e. its value
tends towards the MI one as the number of samples in DBt increases). In the practical
cases where the model di↵ers from the attributes’ true distribution, the PI captures
the amount of information that is extracted from the DB, biased by the model errors.
That is, the PI becomes lower than the MI as the model errors increase, and can be
negative in case the model does not approximate at all the attributes’ true distribution.

3.2 Perceptual utility rationale

In the following, we will say that a DB is perceptually useful if it allows extracting a
large amount of PI. Here, the word perceptual relates to the fact that the definition
of the PI is based on a model for the DS attributes, which may be incorrect (because
of estimation or assumption errors), or become incorrect at some point (since it is
hard to perfectly characterize users in the long term, e.g. because of preference or
habit changes). Intuitively, a perceptually useful DB implies that the collected data
represents well the DS. Hence it is fundamentally di↵erent from metrics based on the
pseudo-probabilities of a DB, and will be concretely di↵erent when the number of
samples in a DB is too low for characterizing the attributes accurately. More precisely,

⇤ One can possibly split the DB in more parts in order to take advantage of cross-validation [4].
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the two main advantages of this definition of utility relate to two recent results in
the field of side-channel attacks. (1) The perceived information can be used to bound
the success rate of a Bayesian adversary trying to distinguish a user based on “new”
samples of his DS (i.e. independent of the samples used to build the model) – which is
in contrast with the k-anonymity game, where the goal is to identify a user based on
an observation in a DB. Hence, it relates to the “best possible” characterization of the
attributes that can be obtained thanks to statistical sampling [3]. (2) The perceived
information can benefit from “leakage certification” tests [4], which aim to guarantee
that the PI is “close enough” to the MI. In such cases, we have that the collected
data is “useful for anything” since it nearly perfectly represents the true distribution
of the attributes. We intentionally leave these advantages informal because of place
constraints and refer to [3, 4] for more details. Note that that our notion of perceptual
utility is based on whether some user distributions are well characterized. This directly
corresponds to probabilistic DB. However, even in the case of deterministic DB, one
will generally describe group features, in which case the deterministic user data also
becomes probabilistic. Eventually, in the extreme case where a single group has to be
characterized, the conditional distributions in the PI derivation become irrelevant, but
one can still exploit leakage certification to verify that this single group is well described.

4 Simulated experiments

In this section, we analyse the evolution of the k-anonymity and perceptual utility in the
context of a simulated database containing individuals’ shopping lists. We first define
our simulation settings. Next, we put forward a number of intuitions regarding the
impact of aggregating atributes, grouping users and the list’s curse of dimensionality.

4.1 Simulation settings

We consider a DS (corresponding to a shop) with n users (aka clients). The shop sells
Ni di↵erent items. For simplicity, each item can be puchased in Nq (integer) quantities.
Hence, we have a set of Nl = NN

i

q possible shopping lists:

L = {(qi
1

, qi
2

, . . . , qi
N

i

)|1  qi
j

 Nq},

that we will also denote as L = {l1, l2, . . . , lN
l

}. For example, a shop with Ni = 2 items
and Nq = 3 quantities will lead to the following set of 32 = 9 lists:

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.
In this context, each user uj has a single attribute. We define our simulated DS by
selecting the user’s probability functions pj1(o|uj). For this purpose, for each user we
pick up Nl values at random from a normal distribution N (µ, �) that we normalize
(adapting the variance allows us to make users more or less di↵erent). Concretely, we
analyzed a case study with n = 100 users, Ni = 4 items and Nq = 5 quantities. The
number of observations per user will be variable in our experiments, but it is always
identical for all users. Eventually, and taking advantage of our simulated context,
we will report results averaged over 100 sampled DB (which allows obtaining smooth
curves and gaining intuition about the average behavior of our metrics).

4.2 Impact of aggregation

As a first illustration of the tradeo↵ between k-anonymity and perceptual utility, we
investigate the impact of a simple aggregation process for the previously defined shop-
ping list attribute. Namely, we define Na-aggregated shopping lists as lists where sets
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of Na original (consecutive) items are considered as single (aggregated) items that can
be purchased in N 0

q = Na · (Nq � 1) + 1 quantities. This reduces the cardinality of the

set of lists from NN
i

q down to N 0N
i

/N
a

q . For simplicity, we only consider cases wher Na

divides Ni. Figure 1 represents the evolution of the k-anonymity and the PI in function
of the size of the DB (measured in number of observations per user), for the 100-users
DB defined in the previous subsection, with and without aggregation. By making users
more similar, the aggregation process asymptotically increases the k-anonymity and de-
creases the PI. But quite interestingly, we see that for DB with up to 1500 observations
per user, the PI of the aggregated data is in fact larger than for the orginal one. This
typically corresponds to the “win-win” scneario mentioned in introduction. That is,
the amount of data collected is not su�cient to fully characterize the original lists. So
aggregation allows improved k-anonymity without any loss of (perceptual) utility.

Figure 1: Average impact of aggregating items.

(a) k-anonymity. (b) Perceived Information.

4.3 Impact of grouping

We now study a complementary experiment in which the users are grouped in subsets.
For this purpose, and in order for the grouping to make sense, our DS described in
Subsection 4.1 actually embeds an additional feature that we now detail. Namely, we
only created q = 10 user’s probability functions pj1 (with 1  j  q), and each of them
was repeated 10 times to obtain n = 100 users. In this context, one can naturally
group each subset of 10 identical users together. As illustrated in the right part of
Figure 2, this significantly improves the convergence of the PI metric (since we have
10 times more observations per user). Furthermore, if the grouping is perfect (i.e. if
the users of each group have identical distributions), there is no perceptual utility loss
since, e.g. in our simulated case, we have:

Figure 2: Average impact of grouping.

(a) User k-anonymity. (b) Perceived Information.
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MI(U ;O) = log(100) +
P100

u=1
1

100

P

o p(o|u) log Pr[u|o];
= log(100) +

P10
g=1

10
100

P

o p(o|g) log 1
10

Pr(g|o);
= log(10) +

P10
g=1

1
10

P

o p(o|g) log Pr(g|o);
= MI(G;O).

So the gap between the PI curves in Figure 2 is only due to a lack of samples
to characterize the ungrouped users. As for the k-anonymity in the left part of the
figure, it is positively impacted by grouping as well. Indeed, whenever grouping, any
observation recorded for a user uj will be only be labeled as belonging to a group gj. So
in the simple case where groups have identical sizes, we can derive the user k-anonymity
by multiplying the group k-anonymity by the group size. This implies a minimum k-
anonymity of 10. Quite naturally, the situation substantially di↵ers when the grouping
is imperfect, as reflected in Figure 3. In this case, the characterization is still faster.
However, it comes at the cost of a perceptual utility loss. This loss can be explained by
the distributions of the groups that are becoming more similar, which is also reflected
in a larger k-anonymity. Let us finally mention that grouping is an relevant option to

Figure 3: Impact of imperfect grouping.

(a) User k-anonymity. (b) Perceived Information.

preserve (generalizations of) k-anonymity when multiple observations for probabilistic
attributes are leaked for a single user (since their combination usually allows better
identification), which is an interesting scope for further research.

4.4 The curse of dimensionality

As clear from the previous discussions, the size of the sample space for shopping lists’
distributions grows exponentially in the number items they contain. This suggests
that exhaustively characterizing lists rapidly turns out to be infeasible (despite our
toy examples made it possible by limiting Ni to 4). In this context, a last natural
direction, that we investigate in this subsection, is to characterize items independently.
As illustrated in the right part of Figure 4, this indeed allows making the collected data
perceptually useful much faster. We further observe that the independence assumption
was incorrect in our setting, since the characterization of four independent items is
significanly less informative than the one of full lists (yet more informative than the
characterization of a single item, as expected).

Interestingly, and assuming that only single items have to be characterized, it also
becomes possible to sanitize a DB with “utility-preserving” operations that substan-
tially increase the k-anonymity. In particular, it is easy to see that some types of data
swapping (similar to the proposal in [6]) will not a↵ect the utility of items considered
independently. For example, let us assume 3 user observations o1, o2, o3 made for 3
items i1, i2, i3. In this case, any permutation of the lines below will lead to “potential
user observations” o01, o

0
2, o

0
3 that do not a↵ect the items’ characterization:
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o1 o2 o3

i1 1 0 1
i2 0 0 1
i3 2 1 1

swap!

o01 o02 o03
i1 0 1 1
i2 0 1 0
i3 2 1 1

Since the permutations are unknown, such operations increase the number of potential
user observations, and therefore the k-anonymity. Quite naturally, this also makes the
computation of the k-anonymity more challenging, but it at least guarantees that as
soon as every quantity appeared once for every user and item, the k-anonymity will
be maximum. As illustrated in the left part of Figure 4, this condition was typically
observed after 1500 observations per user in our example.† As the previous grouping,
this type of anonymization will preserve k-anonymity even in contexts where multiple
observations are leaked about a user. But contrary to grouping, it will not maintain
the probabilistic anonymity metrics such as the privacy degree in [2].

Figure 4: Independent items characterization.

(a) k-anonymity. (b) Perceived Information.

Note that this last subsection also suggests that in most practical cases, the utility
will be very perceptual (i.e. the PI will significantly di↵er from the MI), because of
the di�culty to characterize large distributions in a non-parametric manner. However,
making assumptions about a distribution (as in our last experiment) is still di↵erent
than deciding in advance the goal for which some data is collected - which makes
perceptual utility di↵erent than more specific metrics.

5 Conclusions

In the present state-of-the-art, privacy and utility are essentially seen as two di↵erent
and conflicting goals. However, there are examples where privacy metrics such as
the k-anonymity can be improved without loss of perceptual utility, as shown in this
paper. And more fundamentally, the most striking conclusion of our experimental case
studies is that, as the number of samples in a DB increases, both the k-anonymity and
the characterization of its users generally increases. This suggests that anonymity (in
general) and perceptual utility could in fact be two di↵erent facets of privacy. On the
one hand, anonymity allows a user to deny allegations (i.e. claiming that he is not
the only one having some attributes). On the other hand, useful data characterizes
its users, which potentially allows identifying them based on observations that are
not (yet) in the DB. In this respect, an important scope for further research will
be to better connect anonymity metrics with perceptual utility. We anticipate that
considering k-anonymity in front of multiple observations, and its extension towards
(pseudo) probabilistic metrics such as the privacy degree in [2], could be an interesting

† By slightly biasing the DB with additional fake observations (which will then decrease its per-
ceptual utility), we can easily enforce that this condition is met earlier.
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direction for this purpose. Note that such connections can only exist asymptotically
(i.e. for large enough DB), since conceptually, it always remains that perceptual utility
requires that the samples in a DB represent well the true distribution of some attributes,
while anonymity is defined based on the samples of the DB (i.e. independent of whether
they are su�cient to characterize the attributes). Natural connections are also foreseen
with the location privacy metrics in [9], for which characterization is indeed a central
ingredient of the definition. For large enough DB, investigating the links between
perceptual utility and the success rate, that have been proved useful in cryptographic
contexts, is an important open problem as well (which could potentially improve the
evaluation of location privacy). More generally, applying the tools in this paper to
real case studies, and investigating the risks when combining multiple DB, is certainly
needed to confirm their relevance and improve understanding. Eventually, developing
tools to characterize the evolution of a user’s profile over time (i.e. what is the impact
of a change of preferences or habits on privacy and utility) is yet another challenge.
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Abstract

In a Passive Keyless Entry (PKE) system the user does not have to use a physical
key actively to get access to the system. The presence of the key in the vicinity of
the system is su�cient to get access. PKE is a feature introduced by car manufac-
turers some time ago. PKE systems are prone to so-called relay attacks in which
the attacker can relay messages between car and key fob such that the electronics
in the car believe that the key fob is in the vicinity of the car. Distance-bounding
protocols enable the verification that a legitimate key is not further away from
the car than it should be to grant access to the car. An element of the distance
bounding protocol is the ability to determine the range between car and key. Im-
pulse Radio Ultra-Wideband (IR-UWB) modulation due to its short time pulses
is suitable to do range measurement using Time-of-Flight techniques. Next to
ranging, IR-UWB modulation is also suitable for realizing low-power low-cost
communication. The pulse based communication o↵ers possibilities to make the
reception resilient to multipath propagation. RAKE processing is a method to
coherently add up the energy of the individual reflected paths. For this purpose
channel estimation has to be carried out. In this paper the influence of channel
estimation inaccuracies on the receiver performance is investigated.

1 Introduction

Car manufacturers are gradually introducing Passive Key Entry (PKE) as a comfort
feature in cars. The user can unlock the car without actively pushing a button on her or
his key fob. The detection by the car electronics of the key fob in the vicinity of the car is
su�cient to unlock the car. A PKE system without proper vicinity check is vulnerable
to so-called relay attack. In Section 2 a relay attack in the context of a PKE system
is explained. Distance bounding is a way to protect against a relay attack. It requires
Time-of-Flight measurements, for which Impulse Radio Ultra-Wideband (IR-UWB)
modulation is proposed. IR-UWB can also be used for low-power communication in a
multipath environment. RAKE processing is an essential receiver operation to make the
communication reliable. Some results from literature related to UWB channel models
and RAKE receivers are presented in Section 3. For channels with a large delay spread
it is known that it makes sense to have a large amount of RAKE fingers for collecting
the energy of many multipath reflections. In Section 4 it is investigated whether it
makes sense to implement a large amount of RAKE fingers when the receiver’s channel
estimate is su↵ering from inaccuracies. Finally, in Section 5 some conclusions are
provided.

121



2 Passive Key Entry systems

A Passive Key Entry system is a system that provides a user access to a protected
area (e.g. home, o�ce or car) without the need of using its key fob actively. The only
requirement is that the user has the key fob with him or her and that he or she is in
the protected area.

In literature the setting above is often referred to as a location verification problem
between a verifier (in our setting the car) and a prover (in our setting the car key fob).
Moreover, the location verification in our setting is confined to a distance verification
problem. When a user is in the proximity of the car, the car detects the presence of a
key fob and can initiate communication with the key fob such that credentials of the
key fob can be authenticated by the car.

Figure 1: Typical scenario for a relay attack of a PKE system

However, this approach is vulnerable to a so-called relay attack [1]. A person
with bad intentions can trigger the car short range detection means and relay the
communication of messages between the car and the key fob, see Figure 1. A solution
to the relay attack is that a key fob can prove its proximity to the car in a way that
cannot be modified in favor to a malicious person. Distance bounding [2] is a method
to defeat relay attacks and is based on the fact that information is local and cannot
travel faster than light. By measuring Time-of-Flight (ToF) of messages the distance
between key fob and car can be determined. An adversary can only relay the messages
that are exchanged but cannot insert messages that shorten the ToF without knowing
the secret.

Device A Device B

t=tAT

tBR=tAT + tp + t0

Distance bounding 
challenge

t=tBT

tAR=tBT + tp - t0

Distance bounding 
response

tp: one way time-of-flight
t0: clock offset between A and B

tp = ½(tAR-tAT) – ½(tBT-tBR)

CA(tAT)

CB(tBR)

CB(tBT)

CA(tAR)

tp 

tp 

treply,B
tround,A

Figure 2: Determining the distance by two-way ToF measurement

In Figure 2 the principle of distance determination by two-way ToF measurement
is shown. Device A wants to check whether device B is inside or outside the protected
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zone. It sends a challenge message to device B and at the same time starts a timer.
Device B computes the response and sends it back to Device A. At reception of the
response, Device A stops its timer and verifies the response. Using its timer values,
device A can determine the round trip delay and after compensation with the processing
time of device B (either fixed or appended to the response in an encrypted way) it can
calculate the ToF and therefore also the distance to device B.

IR-UWB is a modulation method that is very well suited for doing precise ToF
measurements. The used pulse shape is narrow and provides therefore a good time
resolution. Moreover, the short pulse shape gives an adversary little room to detect
the leading edge of a pulse, analyze the modulation content and to advance the mod-
ulated pulse in time with a large amplitude. Moreover, IR-UWB modulation lends
itself to making low-power implementations and can be made resilient to multipath
propagation. The resilience to multipath propagation can be accomplished by using
low duty cycling signalling. In combination with short pulses, reflected pulses will have
less probability of overlapping each other. The dispersion of signal pulses in time can
be compensated by using a RAKE receiver [3]. A RAKE receiver attempts to time
align the reflected pulses and to add them up coherently. A RAKE finger is the pro-
cessing part of a RAKE receiver that captures an individual received pulse, provides it
with an appropriate delay and complex weight such that the pulse can be coherently
added to the other pulses. The amount of fingers to implement is a trade-o↵ between
implementation complexity and receiver performance.

3 UWB Channel and RAKE receiver

UWB communication is standardised in IEEE802.15.3a and IEEE802.15.4a. Chan-
nel models with several profiles for evaluating PHY proposals were defined. The
IEEE802.15.3a channel models [6] represent typical indoor channel environments and
are based on a modified Saleh-Valenzuela model. The RMS delay spread varies from 5
till 25 ns. In Morche et. al. [4] these channel models are used to simulate the perfor-
mance of a RAKE receiver. As a trade-o↵ between performance and complexity it was
decided to implement a RAKE receiver with only 4 fingers. For the channel with an
RMS delay spread of  15 ns, less than 2 dB energy was lossed compared to a receiver
that collected all multipath components. Using 4 fingers on a channel with an RMS
delay spread of 25 ns results in a loss of more than 3 dB. The number of paths needed
to recover 85% of all energy grows fast with increasing RMS delay spread. For an RMS
delay spread of 15 ns more than 50 fingers are needed while for 25 ns over 100 finger
are needed.

Similarly, based on measurements in several environments, a statistical channel
model was developed and accepted as a standard model for evaluation of UWB sys-
tem proposals by the IEEE802.15.4a Task Group. In the paper of Ahmadian et.al.[5]
simulations are carried out with an IEEE802.15.4a receiver on some of the channel
models defined by the Task Group. They investigated how the performance (in terms
of BER and/or FER) depends on the number of used RAKE fingers. As a reference
they compare to a so-called all-RAKE (ARAKE) configuration in which all channel im-
pulse response contributions are used in the combining. Selective RAKE (SRAKE) is a
combining method in which the Ls RAKE fingers are assigned to the channel impulse
response contributions with the largest magnitude. The performance results presented
in [5] show that for the Residential environment (NLOS) channel model (CM2) the
performance of an SRAKE with L = 20 fingers approaches the performance of an
ARAKE receiver. However, for the Outdoor NLOS channel model (CM6) many more
fingers are needed in order to approach the ARAKE performance (See Figure 3).

Measurements conducted by Karedal et.al. [9] show that in an industrial envi-
ronment with NLOS, more than 100 multipath components need to be combined in
order to collect over 50% of the total energy. In the next section it is investigated how
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Figure 3: SNR loss of SRAKE compared to ARAKE as function of the number of
RAKE fingers [5]

realistic a RAKE receiver with such a huge number of RAKE fingers is.

4 RAKE processing with estimation errors

For our analysis we assume a stationary channel with a channel impulse response
consisting of Lmax multipath components :

h(t) =
L
max

�1
X

i=0

hi�(t � ⌧i) (1)

Furthermore we assume that BPSK or PAM modulation is employed using IR-UWB
communication with a low pulse repetition rate. When transmitting a symbol X
through the channel, the received signal is equal to :

r(t) = X
L
max

�1
X

i=0

hi�(t � ⌧i) + n(t) (2)

In a RAKE finger i, i 2 {0, . . . , L} for some L  Lmax, we receive Ri = Xhi + ni,
where ni is AWGN. In an ideal RAKE receiver, the RAKE finger contributions are
appropriately time aligned and added using RAKE finger coe�cients ci = h⇤

i , leading
to the decision variable U :

U =
L�1
X

i=0

Rici =
L�1
X

i=0

Rih
⇤
i =

L�1
X

i=0

X|hi|2 + nih
⇤
i (3)

We observe that the decision variable U consists of a signal part Us =
PL�1

i=0 X|hi|2 and
a noise part Un =

PL�1
i=0 nih⇤

i . The realised signal to noise ratio for combining L  Lmax
fingers is :

SNRideal(L) =
E[UsU⇤

s ]

E[UnU⇤
n]

= X2

PL�1
i=0 |hi|2
�2
n

, (4)

The realised SNR is a positive non-decreasing function of the number of applied RAKE
fingers L and is a function of the channel realisation.
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In order to implement a RAKE receiver, both the path amplitude and the path delay
have to be estimated. Estimation errors in the path delay and the path amplitude will
lead to performance degradation of the RAKE receiver [7, 8]. In the analysis below,
we only assume estimation errors in the path amplitude. Due to estimation errors
we assume that the RAKE coe�cients are polluted with estimation noise, which we
assume to be additive and i.i.d. Gaussian distributed, i.e. ci = h⇤

i + mi, where mi is a
complex Gaussian variable with variance �2

m.
Now we want to determine the decision variable in case of non-perfect RAKE coef-

ficients :

U =
L�1
X

i=0

Rici =
L�1
X

i=0

Ri(h
⇤
i + mi) =

L�1
X

i=0

X|hi|2 + Xhimi + nih
⇤
i + nimi. (5)

The signal part of the decision variable remains unchanged, but the noise part
has now 3 contributions. The noise contribution of RAKE finger i is equal to Un,i =
Xhimi + nih⇤

i + nimi.
We assume that the coe�cient noise, additive noise and the path amplitude are

uncorrelated. In Sheng & Haimovich [8] it is shown that the variance of the coe�cient
noise due to path amplitude estimation errors can be written as :

�2
m =

1

M

�2
n

X2
, (6)

where M stands for the estimation e↵ort to estimate the channel and is linear with the
number of preamble or pilot symbols that are used for channel estimation.

Using this relation between noise variance and combiner tap variance we obtain :

SNRnon�ideal(L) =
SNRideal(L)

1 + 1
M [1 + L/SNRideal(L)]

(7)

For perfect channel estimates (limM ! 1) SNRnon�ideal(L) converges to the ideal
RAKE receiver SNRideal(L). In case of non-perfect channel estimates SNRnon�ideal(L)
can have a maximum. As function of L, SNRideal(L) will converge to an end value
and for some value of L SNRnon�ideal(L) will not increase anymore but instead it will
decrease. Figure 4 is an illustration of this behaviour, the green and blue SNR curves
show the achieved SNR as function of the number of RAKE fingers for a channel
realisation.

Simulations using the exponential channel model [10] are carried out to determine
the average number of RAKE fingers needed to maximize the SNR and the SNR loss
compared to an ideal RAKE receiver. The model is a multipath model from which
the taps are independent complex Gaussian variables with average power profile that
decays exponentially. For the exponential channel model the following set of RMS
delay spreads were used: ⌧RMS 2 {5, 10, 20, 50, 100} [ns]. To investigate the estima-
tion accuracy the parameter M is taken from the set {1, 2, 5, 10, 20, 50}. Two main
concepts of RAKE receiver were investigated: SRAKE and partial RAKE (PRAKE).
With PRAKE the L RAKE fingers are assigned to the multipath components accord-
ing to their time arrival. Note that due to imperfect channel estimation the RAKE
finger assignment in SRAKE becomes hypothetical. As an upperbound to the expected
performance we assume for SRAKE an assignment of RAKE fingers according to the
true impulse response. Our first interest is in assessing the number of RAKE fingers
that maximize the SNR. This number is determined as a function of the RMS delay
spread and as function of the estimation accuracy.

In Figure 5 and 6 the results are shown for both an SRAKE and a PRAKE receiver.
Due to the unsorted channel impulse response, the PRAKE receiver needs many more
RAKE fingers to optimize the SNR than an SRAKE receiver.
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Figure 5: Average number of RAKE fingers to maximize SNR as function of RMS
delay spread

The optimum number of RAKE fingers shows a linear relation with both the RMS
delay spread and the estimation accuracy parameter M . Increasing the estimation
e↵ort (increase of M) allows to use more RAKE fingers without sacrificing SNR.

The results in Figure 7 show that the SNR loss as function of the RMS delay spread
increases. The SNR loss for the SRAKE solution is in the order of 2 dB less than for
the PRAKE receiver. The SNR loss as function of the estimation e↵ort is shown in
Figure 8. The graphs show that for an RMS delay spread of � 50 ns, quite some
estimation e↵ort (M � 50) has to be made in order to bring the SNR loss below 5 dB.

5 Conclusions

In this paper the performance of RAKE receivers with imperfect channel estimates
is investigated. Using the exponential channel model in simulations it is shown that
the number of RAKE fingers to be used should be chosen carefully. The realized
SNR as function of the number of RAKE fingers has a maximum, meaning that using
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Figure 6: Average number of RAKE fingers to maximize SNR as function of M
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Figure 7: Average SNR loss compared to ideal RAKE as function of RMS delay spread

more fingers than this maximum will result in an SNR penalty. The consequences of
non-perfect channel estimation are that less of the available multipath energy can be
used and that the realized SNR will be smaller than in an ideal RAKE receiver. The
maximum SNR and the corresponding optimal number of RAKE fingers depend on
the channel realisation and extra acquisition e↵ort is needed in the receiver to limit an
extra SNR penalty due to using a wrong number of RAKE fingers.

Theoretically, an SRAKE receiver is a good trade-o↵ between SNR performance
and implementation complexity. However, due to imperfect channel estimates, the
selection of the strongest multipath components cannot be done reliable. Therefore
significant more RAKE fingers will be needed and an extra penalty in the realized
SNR can be expected.

In future work we like to investigate possibilities to close the gap between SRAKE
and PRAKE receivers by using a reliable selection criterion. Moreover, we like to make
an implementation that is less sensitive to L variation.
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Abstract

Binary puzzles are interesting puzzles with certain rules. A solved binary puzzle
is an n ⇥ n binary array such that there are no three consecutive ones and also
no three consecutive zeros in each row and each column, the number of ones and
zeros must be equal in each row and in each column, every two rows and every
two columns must be distinct.
Binary puzzles can be seen as constrained arrays. Usually constrained codes
and arrays are used for modulation purposes. In this paper we investigate these
arrays from an erasure correcting point of view. We give lower and upper bound
for the rate of these codes, the probability of correct erasure decoding and erasure
decoding algorithms.

1 Introduction

Sudokus are nowadays very popular puzzles and they are studied for their mathematical
structure [2, 5, 18]. For instance the minimal number of entries that can be specified
in a single 9 ⇥ 9 puzzle to ensure a unique solution was in [14] conjectured to be
17, and this was proved by means of the chromatic polynomial of the Sudoku graph
[7]. Furthermore the erasure correcting capabilities and decoding algorithms of the
collection of n ⇥ n a Sudokus are considered [13, 16]. The asymptotic rate is still an
open problem [1, 7]. Solving an n ⇥ n Sudoku puzzle is an NP-hard problem [17].

The binary puzzle is also an interesting puzzle with certain rules and is the focus of
this paper. We look at the mathematical theory behind it. The solved binary puzzle
is an n ⇥ n binary array that satisfies:

1. no three consecutive ones and also no three consecutive zeros in each row and
each column,

2. every row and column is balanced, that is the number of ones and zeros must be
equal in each row and in each column,

3. every two rows and every two columns must be distinct.

Figure 1 is an example of a binary puzzle. There is only one solution satisfying
all three conditions. But there are 3 solutions satisfying (1) and (2). The solution
satisfying three all conditions is given in Figure 2. Figure 3 and 4 are solved puzzles
where the third constraint is excluded.

Binary and Sudoku puzzle can be seen as constrained arrays. Usually constrained
codes and arrays are used for modulation purposes [8, 9]. We investigate these arrays
from an erasure correcting point of view. We give lower and upper bound for the
rate of these codes, the probability of correct erasure decoding and erasure decoding
algorithms.
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Figure 1: Unsolved Puzzle Figure 2: Solved Puzzle

Figure 3: Solved Binario Puzzle with
repetition of column/row allowed

Figure 4: Solved Binario Puzzle with
repetition of column/row allowed
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2 Constrained sequences and constrained array

Let C be a code in Qn, where the alphabet Q has q elements.
Recall that the (information) rate of C is defined by

R(C) =
logq |C|

n
.

In the following Q = F2, n = lm and Fl⇥m
2 is the set of binary l ⇥ m arrays. Define:

Al⇥m = {X 2 Fl⇥m
2 | X satisfies (1) };

Bl⇥m = {X 2 Fl⇥m
2 | X satisfies (2) };

Cl⇥m = {X 2 Fl⇥m
2 | X satisfies (3) };

Dl⇥m = {X 2 Fl⇥m
2 | X satisfies (1), (2) and (3) }.

The theory of constrained sequences, that is for l = 1, is well established and
uses the theory of graphs and the eigenvalues of the incidence matrix to give a linear
recurrence. An explicit formula for the number of such sequences of a given length
m can be expressed in terms of the eigenvalues. The asymptotical rate is equal to
logq(�max), where �max is the largest eigenvalue. See [8, 9]. Shannon [15] showed
already that the following relation holds for m � 1:

|A1⇥(m+2)| = |A1⇥(m+1)| + |A1⇥m|.

Asymptotically this gives

R(A1⇥m) ⇡ log2

✓

1

2
+

1

2

p
5

◆

, for m ! 1

The number of balanced sequence is equal to a number of combination of ones, that
is B1⇥2m =

�

2m
m

�

and asymptotically R(B1⇥2m) ⇡ 1, for m ! 1.
It was shown [6, 10, 11] that the balanced property does not influence the asymptotic
rate of constrained sequences. So R(A1⇥2m \ B1⇥2m) ⇡ log2

�

1
2

+ 1
2

p
5
�

, for m ! 1.
We expect that a similar result holds for balanced constrained arrays.

For arrays we know that
�

2l
l

�m  |B2l⇥2m| 
�

2l
l

�2m
. From these inequalities it is can

be shown that, asymptotically:

1
2

. R(B2m⇥2m)  1, for m ! 1

Four arbitrary elements of B2m⇥2m gives an element of B4m⇥4m. So |B4m⇥4m| �
|B2m⇥2m|4. Therefore R(B2m⇥2m) is increasing in m.

Now, consider Cl⇥m. We clearly have that |Cl⇥m|  2m(2m � 1) · · · (2m � n + 1).
Furthermore, if m = n, |C(n+1)⇥(n+1)| � |Cn⇥n| · (22n+1 � 2n2n + n2).
This implies that, asymptotically:

R(C2m⇥2m) ⇡ 1, for m ! 1

The size of D2m⇥2m can be approximated by smaller building blocks such that the
conditions are still satisfied [4]. There are exactly two building block of size 2 ⇥ 2.

131



Hence, R(D2m⇥2m) � 1
(2m)2

log2(2
m2

) = 1
4
, for m � 1.

Numerically, we have

m A2m⇥2m B2m⇥2m C2m⇥2m D2m⇥2m

Size Rate Size Rate Size Rate Size Rate
1 16 1 2 0.25 10 0.83 2 0.25
2 2030 0.69 90 0.41 33864 0.94 76 0.39
3 3858082 0.61 ? ? ? ? 5868 0.34

3 Erasure Channel

Suppose Q is a set of an alphabet and C is a code in Qn.
Define Q̂ = Q [ {�}, where the symbol ”-” denotes a blank, that is an erasure.

Suppose r is the received word given that c is sent. We have d(r, c) is the Hamming
distance between r and c. Since the errors are only blanks, d(r, c) equal to the number
of blanks in r. Let c(r) be a closest codeword to r, then d(r, C) = d(r, c(r)). Let p
be the probability that a symbol is erased, and let Ped,C(p) denote the probability of
correct erasure decoding. Then

Ped,C(p) =
X

c2C

P (c)
X

r2Q̂
c(r)=c

P (r|c)

Suppose Ei(C) = {r 2 Q̂n|d(r, C) = i} and Ei(C) = |Ei(C)|.
Define the homogenous erasure distance enumerator for code C by

EC(X, Y ) =
n
X

i=0

Ei(C)Xn�iY i

Proposition 3.1

Ped,C(p) =
1

|C|EC(1 � p, p)

Proposition 3.2 Let C ✓ Qm and D ✓ Qn. We have

EC⇥D(X, Y ) = EC(X, Y ) · ED(X, Y )

Corollary 3.3
Ped,C⇥D(p) = (Ped,C(p)) · (Ped,D(p))

Corollary 3.4
Ped,Cn(p) = (Ped,C(p))n

132



4 Binary Puzzle Solver

Binary puzzle can be seen as a SAT problem. Since each cell in the binary puzzle
can only take the values ‘0’ and ‘1’, we can express the puzzle as an array of binary
variables, where false corresponds to ‘0’ and true to ‘1’. Next, we express each condition
in terms of a logical expression.

Suppose we have an 2m⇥2m array in the variables xij. The array satisfies the first
condition, that there are no three consecutive ones and also no three consecutive zeros
in each row and each column, if and only if the expression below is true:
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For satisfying the second condition on balancedness, the following expression must
be true
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Note that the complexity of this expression grows as
�

2m
m

�

which is exponentially in m.
An alternative polynomial expression can be obtained.

The satisfiability of the third condition, that every two rows and every two columns
must be distinct, is equal to
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It is shown in [3] that the binary puzzle is NP-complete.
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Abstract

We develop a distributed multiband spectrum sensing detector for cognitive
radios based on compressed measurements that does not rely on signal recon-
struction. A fusion centre collects the measurements from di↵erent sensing nodes
and then makes a sensing decision based on a simplified maximum likelihood cri-
terion which is valid for both analog to information implemented in the paper
(MWC and NUP) and does not require prior signal information. Simulation
results for probability of erroneous detection and ROC curves show that the per-
formance of the proposed detector is good. Plus, it has a low computational
complexity.

1 Introduction

It is well known that static frequency allocation has lead to the scarcity of spectral
resources. Assigning fixed frequency bands to ever-evolving new applications is both
expensive as well as unfeasible. However, this necessitates very large sampling rates
(proportional to the spectrum bandwidth) which can heavily stress analog-to-digital
converters (ADCs) in terms of power consumption. Recently, the theory of compressed
sampling (CS) [3] has received considerable attention among research community as a
means to reduce the sampling-rate constraints on the design of CR systems. In the
context of CRs, CS is based on the fact that given the sparsity of the signal in the
frequency domain, sampling rates can be made significantly lower than the Nyquist
rate without loosing much information. This may potentially facilitate simpler imple-
mentation of the ADCs and digital processors.

In the traditional CS framework, signal needs to be recovered from its compressed
samples. A plethora of algorithms are available to provide reliable recovery of the
sparse signal: matching pursuit (MP), orthogonal matching pursuit (OMP) [4], com-
pressive sampling matching pursuit (CoSaMP) [5], basis pursuit (BP) [6], least absolute
shrinkage and selection operator (LASSO) [7]. Note that most of these algorithms are
quite complex and often consume a lot of computational resources. However, signal
reconstruction may not be necessary in many signal processing applications as one may
only be interested in solving an inference problem. Davenport et al. have demonstrated
that it is possible to tackle the problem of detecting a known signal buried in noise, i.e.,
classification of the signals, directly in the compressive domain without first resorting
to a complex signal reconstruction [8], [9]. Many other works focusing on solving a
detection problem directly from the compressed samples are also available, e.g., [10],
[11]. Continuing this direction of research, we focus on developing e�cient detectors
for CR systems, based on compressed measurements.

We have recently extended [9] to the optimal maximum likelihood (ML) detection of
linearly modulated signals of unknown parameters occupying unknown frequency sub-
channels [12] by using the compressed measurements only. We basically focused on the

135



functionality of an individual CR. However, the use of distributed spectrum sensing
algorithms is recommended to cope with the fading phenomenon present in all wireless
communications systems. In this paper, we basically combine our proposed approach
in [12] with the distributed signal processing, where instead of focusing on a single
CR, multiple CRs generate compressed measurements which are then transmitted to
the fusion centre (FC). This results in saving sensing resources at individual CRs as
well as reduces the capacity requirements of the control channels. This is in contrast
with the existing contributions in literature which aim at reconstructing the wideband
signal spectrum at the FC by defining a sparsity model common to all sensing nodes
[16], [14]. We propose the detection of a primary signal directly in the compressive
domain which does not rely on signal reconstruction from its compressed measurements.
The proposed multiband signal detection procedure is optimized according to the ML
detection criterion for a distributed CR scenario. A closed-form expression of the
detection metric is obtained by carefully approximating the likelihood function. We
demonstrate that the CS analog-to-information converter (AIC) can advantageously be
implemented by a distributed network of sensing nodes. In this paper we consider two
di↵erent realizations of the AIC. The first is a modulated wideband converter (MWC)
[15], where the received signal is first multiplied with a high-rate binary spread code
and then sampled at a low sampling rate after a low-pass filtering stage. The second is a
non-uniformly periodic (NUP) sampling, where the received signal is delayed then sub-
sampled. Each sensing node implements a branch of MWC or the NUP. The sensing
nodes then transfer the low-rate sample sequence of the received signal to the FC for
multiband detection. The performance of the proposed detector is exhibited by means
of numerical simulations for probability of erroneous detection and receiver operating
characteristic curves.

2 System model

The primary network consists of multiple mobile terminals communicating to a base
station (uplink transmission). The overall bandwidth is divided into M frequency
bands that may be allocated to di↵erent terminals for their communication in a fre-
quency division multiple access (FDMA) fashion. Each frequency band has a band-
width 1

T , where T is the symbol duration for each user. We assume there are K  M
active terminals in the network. The secondary network are mobile platforms that
embed a MWC or NUP AIC and send all the information to the fusion centre, where a
maximum likelihood based detection algorithm is applied. Since both AIC are meant
to be implemented on USRP2 platforms, the following system model comprises imper-
fections that might occur in a real-time demonstration: carrier frequency o↵set (CFO),
sampling clock o↵set (SCO), channel e↵ect, etc.

2.1 Transmitter architecture

Fig. 1 describes the transmitter architecture for primary user k. Symbols Ik are
convoluted with a halfroot Nyquist filter g[n] after being upsampled by a factor M .
The modulated symbols are then converted to an analog signal sk(t) at rate 1

T . The
result is

sk(t) =
N
X

n=1

Ik[n] g(t � nT ). (1)

The modulated signal is then shifted to the allocated band of center frequency �fk,
and then passed through a typical analog front-end. The baseband signal transmitted
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Figure 1: Primary user transmitter architecture

by the primary user k is expressed as sk(t) ej2⇡�f
k

t.

At any sensing node, the received signal is the sum of the signals for all contributing
primary users, that is

s(t) =
K
X

k=1

sk(t) ej2⇡�f
k

t. (2)

At the sensing node q, this signal is corrupted by a channel response cq(t) and additive
white Gaussian noise wq(t). The received signal at node q is then

xq(t) = cq(t) ⇤ s(t) + wq(t). (3)

Fig. 2 represents the spectrum of this signal, assuming that K = 3 and that the
channel response is flat in the band of interest.

qX
1

T

M

T

1f∆ 2f∆ 3f∆

f

Figure 2: Spectrum of received signal xq(t) at node q

2.2 Receiver architecture

Fig. 3 describes the receiver architecture for secondary user q. Receiver analog front-
end comprises a band-pass filter, a low noise amplifier, an automatic gain control, a
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Figure 3: Secondary user receiver architecture

down-converter and a low-pass filter. The latter impulse response is denoted hLPF(t).
Note that the down-converter center frequency might generally not match that of the
transmitter, hence the CFO term �fc,q. The resulting received signal is

rq(t) = xq(t) ej2⇡�f
c,q

t ⇤ hLPF(t) = cq(t) ⇤ s(t) ej2⇡�f
c,q

t ⇤ hLPF(t) + vq(t), (4)

where
vq(t) = wq(t) ej2⇡�f

c

t ⇤ hLPF(t) (5)

is the noise restricted to the band of interest M
T . Since the sensing nodes focus their

detection on all available sub-bands, we further only consider the power �2
v
q

of the noise

in the overall bandwidth M
T . The power �2

s of the signal s(t) depends on the number
of active primary users K. Since we want to compare our algorithms performance
for di↵erent values of K, we need to define the SNR so that it is independent of the
number of that parameter. Thus, we further only consider the average signal power
per sub-band

⌦

�2
s
k

↵

= �
s

K . In our case, the SNR is defined as follows :

SNR =

⌦

�2
s
k

↵

�2
v
q

. (6)

As shown in Fig. 3, the received signal is then passed through an AIC. In the following
sections, we consider two di↵erent AIC implementations : NUP and MWC. We also
show that the output signal yq[n] of both AIC can be expressed in the same model.

2.2.1 NUP AIC

Fig. 4 describes the AIC architecture for NUP. It simply waits a time ⌧NUP,q before
sub-sampling at rate

Ts =
c

M
T + �Ts (7)

where c is the sub-sampling factor, and �Ts is the sampling clock o↵set (SCO) be-
tween the transmitter and the receiver (assuming all transmitters clocks are frequency
synchronized). Not that to achieve a non-uniformly periodic sampling, ⌧NUP,q has to
be strictly di↵erent for each sensing node.
The AIC output is given by
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yq[m] = rq(t)
�

�

�

t=mT
s

�⌧
q

= ↵q s(mTs � ⌧q) ej2⇡�f
c,q

(mT
s

�⌧
q

)+'
q + vq(mTs � ⌧q). (8)

where ↵q and 'q represents the e↵ect of the flat channel. In the expression of the delay

⌧q = ⌧p,q + ⌧s,q + ⌧NUP,q, (9)

⌧p,q is the propagation delay, ⌧s,q is the phase di↵erence between transmitter and receiver
sampling clocks (assuming all transmitters clocks are phase synchronized), and ⌧NUP,q

is the artificial delay specific to the NUP AIC. Giving (2), the output (8) can be written
in the general form

yq[m] =
K
X

k=1

ck,q[m]sk,q[m] + nq[m] (10)

where

ck,q[m] , ↵q e
j2⇡(�f

k

+�f
c,q

)(mT
s

�⌧
q

)+'
q (11)

sk,q[m] , sk(mTs � ⌧q) (12)

nq[m] , vq(mTs � ⌧q) (13)

2.2.2 MWC AIC

Fig. 5 describes the AIC architecture for MWC. The received signal is first mixed
with a chip sequence pq(t). The sequence is T -periodic and can thus be expanded as a
Fourier series, i.e.,

pq(t) =
+1
X

m=�1
cq[m] ej2⇡m

t

T (14)

where cq[m] are the Fourier coe�cients of pq(t) expansion. The mixing of (14) and (4)
implies the product

pq(t)s(t) =
+1
X

m=�1

K
X

k=1

cq[m] ej2⇡m
t

T sk(t) ej2⇡�f
k

t. (15)

By defining mk as

�fk , mk

T
, (16)

this product becomes

pq(t)s(t) =
+1
X

m=�1

K
X

k=1

cq[m]sk(t) ej2⇡(m
k

+m) t

T , (17)
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which means that each occupied sub-band mk is now shifted in every other part of the
spectrum and summed with other PU contribution. In particular, after the low-pass
filter, we only keep the contributions in (18) for every m = �mk. The product becomes

pq(t)s(t) =
K
X

k=1

cq[�mk]sk(t). (18)

Thus, the output of the AIC is

yq[m] = rq(t)pq(t) ⇤ hT (t)
�

�

�

t=mT
s

�⌧
q

(19)

where hT (t) is the impulse response of a low-pass filter of bandwidth 1
T , and

Ts = T + �Ts. (20)

Similarly to (8), and with (18), we find

yq[m] = ↵q

K
X

k=1

cq[�mk]sk(mTs � ⌧q) ej2⇡�f
c,q

(mT
s

�⌧
q

)+'
q + nq(mTs � ⌧q), (21)

where nq(mTs�⌧q) = vq(t)pq(t)⇤hT (t)
�

�

�

t=mT
s

�⌧
q

is still an AWGN. (21) can be expressed

in the form of (10) if we define

ck,q[m] , ↵q cq[�mk] e
j2⇡�f

c,q

(mT
s

�⌧
q

)+'
q (22)

sk,q[m] , sk(mTs � ⌧q) (23)

nq[m] , nq(mTs � ⌧q) (24)

2.2.3 Common model

If we assume we only keep W samples from the AIC output yq[m] of each sensing node
q, (10) can be expressed in the following matrix form :

yq =
K
X

k=1

Ck,q sk,q + nq (25)
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where

yq , [yq[0], . . . , yq[W � 1]]T (26)

sk,q , [sk,q[0], . . . , sk,q[W � 1]]T (27)

nq , [nq[0], . . . , nq[W � 1]]T (28)

Ck,q ,

2

6

4

ck,q[0] 0
. . .

0 ck,q[W � 1]

3

7

5

(29)

This model is valid for both AICs.

2.3 Information gathering at the FC

If we concatenate all AIC outputs from all Q sensing nodes at the FC, we obtain

y =
K
X

k=1

Ck sk + n (30)

where

y ,
⇥

yT
1 · · ·yT

Q

⇤

(31)

sk ,
⇥

sTk,1 · · · sTk,Q
⇤

(32)

n ,
⇥

nT
1 · · ·nT

Q

⇤

(33)

Ck ,

2

6

4

Ck,1 0
. . .

0 Ck,Q

3

7

5

(34)

3 Distributed Maximum Likelihood detector

If we apply the same method and assume the same hypotheses as in [12] with FC infor-
mation (30), it is possible to demonstrate that the Maximum Likelihood approximate
becomes

n

� bfk
o

= arg max
{�f

k

}

K
Y

k=1

e�⇢
k

�

�

�

�

�

Q
X

q=1

CH
k,q yq

�

�

�

�

�

2

, (35)

in which

⇢k = W
�2
s

2K�2
n

Q
X

q=1

W�1
X

m=0

|ck,q[m]|2 , (36)

where �2

s

K is the mean power of the signal in one single band. Note that for the NUP
AIC, the definition (11) leads to

W�1
X

m=0

|ck,q[m]|2 = W |↵q|2 (37)
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which means that ⇢k is independent of k in that case. For that AIC, the ML criterion
becomes

n

� bfk
o

= arg max
{�f

k

}

�

�

�

�

�

Q
X

q=1

CH
k,q yq

�

�

�

�

�

2

(38)

4 Performance results

4.1 Simulation setup

The performance of our proposed detector is assessed numerically by computing proba-
bility of erroneous detection (PED) and receiver operating characteristic (ROC) curves.
PED gives the average error rate. A detection is regarded as erroneous for even a sin-
gle miss or false detection. For ROC curves, we also provide their theoretical limits.
Further, we evaluate the performance of our proposed AIC MWC detector.

Assuming that the activity of each sub-band follows a Bernoulli distribution with
probability p and the overall bandwidth is sliced into M uniform sub-bands, the number
of enabled sub-bands K follows a binomial distribution, i.e., B(M, p). It is then possible
to establish the extreme ROC curves for a perfect detection, i.e., for the noiseless case.
In this case, a false alarm (FA) occurs when K̂ > K while there is no misdetection
(MD), whereas a MD is observed when K̂ < K while there is no FA. Thus, the

probability of false alarm pFA is given by the expectation of K̂�K
K̂

over K and the

probability of misdetection pMD is found by computing the expectation of K�K̂
K over

K. Both can be analytically computed for each value of K̂ ranging from 1 to M .
We consider an overall bandwidth to be sensed as M

T = 6.25 MHz which is sliced
into M = 31 uniform sub-bands of bandwidth 201.6 kHz each. When the number of
licensed users K is known and fixed, then K = 6. Otherwise, K is a parameter. When
evaluating ROC curves, the amount of used sub-bands follows a Bernoulli distribution
with probability p = 0.20 and thus, the average usage of overall bandwidth is 20%.
The total number of sensing node is fixed to Q = 16 except when the impact of
this parameter on the performance is studied. Each simulation curve is generated by
averaging over 1000 to 5000 realizations.

4.2 PED vs SNR

We obtain PED results against di↵erent values of SNR. Figure 6 and 7 show the PED
simulation results for our proposed MLA based detector and the PSD based detector,
respectively, for varying values of sensing nodes. In general, the performance improves
with an increase in the number of sensing nodes Q and with a decrease in the number
of primary users K. Indeed, increasing the number of sensing nodes increases the
average sampling rate and thus, more linear combinations of the enabled sub-bands
are available which result in improved performance.

4.3 ROC curves

We generate the ROC curves for di↵erent values of K̂, i.e., K̂ 2 [1;M ]. Figure 8 show
the ROC curves for the proposed detector with MWC AIC for varying values of SNR.
We also plot the curve for theoretical limit as a reference. Once again, the performance
of both the detectors is comparable and also reaches the theoretical limit for very low
values of SNR (�9 dB). However, our proposed detector has an edge in terms of low
computational complexity.
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Figure 6: PED versus SNR for K = 6

5 Conclusion

In this paper, we have developed a distributed multiband spectrum sensing detector
for cognitive radios which is based on compressed measurements and does not rely on
signal reconstruction. The detector uses a simplified maximum likelihood metric which
is valid for both MWC and NUP AIC and does not require prior signal information.
Simulation results for probability of erroneous detection and ROC curves show that
the performance of the proposed detector is good. Plus, it has a low computational
complexity.
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Abstract

The interactions between three or more variables are frequently nontrivial, poorly
understood, and yet, are paramount for future advances in fields such as multiuser
information theory, neuroscience, and genetics. We introduce a novel framework
that characterizes the ways in which random variables can share information,
based on the notion of information synergy. The framework is then applied to
several network information theory problems, providing a more intuitive under-
standing of their fundamental limits.

1 Introduction

Developing a framework for understanding the correlations that can exist between mul-
tiple signals is crucial for the design of e�cient and distributed communication systems.
For example, consider a network that measures the weather conditions (e.g. tempera-
ture, humidity, etc) in a specific region. Given the nature of the underlying processes
being measured, one should expect that the sensors will generate strongly correlated
data. A haphazard design will not account for these correlations and, undesirably, will
process and transmit redundant information across the network.

Higher-order correlations are also of more general interest. In neuroscience, re-
searchers desire to identify how various neurons a↵ect an organism’s overall behavior,
asking to what extent the di↵erent neurons are providing redundant or synergistic
signals [1]. In genetics, the interactions and roles of multiple genes with respect to
phenotypic phenomena are studied, e.g. by comparing results from single and double
knockout experiments [2].

In this work we propose a new framework for understanding complex correlations,
which is novel in combining the notion of hierarchical decomposition as developed
in [3], with the notion of information synergy as proposed in [4]. In contrast to [3],
we focus on the dual total correlation instead of the total correlation, which is more
directly related to the shared information within the system. In contrast to [4], we
analize the joint entropy instead of the mutual information. Our framework provides
new insight to various problems of Network Information Theory. Interestingly, many
of the problems of Network Information Theory that have been solved are related to
systems which present a simple structure in terms of synergies and redundancies, while
most of the open problems possess a more complex mixture of them.

In the following, Section 2 introduces the notions of hierarchical decomposition of
correlations and synergistic information, providing the necessary background for an
unfamiliar reader. Then, Section 3 presents our decomposition for the joint entropy,
focusing on the case of three variables and leaving its generalization for a future work.
Section 4 applies this framework in settings of fundamental importance for Network
Information Theory. Finally, Section 5 summarizes our main conclusions.
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2 Preliminaries

One way of analyzing the interactions between the random variables X = (X1, . . . , XN)
is to study the matrix properties of R

X

= E {XXt}. However, this only captures linear
relationships and hence the picture provided by R

X

is incomplete. Another possibility
is to study the matrix I

X

= [I(Xi;Xj)]i,j of mutual informations. This matrix captures
the existence of both linear and nonlinear dependencies, but its scope is restricted to
pairwise relationships and thus, it misses all higher-order structure. To see how this
can happen, consider two independent fair coins X1 and X2 and let X3 := X1 �X2 be
output of an XOR logic gate. The mutual information matrix I

X

has all o↵-diagonal
elements equal to zero, making it indistinguishable from an alternative situation where
X3 is another independent fair coin.

For the case of R
X

, the standard next step would be to consider higher order mo-
ment matrices such co-skewness and co-kurtosis. We seek their information-theoretic
analogs, which complement the description provided by I

X

. One method of doing this
is by studying the information contained in marginal distributions of increasingly larger
sizes; this approach is presented in Section 2.1. Other methods try to provide a direct
representation of the information that is shared between the various random variables;
they are discussed in Section 2.2.

2.1 Negentropy and total correlation

When the random variables that compose a system are independent, their joint dis-
tribution is given by the product of their marginal distributions. Hence, in this case
the marginals contain all that is to be learned about the statistics of the entire sys-
tem. However, arbitrary joint p.d.f.s can contain information that is not present in
their marginals. To quantify this idea, let us consider N discrete random variables
X = (X1, . . . , XN) with joint p.d.f. p

X

, where each Xj takes values in a finite set
with cardinality ⌦j. The maximal amount of information that could be stored in
any such system is H(1) =

P

j log ⌦j, which corresponds to the entropy of the p.d.f.
p
U

:=
Q

j pX
j

, where pX
j

(x) = 1/⌦j is the uniform distribution for each random variable
Xj. On the other hand, the joint entropy H(X) with respect to the true distribution p

X

measures the actual uncertainty that the system possesses. Therefore, the di↵erence
N (X) := H(1) �H(X) corresponds to the decrease of the uncertainty about the system
that occurs when one learns its p.d.f. – i.e. the information about the system that is
contained in its statistics. This quantity is known as negentropy [5], and can be also
computed as N (X) = D

�

Q

j pXj

�

�

�

� p
U

�

+ D
�

p
X

�

�

�

�

Q

j pXj

�

, (1)

where pX
j

is the marginal of the variable Xj and D(·||·) is the Kullback-Leibler diver-
gence. In this way, (1) decomposes the negentropy into a term that corresponds to the
information given by simple marginals and a term that corresponds to higher order
marginals. The second term is known as the Total Correlation (TC) and has been
suggested as an extension of the notion of mutual information for multiple variables.

An elegant framework for decomposing the TC can be found using the framework
presented in [3]. Let us call k-marginals the distributions that are obtained by marginal-
izing the joint p.d.f. over N � k variables. In the case where only the 1-marginals are
known, the simplest guess for the joint distribution is p̃ (1)

X

=
Q

j pXj

. One way of gen-
eralizing this for when the k-marginals are known is by using the maximum entropy
principle, which suggests to choose the distribution that maximizes the joint entropy
while satisfying the constrains given by the partial (k-marginal) knowledge. Let us
denote by p̃ (k)

X

the p.d.f. which achieves a maximum entropy while being consistent
with the k-marginals, and let H(k) = H({p̃ (k)

X

}) denote its entropy. Then, it can be
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showed the following generalized Pythagorean relationship for the total correlation:

TC =
N
X

k=2

D(p̃ (k)||p̃ (k�1)) =
N
X

k=2

�

H(k�1) � H(k)
�

,
N
X

k=2

�H(k) . (2)

Above, �H(k) � 0 measures the information that is provided by the k marginals and
not by the k � 1 ones. In general, information located in terms with high values of k
correspond to complex correlations between many variables, which cannot be reduced
to a combination of simpler correlations between smaller groups.

2.2 Yeung’s decomposition and synergistic information

Another approach to study the correlations between many random variables is to ana-
lyze the way in which they share information, which can be done by decomposing the
joint entropy of the system. For the case of two variables, the joint entropy can be
decomposed as H(X1, X2) = I(X1;X2)+H(X1|X2)+H(X2|X1), suggesting that it can
be divided into shared information, I(X1;X2), and informations that are exclusively
located in just one variable, H(X1|X2) and H(X2|X1). In systems with more than
two variables, one can still compute the information that is exclusively located in one
element as H(1) :=

P

j H(Xj|Xc
j), where Xc

j denote all the system variables except Xj.
The di↵erence between the joint entropy and the sum of informations contained in just
one location defines the Dual Total Correlation (DTC),

DTC = H(X) � H(1), (3)

which measures the portion of the joint entropy that is shared between two or more
variables of the system. As in (2), it would be appealing to look for a decomposition
of the DTC of the form DTC =

PN
k=2 �H(k), where �H(k) � 0 would measure the

information that is shared by k variables.
One possible decomposition for the DTC is provided by the I-measure [6]. For the

case of three variables, this decomposition can be written as

DTCN=3 = [I(X1;X2|X3) + I(X2;X3|X1) + I(X3;X1|X2)] + I(X1;X2;X3) . (4)

The last term is known as the co-information [7] and can be calculated as I(X1;X2;X3) =
I(X1;X2)� I(X1;X2|X3), being other candidate for extending the mutual information
to multiple variables. Although it is tempting to associate the term in square brackets
of (4) with �H(2) and the co-information with �H(3), this would not be very intuitive
since the co-information can be negative. Conventionally, we think of the conditional
mutual information as the information contained in X1 and X2 that is not contained
in X3, but this quantity should be strictly less than the total information shared by X1

and X2. The counterintuitive fact that sometimes I(X1;X2)  I(X1;X2|X3) suggests
that the conditional mutual information can capture information that extends beyond
X1 and X2, incorporating higher-order e↵ects with X3.

An extended treatment of the conditional mutual information and it relationship
with the mutual information can be found in [4]. For presenting those ideas, let
us consider two random variables X1 and X2 which are used to predict X3. The
total predictability, i.e., the information X1 and X2 provide about X3, is given by
I(X1, X2;X3) = I(X1;X3) + I(X2;X3|X1). Is natural to think that the information
provided by X1, I(X1;X3), can be unique or redundant with respect of the information
provided by X2. On the other hand, I(X2;X3|X1) must contain the unique contribu-
tion of X2. However, the fact that I(X2;X3|X1) can be larger than I(X2;X3) (while
the latter contains both the unique and redundant contributions of X2) suggests that
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there can be an additional predictability that is accounted only by the conditional mu-
tual information. This predictability, which is not contained in any single predictor but
is only revealed by both X1 and X2, is called synergistic mutual information. As an
example of this, consider again the case in which X1 and X2 are independent random
bits and X3 = X1 � X2. Then, it can be seen that I(X1;X3) = I(X2;X3) = 0 but
I(X1, X2;X3) = 1. Hence, neither X1 nor X2 individually provide information about
X3, although together they fully determine it.

Further discussions about the notion of information synergy can be found in [8–11].

3 A non-negative joint entropy decomposition

In this section we present our non-negative decomposition of the joint entropy, which
is based on the notion of information synergy. It is important to note that there is
an ongoing debate about the best way of characterizing and computing the synergy
in arbitrary systems, as the commonly used axioms are not enough for specifying a
unique formula [9]. Nevertheless, our approach in this work is to explore how far one
can reach based only on the axioms. In this way, our results are going to be consistent
to any choice of formula that is consistent with the axioms.

In the following, Section 3.1 presents the axioms of Information Synergy that are
used in this work. Then, Section 3.2 will first present the decomposition for an arbitrary
system of three variables. Sections 3.2.1 and 3.2.2 specify the decomposition for the
important cases of Markov chains and pairwise independent predictors, which provide
the basis for the applications explored in Section 4.

3.1 Information synergy axioms

We proceed to determine a number of desired properties that a decomposition of the
mutual information should possess. Note that we initially privilege X3, but our de-
composition will end up being symmetric in each random variables.

Definition A decomposition of the mutual information is provided by the functions
I\(X1X2;X3), IS(X1X2;X3) and Iun(X1;X3|X2) which satisfy the following axioms:

(1) I(X1;X3) = I\(X1X2;X3) + Iun(X1;X3|X2) .

(2) I(X1;X3|X2) = Iun(X1;X3|X2) + IS(X1X2;X3) .

(3) Weak symmetry : I\(X1X2;X3) = I\(X2X1;X3) , IS(X1X2;X3) = IS(X2X1;X3)
and Iun(X1;X3|X2) = Iun(X3;X1|X2).

(4) Non-negativity: I\(X1X2;X3) � 0 , IS(X1X2;X3) � 0, and Iun(X1;X3|X2) � 0.

Intuitively, I\(X1X2;X3) measures the redundancy of X1 and X2 for predicting X3,
Iun(X1;X3|X2) quantifies the unique information that is provided by X1 (and not X2)
about X3, and IS(X1X2;X3) is the synergistic mutual information between X1 and
X2 about X3. Note that the weak symmetry of the unique information is not strictly
necessary for proving our results, but is adopted here because it allows for a more
intuitive development of our ideas.

Using the symmetry of the mutual information and Axiom (1), we can show that

I\(X1X2;X3) + Iun(X1;X3|X2) = I(X3;X1) = I\(X3X2;X1) + Iun(X3;X1|X2) (5)

Then, by using the weak symmetry of the unique information, it follows that the
redundancy also satisfies strong symmetry, i.e. I\(X1X2;X3) = I\(X3X2;X1). In a
similar way, using the symmetry of the conditional entropy one can show that

Iun(X1;X3|X2)+IS(X1X2;X3) = I(X3;X1|X2) = Iun(X3;X1|X2)+IS(X3X2;X1). (6)
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Using again the weak symmetry of the unique information, one can prove the strong
symmetry of the synergy. In order to reflect the strong symmetry of these func-
tions, we will henceforth denote the redundancy and synergy as I\(X1;X2;X3) and
IS(X1;X2;X3), respectively.

3.2 Decomposition for three variables

Inspired by the non-negative decomposition of the TC, our approach is to build a
non-negative decomposition of the joint entropy which is based on a non-negative
decomposition of the DTC. For the case of three variables, we let

H(1) = H(X1|X2, X3) + H(X2|X1, X3) + H(X3|X1, X2) (7)

�H(2) = Iun(X1;X2|X3) + Iun(X2;X3|X1) + Iun(X3;X1|X2) (8)

�H(3) = I\(X1;X2;X3) + 2IS(X1;X2;X3) (9)

and define the decomposition of the joint entropy as:

H(X1, X2, X3) = H(1) + �H(2) + �H(3). (10)

Comparing (10) with (3) yields DTC = �H(2) + �H(3). Each �H(k) term is non-
negative because of Axiom (4), and hence (10) yields a non-negative decomposition of
the joint entropy, where each of the corresponding terms captures the information that
is shared by one, two or three variables.

In the following, we will analyze two scenarios for which explicit formulas for (8)
and (9) can be found.

3.2.1 Markov chains

Let us consider the case in which X1�X2�X3 form a Markov chain. Because of the con-
ditional independence of X1 and X3 with respect to X2 one has that I(X1;X3|X2) = 0.
Therefore, by using Axiom (2), it is clear that Iun(X1;X3|X2) = 0, which is con-
sistent with the fact that X1 and X3 should not share information that is not also
present in X2. Moreover, using this and Axiom (1), one can find that the redun-
dant information of the Markov chain is I\(X1;X2;X3) = I(X1;X3). Using this
and Axiom (1), one can show that Iun(X1;X2|X3) = I(X1;X2) � I(X1;X3) and
Iun(X2;X3|X1) = I(X2;X3) � I(X1;X3). Therefore, the information that is shared
by pairs of variables in a Markov chain can be found to be

�H(2) = I(X1;X2) + I(X2;X3) � 2I(X1;X3) . (11)
Using again I(X1;X3|X2) = 0 and Axiom (2), it is direct to see that IS(X1;X2;X3) = 0.
Therefore, in this case

�H(3) = I\(X1;X2;X3) = I(X1;X3). (12)

3.2.2 Pairwise independent predictors (PIP)

Let us assume that X1 and X2 are pairwise independent, and therefore I(X1;X2) = 0.
Then, using Axiom (1), it is direct to see that Iun(X1;X2|X3) = I\(X1;X2;X3) = 0,
which in turn allows to show that Iun(X1;X3|X2) = I(X1;X3) and Iun(X2;X3|X1) =
I(X2;X3). Therefore, in this case

�H(2) = I(X1;X3) + I(X2;X3) , (13)
which shows that the positive mutual information terms correspond to information
that is shared only by two variables. Using these results and Axiom (2), one can
also compute the synergy directly as IS(X1;X2;X3) = I(X1;X3|X2) � I(X1;X3) =
I(X1;X2|X3). Therefore, in this case we have

�H(3) = 2I(X1;X2|X3), (14)
which measures the correlations between X1 and X2 that are introduced by X3.
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4 Applications to Network Information Theory

In this section we will apply the framework presented in Section 3 to develop new
intuitions over three fundamental scenarios in Network Information Theory [12]. In the
following, Section 4.1 uses the general framework to analyze the Slepian-Wolf coding
for three sources, which is a fundamental result in the literature of distributed source
compression. Then, Section 4.2 applies the results for PIP to the multiple access
channel (MAC), which is one of the fundamental settings in multiuser information
theory. Finally, Section 4.3 applies the results for Markov chains to the wiretap channel,
which constitutes one of the main models of information-theoretic secrecy.

4.1 Slepian-Wolf coding

The Slepian-Wolf coding gives lower bounds for the data rates that are required to
transfer the information contained in various data sources. Let us denote as Rk the
data rate of the k-th source and define �Rk = Rk � H(Xk|Xc

k) as the extra data rate
that each source has above what is needed for their own exclusive information (c.f.
Section 2.2). Then, in the case of two sources X1 and X2, the well-known Slepian-
Wolf bounds can be re-written as R̃1 � 0, R̃2 � 0, and R̃1 + R̃2 � I(X1;X2). The
last inequality states that I(X1;X2) corresponds to shared information that can be
transmitted by any of the two sources.

Let us consider now the case of three sources, and denote RS = IS(X1;X2;X3).
The Slepian-Wolf bounds provide seven inequalities, which can be re-written as

R̃i � 0, i 2 {1, 2, 3} (15)

R̃i + R̃j � Iex(Xi;Xj|Xk) + RS, i, j 2 {1, 2, 3}, i < j (16)

R̃1 + R̃2 + R̃3 � �H(2) + �H(3) (17)

Above, (17) states that all shared information (i.e. the DTC) needs to be accounted
by the extra rate of the sources, and (16) that every pair needs to to take care of their
unique information and the synergy. Note that, because of (9), the redundancy can be
included in only one of the rates while the synergy has to be included in at least two.

4.2 Multiple Access Channel

Let us consider a multiple access channel (MAC), where two pairwise independent
transmitters send X1 and X2 and a receiver gets X3 as shown in Fig. 1, forming
a PIP system (c.f. Section 3.2.2). It is well-known that, for a given distribution
(X1, X2) ⇠ p(x1)p(x2), the achievable rates R1 and R2 satisfy the capacity constrains
R1  I(X1;X3|X2), R2  I(X2;X3|X1) and R1 + R2  I(X1, X2;X3).

As the transmitted random variables are pairwise independent, one can apply the
results of Section 3.2.2. Hence, there is no redundancy and IS = I(X1;X3|X2) �
I(X1;X3). Let us introduce a shorthand notation for the remaining three terms :
C1 = Iun(X1;X3|X2) = I(X1;X3), C2 = Iun(X2;X3|X1) = I(X2;X3) and CS =
IS(X1;X2;X3). Then, one can re-write the bounds for the transmission rates as

R1  C1 + CS, R2  C2 + CS and R1 + R2  C1 + C2 + CS. (18)

From this, it is clear that while each transmitter has an unique portion of the channel
with capacity C1 or C2, their interaction creates synergistically an additional capacity
that is given by CS = IS(X1;X2;X3).

There exists an interesting relationship between (18) and the bounds provided by
Slepian-Wolf coding for two sources A and B. In e↵ect, H(A|B) and H(B|A) corre-
spond to exclusive information contents that needs to be transmitted by each source,
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Table 1: Duality between Markov chains and PIP

Markov chains Parwise indep. predictors

Conditional pairwise independency Pairwise independency
I(X1;X3|X2) = 0 I(X1;X2) = 0

No synergy No redundancy
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over well-known scenarios of Network Information Theory. First, Section 4.2 uses
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Using the results from Section 3.2.2, it can be seen that in this case there exist
no redundancy between the three random variables. Because of this I(X1;X3|X2) �
I(X1;X3) holds, and the di↵erence is given by the synergy of the system. Let us intro-
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while C1 and C2 are the capacities of the unique portions of the channel that cannot
be shared. Also, the mutual information I(A;B) is the information that can be trans-
mitted by either of the variables, while the synergetic capacity CS corresponds to the
part of the channel that can be shared between the users.

4.3 Degraded Wiretap Channel

Consider a communication system with an eavesdropper (shown in Fig. 2), where the
transmitter sends X1, the intended receiver gets X2 and the eavesdropper receives X3.
For simplicity of the exposition, let us consider the case of a degraded channel where
X1 �X2 �X3 form a Markov chain. Using the results of Section 3.2.1, one can see that
in this case there is no synergy but only redundancy and unique information between
X1 or X3 with X2.

X1 X2

X3

pX2,X3|X1

eavesdropper

receivertransmitter

I(X1; X2)

From this, it is clear that while each transmitter have a exclusive portion of the chan-
nel with capacity Ci, their interaction create synergistically an additional capacity of
CS. This additional resource behaves like a physical property, which has to be shared
linearly, generating a slope of �1 in the graph.

Is interesting that, if one consider the Slepian-Wolf coding for two sources A and
B, there is a direct relationship between H(A|B) and H(B|A) as exclusive information
contents that needs to be transmitted by each source and C1 and C2 as unique channel
capacity for each user, which cannot be shared. On the other hand, the mutual infor-
mation I(A;B) is the information that can be transmitted by either of the variables,
which in this case corresponds to the synergetic capacity CS.

4.3 Degraded wiretap channel

Consider a communication system with a eavesdropper, where the transmitter send
symbols X1, the intended receiver gets X2 and the eavesdropper receives X3. For
simplicity of the exposition, let us consider the case of a degraded channel where
X1 � X2 � X3 form a Markov chain. Under those conditions, it is known that for a
given input distribution pX

1

the rate of secure communication that can be achieved on
this channel is upper bound by

Csec = I(X1;X2) � I(X1;X3) = Iun(X1;X2|X3) (19)

where the second equality comes from the Markov condition and the results shown in
Seciton 3.2.1. Note that the eavesdropping capacity is given by

Ceav = I(X1;X3) = I\(X1;X2;X3). (20)

5 Conclusions
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Consider a communication system with a eavesdropper, where the transmitter send
symbols X1, the intended receiver gets X2 and the eavesdropper receives X3. For
simplicity of the exposition, let us consider the case of a degraded channel where
X1 � X2 � X3 form a Markov chain. Under those conditions, it is known that for a
given input distribution pX

1

the rate of secure communication that can be achieved on
this channel is upper bound by

Csec = I(X1;X2) � I(X1;X3) = Iun(X1;X2|X3) (19)

where the second equality comes from the Markov condition and the results shown in
Seciton 3.2.1. Note that the eavesdropping capacity is given by

Ceav = I(X1;X3) = I\(X1;X2;X3). (20)

5 Conclusions
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Figure 2: Wiretap Channel

In this scenario, it is known that for a given input distribution pX
1

the rate of secure
communication that can be achieved is upper bounded by

Csec = I(X1;X2) � I(X1;X3) = Iun(X1;X2|X3), (19)

which is precisely the unique information between X1 and X2. Also, as intuition would
suggest, the eavesdropping capacity is equal to the redundancy and is given by

Ceav = I(X1;X2) � Csect = I(X1;X3) = I\(X1;X2;X3). (20)

5 Conclusions

We proposed a framework for understanding how multiple random variables can share
information, based on a novel decomposition of the joint entropy. We showed how the
axioms, on which our framework is based, allow us to find concrete expressions for all
the terms of the decomposition for Markov chains and for the case where two variables

152



are pairwise independent. These results allow for an intuitive understanding of the
optimal information-theoretic strategies for several fundamental scenarios in Network
Information Theory.

The key insight that this framework provides is that while there is only one way
in which information can be shared between two random variables, it can be shared
in two di↵erent ways between three: redundantly or synergistically. This important
distinction has shed new light in the understanding of high-order correlations, whose
consequences have only begun to be explored.
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Abstract

In this paper, we investigate two phase synchronisation schemes for FBMC/OQAM (filter-
bank based multicarriers) in fiber-optic transmissions. We start by investigating pilot-
based phase synchronisation, using the so-called auxiliary pilot method [2] consisting in
using the pilot’s neighbour symbol to compensate for the imaginary intersymbol interfer-
ence. We derive the maximum likelihood estimator based on the observation of the pilots
and analyse its performance. In the second part, taking advantage of the particular shape
of the received constellation, a semi-blind channel estimation scheme presented in [3] is
adapted to the phase synchronisation issue. It uses the spatial-sign covariance matrix to
identify the main variance axis and infer the rotation of the constellation. Both methods
are compared and their performance is analyzed by simulations.

1 Introduction

With the rise of more and more powerful signal processing units, it becomes possible to use
more complex modulation formats for fiber-optic transmissions. Foreseen as a candidate for
5G, the feasibility of using filter bank based multicarriers (FBMC) for fiber-optic communi-
cation is demonstrated in [1]. FBMC, as other multicarriers (MC) scheme, allows to divide
a wide bandwidth into several narrowband parallel subchannels. Providing scalability and
flexibility when configuring the communication link [2].

In [1], the problems of fiber chromatic dispersion, polarisation mode dispersion and phase
noise are addressed. The chromatic dispersion is a-priori known and can be equalised using
the overlap and save algorithm [1]. The phase noise results from the phase di↵erence between
the transmitter and receiver lasers, which imprints itself on the signal. As a consequence,
the received signal shows a phase drift in accordance with the laser linewidths [1]. The study
performed on phase noise in [1] focuses mainly on adapting single carrier fiber-optic equal-
isation techniques to FBMC/OQAM and exhibits limited performance for high number of
subcarriers. However, many other approaches like preamble based, training sequences based
or blind could be studied. In this paper, the first approach is based on a pilot and an auxiliary
pilot used to compensate for the interference from adjacent symbols. An adaptation of the
scatter-pilot-based approach presented in [2] is presented. The work in [2] focuses on channel
estimation and is here adapted to the issue of phase noise estimation. Then a semi-blind
approach taken from [3] is studied. This technique uses the statistical properties of the signal
through the spatial sign covariance matrix and identify the rotation introduced by the phase
noise. For all these methods, it is assumed that the phase noise is varying su�ciently slowly
so that the phase is approximately constant on the duration T/2 of an FBMC symbol.

2 System model

Figure 1 shows the general transmultiplexer configuration of the filter-bank multicarrier sys-
tem (FBMC). The analysis filter banks are located in the transmitter (AFB) and the syn-
thesis filter banks (SFB) in the receiver. In FBMC/OQAM, the complex modulated symbols
of duration T are decomposed into their real and imaginary parts. These are transmitted
alternatively for a duration of T/2 and are denoted by dk,n on figure 1. After multiplication
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by ✓k,n = jk+n, the purely real dk,n are now alternatively purely real and imaginary according
to the OQAM pattern. Then, the samples are upsampled and filtered by the filters gk[m]
obtained thanks to the frequency shift of a prototype filter p[m]. The time index n and m
are used respectively for the low 2/T and high 1/(MT ) sampling frequency.

Figure 1: (a) Synthesis and (b) analysis filter banks for complex FBMC transmultiplexer
(TMUX)

The output of the SFB can be expressed as:

s[m] =
M�1
X

k=0

+1
X

n=�1
dk,n✓k,ngk



m � n
M

2

�

(1)

where

gk[m] = p [m] exp



j
2⇡

M
k

✓

m � Lp � 1

2

◆�

(2)

for k = 0, 1, . . . , M � 1 and m = 0, 1, . . . , Lp � 1. The subchannel spacing is given by
�f = 1/T . The received signal in presence of phase noise and additive gaussian noise is

r[m] = ej�[m](s[m] ⇤ h[m]) + wm (3)

where wm is a zero mean circularly symmetric complex white Gaussian noise, ej�[m] is the
phase noise and h[m] is the channel impulse response.

At the receiver, the signal is filtered with fk[m] = g⇤k[Lp�1�n] then downsampled by a factor
M/2. Assuming a flat channel (hypothesis of perfectly compensated chromatic dispersion)
and a slowly varying �[m] with regards to the length Lp = KM �1 of fk[m], the AFB outputs
are given by:

yk,n = ej�n

K
X

n0=�K

k+1
X

k0=k�1

dk0,n0✓k0,n0tk�k0,n�n0 + wk,n (4)

= ej�n✓k,n (dk,n + juk,n) + wk,n (5)

where wk,n denotes the noise wm filtered and downsampled at subcarrier k and where
tk�k0,n�n0 is given in Table 1 and denotes the transmultiplexer response of the filter bank.
The chosen prototype filter is named C4 [4]. It is designed to minimize the total out of band
interference. Its length Lp depends on the size of the filter bank and the overlapping factor
K such that Lp = MK � 1. The overlapping factor K is set to 4 in this paper.
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n=-4 n=-3 n=-2 n=-1 n=0 n=1 n=2 n=3 n=4
k=-2 0 -0.0006 -0.0001 0 0 0 -0.0001 -0.0006 0
k=-1 0.0049 j0.0422 -0.125 -j0.2065 0.2403 j0.2065 -0.125 -j0.0422 0.0049
k=0 0 0.0658 0.0002 -0.5637 1 -0.5637 0.0002 0.0658 0
k=1 0.0049 -j0.0422 -0.125 j0.2065 0.2403 -j0.2065 -0.125 j0.0422 0.0049
k=2 0 -0.0006 -0.0001 0 0 0 -0.0001 -0.0006 0

Table 1: Interference weight tk,n

Table 1 demonstrates the interest of the OQAM modulation. The interference juk,n on the
useful symbol is purely imaginary except for a small negligible term contribution from tk,n±2

due to the non-perfect reconstruction filter design.

After multiplication by ✓⇤k,n and equalisation, only the real part of the signal is kept and the
OQAM symbols are recovered.

ỹk,n = ✓⇤k,nyk,n (6)

= ej�n (dk,n + juk,n) + w̃k,n (7)

and
d̃k,n = <{H⇤

nỹk,n} (8)

The phase noise �[m] can be modeled as

�(t) =

Z t

�1
�!(⌧)d⌧ (9)

where �!(⌧) is a zero mean gaussian process with variance �2
� = 2⇡�⌫ , where �⌫ is the 3 dB

linewidth of the laser’s output and it’s value is traditionally around the MHz.

3 Pilot based estimation

Pilots can be used to estimate the phase noise. However, their derivation is not as straightfor-
ward as for OFDM. Indeed, in FBMC, the orthogonality only holds for the real components.
The auxiliary pilots methods taken from [2] is considered here. It cancels the intrinsic in-
terference at the pilot positions. Then the maximum likelihood estimator for the phase is
derived on the basis of the information available at the pilot positions.

Considering a su�ciently frequency selective prototype filter, only adjacent subchannels over-
lap and (5) holds. Without phase noise, (7) simply becomes:

ỹk,n = (dk,n + juk,n) + w̃k,n (10)

The expression of the intrinsic interference is given by

uk
0

,n
0

=
X

(k,n)2⌦
k

0

,n

0

dk,nt̂k,n (11)

where t̂k,n = =
h

✓⇤k,ntk,n

i

and ⌦k
0

,n
0

is the set of subcarriers and time indices contributing

to the interference at (k0, n0). Assuming a pilot is positioned in (kp, np), an auxiliary pilot
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positioned in ka, na is computed in order to cancel the intrinsic interference at the pilot
position, i.e. such that uk

p

,n
p

= 0:

dk
a

,n
a

= � 1

t̂k
p

�k
a

,n
p

�n
a

X

(k,n)2⌦
k

0

,n

0

(k,n) 6=(k
p

,n
p

)
(k,n) 6=(k

a

,n
a

)

dk,nt̂k
p

�k,n
p

�n. (12)

The auxiliary pilot position is usually chosen as na = np+1 in order to maximize t̂k
p

�k
a

,n
p

�n
a

.

Thanks to this method, pilots without intrinsic interference are available at the receiver side.
From (7), the maximum log-likelihood estimator for the phase is derived at each FBMC
symbols of duration T/2:

�̂n = argmax
�
n

(

X

i2⇥
n

ln (f (ỹi,n|�n))

)

(13)

where ⇥n is the set of subcarriers occupied by a pilot and f (ỹi,n|�n) follows a complex

Gaussian distribution with mean µ =
� cos�

n

sin�
n

�

and the same variance as w if the total energy
of the filter is 1. This leads to

tan �̂n =

P

i2⇥
n

={ỹi,n}
P

i2⇥
n

<{ỹi,n} . (14)

Following this method, a phase noise estimate is obtained for each FBMC symbol n that
carries pilots on some of its subcarriers. Interpolation is then performed for the other FBMC
symbols.

4 Semi-blind channel estimation

Another technique that does not need pilots is presented in [3]. It is based on the di↵erent
statistical properties of the intrinsic interference and the channel. A theoretical presentation
is first made, then the method is adapted for phase noise mitigation.

Starting from (7) and introducing the complex-valued e↵ective transmitted signal Sk,n =
dk,n + juk,n, the equation is rewritten in a matrix form in the real domain:



ỹRk,n
ỹIk,n

�

| {z }

ỹk,n
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hR
k,n �hI

k,n

hI
k,n hR
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⌘Rk,n
⌘Ik,n

�

(15)

where hk,n is the channel impulse response and the exponents R and I denote respectively
the real and imaginary part of the corresponding variable.

In absence of phase noise, dk,n takes discrete values on the real axis and uk,n is scattered
continuously along the imaginary axis. Under the assumption of slowly varying phase noise,
the phase noise only creates a small rotation of this situation. This means that identifying the
direction of the highest variance in the real-imaginary plane is equivalent to identifying the
phase noise contribution (up to the sign ambiguity). So, the spatial sign covariance matrix
can be used to identify the main rotation axis in the constellation. The spatial sign covariance
matrix is given by

Ck,n = E{ỹ0
k,nỹ

0T
k,n} (16)
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where

ỹ
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k,n =

8

<

:

ỹ

k,n

||ỹ
k,n|| , if ||ỹ

k,n|| 6= 0

0, if ||ỹ
k,n|| = 0.

(17)

The dominant eigenvector of Ck,n is the rotation of the signal up to a sign ambiguity,

Ck,n = Vk,n⌃k,nV T
k,n (18)

where Vk,n = [v1

k,n,v2

k,n] is an orthogonal matrix and ⌃k,n =diag(�1, �2) is a diagonal matrix
with �1 > �2. As previously explained, we can now consider:



hR
k,n

hI
k,n

�

= ↵nv
1

k,n ↵n 2 {�1, +1}. (19)

The phase noise �n can be identified from (19) as:

ej�n = hR
k,n + jhI

k,n (20)

However, in practice, the spatial-sign covariance matrix (SSCM) is not available. Under the
assumption of constant phase noise over one FBMC symbol, the SSCM is approximated as

Ĉn =
1

M

M�1
X

k=0

ỹ

0
k,nỹ

0T
k,n. (21)

Eigenvalue decomposition is then performed on Ĉn and an estimate of the phase noise for
each FBMC symbol is obtained as presented above. To cope with the sign ambiguity ↵n, a
first training FBMC symbol must be sent and a tracking must be performed.

5 Simulation results

Simulations are performed on a fixed 30GHz bandwith divided between M subcarriers and
with the following parameters:

Type of modulation on dk,n BPSK
Frame size in samples MP 216

Sampling frequency 1/(MT ) 30GHz
Laser’s linewidth �⌫ 0.5MHz

Prototype filter’s overlapping factor K 4

5.1 Benchmark

Two simulations are performed as benchmark. The first one assumes perfectly corrected
phase noise. The second one is meant to check the assumption of a slowly varying phase
noise and averages the true value of the phase noise over a duration of T/2. The obtained
value is then used for phase noise correction over each FBMC symbols of length T/2. Note
that the sampling frequency is constant, so that increasing the number of subcarriers results
in longer FBMC symbols. The assumption of constant phase noise may become less accurate
with higer number of subcarriers.

Figure 2 shows the BER as a function of the SNR for both benchmark simulations. In the case
of the average correction of the (true) phase noise, a penalty appears at high SNR when the
number of subcarriers increases. This is due to the fact that the average is less representative
when the size of the time window increases.
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Figure 2: Benchmark’s BER

5.2 Pilot based estimation

Using the estimator presented in section 3, it is possible to estimate the phase noise for each
FBMC symbol under the assumption of a constant phase rotation for all subcarriers. The
pilots are disposed every 5 subcarriers and every 8T . The FBMC symbols without any pilot
are equalised with the same phase as the closest FBMC symbol with pilot (similar results are
obtained with linear interpolation between pilots).

The plain line on figure 3 presents the results after equalisation thanks to the pilot method.
Good performances are observed at low SNR but at high SNR the floor is high. This e↵ect is
particularly strong for a high number of subcarriers. The dashed line on figure 3 shows the
BER computed only on FBMC symbols including pilots. The performances are really close
to ideal. This shows that most of the error comes from the interpolation between symbols
containing pilots, as the phase changes too rapidly to be considered constant.
This leads us to the conclusion that the pilots should be as close as possible in time. However,
due to the auxiliary pilots method and the size of the intrinsic interference, the interval
between pilots can not be arbitrary small (computing the dk

a

,n
a

with the contribution of an
other auxiliary pilot is really complex). A solution could be to consider specific pilot patterns
with changing subcarrier positions keeping in mind the trade-o↵ between the quality of the
phase estimate and the time interval between the various estimations. This is left for future
work.

5.3 Semi-blind phase estimation

This method presents the advantage of being semi-blind. In theory, it only requires a few
known symbols at the beginning of the transmission to resolve the sign ambiguity. In this
paper, the issue of sign tracking is not considered and the sign ambiguity is assumed to be
perfectly resolved.

Figure 4 shows the results after equalisation thanks to the SSCM method. In order to de-
crease the impact of the number M of subcarriers on the estimation accuracy, Ĉn is computed
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Figure 3: BER with correction thanks to the pilots. Plain line: metric evaluate on every
sample. Dashed line: metric for FBMC symbols with pilots

on a fixed number of samples chosen as 1024 for these simulations. The performances are re-
ally close to the benchmark with average phase noise correction, showing that the estimation
accuracy is very good.

6 Conclusion

Two phase noise equalisation methods for FBMC/OQAM fiber optic transmissions have
been studied. The first one rely on the auxiliary pilot method. The performance are good
for FBMC symbols with pilots but poor for FBMC symbols without pilots. Closer pilots in
time should solve the problem but the intrinsic interference imposes constrains on the relative
position of the auxiliary pilots. Varying pilot subcarrier patterns seem a good improvement
path.

The second method is semi-blind and only requires a preamble to solve the sign ambiguity.
The problem of the sign tracking was not addressed in this paper but the performances
considering a known sign provide very good performances if the number of samples used for
the spatial-sign covariance matrix estimation is su�cient.
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Abstract

This is an extended abstract of the work published in [5].
We propose an extension of the Code O↵set Method, the ‘mother of all Secure
Sketches’, in which we hide the error correction data in a large list of random
decoy values. Secure Sketches are an important ingredient for building privacy-
preserving biometric databases. Our scheme, the “Spammed Code O↵set Method”
(SCOM), improves the level of privacy at the cost of extra storage or computa-
tional requirements.

1 Introduction

1.1 Helper Data Schemes

Helper Data Schemes (HDSs) are a security primitive that allows for reliable extrac-
tion of secret information from noisy data, e.g. biometric data or data from a physical
unclonable function (PUF). They make use of a special form of redundancy informa-
tion, ‘helper data’, to correct measurement noise. HDSs can be used to construct e.g.
privacy-preserving biometric databases.
The functionality of a generic HDS is shown in Fig. 1. There is an enrollment phase and
a reconstruction phase. The enrollment procedure Enroll takes as input a measurement
value X and optionally a random value R. The output is helper data W and secret data
S. The reconstruction procedure Rec takes the helper data W and a fresh sample X 0,
which is a noisy version of X, and produces Ŝ, which is an estimate of S. If the noise
between X and X 0 is not too large, then Ŝ = S. Furthermore, W should not reveal
too much information about the secret, ideally none at all. Secrecy of S is preserved
even if W is stored publicly. It is always assumed that attackers have access to W .
Two special types of HDS with additional properties are the fuzzy extractor and secure
sketch. A fuzzy extractor requires that the secret is uniformly distributed. For a secure
sketch, the secret is identical to the measured value, S = X, and no uniformity is
required.

!"#$%%&

X R 

W 

S 

'($#)*+&

W ,+-&

X' 

! 

Figure 1: A generic helper data scheme.
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1.2 The Syndrome-Only Code O↵set Method

One of the first introduced helper data schemes is the Code O↵set Method (COM)[4, 2].
The COM employs a linear error correcting code to compensate for measurement noise.
Below we describe the Syndrome-Only COM: a modified version of the COM that is
more suitable for our purposes. It additionally requires the existence of an e�cient
syndrome decoder. The Enroll procedure consists of nothing more than computing a
syndrome (Syn),

W = SynX.

This construction is a secure sketch, i.e., the secret is the measurement value itself.
The X is reconstructed from W and a sample X 0 as follows:

X̂ = X 0 � SDec(W � SynX 0).

The linearity of the code ensures that, if X 0 is su�ciently close to X, then X̂ will be
equal to X.
In a biometric database, the values stored for each enrolled person would be W and
a hash of X. As long as X given W has su�cient entropy, it is infeasible to guess X
from the enrolled data.

2 Adding Fake Helper Data

Consider an attacker who tries to guess X given the helper data W . Consider a low-
entropy source X, such that the attacker’s task is di�cult but feasible. We propose to
increase the attacker’s workload by hiding the real helper in a list of fake entries. If we
store m helper data items, only one of which is real, the attacker’s average workload
increases by a factor of about m/2. (For very large values of m, the attacker is even
forced to ignore the helper data altogether.) We refer to this technique as spamming.
The technique can be applied in any HDS, as long as there exists an e�cient way to
select the true helper data given X 0. For the (syndrome only) COM, this is achieved
by employing a Low Density Parity Check (LDPC) code.
The idea of adding cha↵ data to hide information is not new [3, 1], but, whereas
previous work considered adding cha↵ points directly to the stored feature vectors, we
are the first to apply cha�ng in the helper data domain. Our data hiding technique
allows us to make more e↵ective use of the source entropy, but it comes at the cost
of increased storage requirement or computational workload. An advantage of adding
spam in the helper data domain (instead of e.g. X-space) is that it allows for a very
precise security analysis.

2.1 The Enrollment and Reconstruction Algorithms

We modify the enrollment procedure such that W is replaced by a list ⌦ of length m.
The list ⌦ consists of m�1 fake items and W hidden at random secret position Z. One
way to do this [5] is to generate the fake items in ⌦ according to the prob. distribution
of SynX and then store the full list. However, this blows up the storage requirements
by a factor m. We present an alternative in which ⌦ is generated ‘on the fly’ from
a seed S. We call this the ‘generative’ Spammed Code O↵set Method. The scheme
needs a one-way function f and a fast Pseudo Random Number Generator (PRNG) �
that generates uniform bit strings of same length as our code’s syndrome. By �i(S) we
denote the i-th string derived from seed S.
Enrollment

1. Measure X.
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2. Compute W = SynX.

3. Uniformly draw index Z 2 {1, . . . ,m}.

4. Uniformly draw seed S.

5. Compute mask B = W � �Z(S).

6. Compute G = f(SkBkX).

7. Store public data P = (S,B,G).

We can think of the list {B � �i(S)}i2{1,...,m} as the list ⌦ of fake helper data which
contains the real W at position Z.
For clarity, we present a simplified version of the reconstruction algorithm; see [5] for
more details. The reconstruction algorithm inspects the Hamming distance dH between
the syndrome of the measured value X 0 and the candidate helper data items and only
carries out the expensive decoding step if the Hamming distance is below a threshold ✓.
Reconstruction

1. Read P 0 = (S 0, B0, G0).

2. Measure X 0.

3. Compute M = B0 � SynX 0

4. For i = 1 to m:

(a) If dH(M, �i(S 0)) � ✓, then next i.

(b) Compute X̂ = X 0 � SDec(M � �i(S 0)).

(c) If G0 = f(S 0kB0kX̂) then return X̂.

5. If the loop is exhausted, then return failure.

Because we use a LDPC code, a small Hamming distance between X 0 and X implies
a small Hamming distance between SynX 0 and SynX. For example, a column weight
3 LDPC code ensures that every bit flip between X 0 and X causes at most three bit
flips between SynX 0 and SynX.

3 Security Analysis

We express the security properties of our scheme in terms of Shannon entropy H and
mutual information I. We start with a general theorem that holds for any method of
inserting fake helper data.

Theorem 1 Let ⌦ be the list of fake helper data in which the real helper data W are
inserted at a random position Z. Then the entropy improvement compared to the plain
COM is given by

H(X|⌦) � H(X|W ) = H(W |⌦)

= H(Z)
| {z }

entropy
gain

� H(Z|W⌦)
| {z }

collision
penalty

� I(Z;⌦)
| {z }

distribution
mismatch
penalty

. (1)
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In the first term of (1), we recognize the entropy gained from hiding the real helper data
at a random position in the list. There are also two clearly interpretable penalty terms
in (1). The ‘collision penalty’ H(Z|W⌦) increases with m. It becomes non-negligible
when ⌦ contains so many entries that it becomes likely that there exist entries with
the same value; then even knowing W and ⌦ does not fix Z.
The ‘distribution mismatch penalty’ occurs when the fake entries in ⌦ do not look
statistically the same as W ; then some information about Z can be obtained already
from inspecting ⌦.
Next, we provide two lower bounds on the entropy. These bounds follow from (1).
Theorem 2 is relevant for the case in which the fake helper data is distributed identically
to the real helper data; Theorem 3 is relevant for the generative SCOM.

Theorem 2 If the distribution of the fake helper data is identical to the distribution
of the real helper data and the index Z is drawn uniformly, then

H(X|⌦) � H(X|W ) � logm � m � 1

ln 2

X

w

(Pr[W = w])2 . (2)

If the fake entries are drawn from the same distribution as W , then the distribution
mismatch penalty vanishes. Furthermore, if W is not uniform, then this a↵ects the
probability of encountering a collision. This is reflected in the

P

w term of (2). The
summation runs over all possible helper data values. As long as W is not too wildly
non-uniform and m is not too large, the

P

w term is negligible w.r.t. logm.

Theorem 3 Let W 2 W. Let U denote a random variable uniform on W. If the fake
helper data and the index Z are drawn uniformly, then

H(X|⌦) � H(X|W ) � logm � m � 1

|W| ln 2
� (1 � 1

m
)[D(WkU) + D(UkW )], (3)

where D is the Kullback-Leibler divergence.

Here the collision penalty has a simple from since it pertains to collisions of uniform
variables. In both Theorem 2 and Theorem 3 we see that for m ⌧ |W| the improvement
in the entropy of X given the public information is approximately logm, as one would
intuitively expect.
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Abstract

Wireless channels experience multipath fading which can be modeled by a sparse
discrete multi-tap impulse response. Estimating this channel is of crucial impor-
tance to allow the receiver to properly recover the transmitted signal. This paper
investigates the issue of allocating the pilots for sparse channel estimation applied
to multicarrier systems. When the number of pilots is larger than or equal to
the channel maximal length, this issue is well-known and the optimal allocation
is equispaced. However for long channels, this would require a very large number
of pilots decreasing the throughput of the system. Therefore, compressed sens-
ing (CS) techniques are considered to estimate the sparse channel from a limited
number of pilots. In that case, the problem of placing the pilots remains an
open issue. This paper proposes a two-step hybrid allocation of the pilots that
takes the maximal channel length into account to restrict the frequency candi-
dates. The performance of this allocation is demonstrated through simulations
and comparisons with other classical allocations.

1 Introduction

In wireless telecommunication systems, multiple reflections induce distortion on the
transmitted signal. The receiver has to estimate the channel impulse response to prop-
erly compensate this effect commonly known as multipath fading. The wireless channel
is often characterized by a sparse discrete multi-tap impulse response of maximal de-
lay L. In a multicarrier system with M subcarriers, the receiver probes the channel
frequency response thanks to Lp known pilot symbols transmitted at well-chosen sub-
carriers. Using this partial information (Lp ⌧ M) the receiver has to estimate or
interpolate the entire channel frequency response. In this paper, we investigate the
optimal choice for the pilot subcarrier positions as a function of Lp and leveraging
sparsity of the channel impulse response.

In practice, the maximal channel length L (number of time samples before the last
tap), is much smaller than the number of subcarriers M , i.e., L ⌧ M . For Lp � L,
traditional approaches based on the least squares (LS) criterion have shown that the
optimal pilot subcarrier positions are equispaced [1]. However, for very long channels,
the required number of pilots Lp can be prohibitive, wasting subcarriers that are there-
fore unavailable for data transmission.

Compressed sensing (CS) theory allows to robustly estimate a sparse signal from
a limited number of incoherent linear measurements [2]. In particular, a signal of
length M with only K nonzero elements is perfectly recovered with high probability
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from about K log(M) randomly selected Fourier samples [3]. Some works have ap-
plied CS recovery methods to channel estimation showing that significant gains can
be obtained [4] compared with classical methods. The problem of optimally placing
the pilots has been investigated only very recently. Some works proposed sub-optimal
research algorithms to select the pilot locations based on different criteria, i.e. the
average mean squared error (MSE) using known channel models in [5], the coherence
of the measurement matrix in [6] or its mutual and modified mutual coherence in [7].
However, none of those approaches effectively take the maximal channel length L into
account to restrict the pilot possible positions.

Instead of randomly selecting the pilots among the M subcarriers, this paper pro-
poses to restrict the frequency candidates to a subset of L equispaced subcarriers and
randomly select Lp positions among these L candidates. This hybrid allocation strategy
between equispaced and purely random gives a clear gain in performance and reduces
the required number of pilots with respect to L.

The rest of this paper is structured as follows. Section 2 describes the system under
study by introducing the linear forward model. It also presents three options for pilots
allocation and gives the main idea behind CS principles and the recovery algorithm.
Section 3 compares the different pilots allocations through numerical simulations and
shows that the proposed hybrid allocation allows one to significantly reduce the num-
ber of pilots.

2 System model
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(a) Channel impulse response
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(b) Channel frequency response

Figure 1: Sparse channel model, M = 256, K = 6, L = M/4 = 64

The channel impulse response (CIR) h[l] (0 � l � L � 1) is modeled as a discrete
channel as depicted in Figure 1a for K = 6 non zero taps, M = 256 subcarriers,
maximal channel length L = 64 and sampling period TS. This is a typical length for
very long channels, e.g. ITU Vehicular B channel model. Moreover an exponentially
decaying power delay profile (PDP) is assumed for the channel. Figure 1b depicts the
channel frequency response (CFR), obtained by performing a discrete Fourier trans-
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form (DFT) on h[l] evaluated at M equispaced frequency points.
The system model for channel estimation in a multicarrier system based on trans-

mitted pilots can be formulated as follows

HL
p

= SFM⇥M⌃
| {z }

�

h + n (1)

where HL
p

is the Lp⇥1 stacked vector of observations at pilot subcarriers, S is a Lp⇥M
matrix which select the Lp rows of the full M ⇥M DFT matrix FM⇥M corresponding
to the pilot subcarrier indexes, ⌃ is a M⇥L matrix which selects the L first columns of
FM⇥M , h is a L⇥ 1 vector corresponding to the stacked CIR h[0], ..., h[L� 1] and n is
an additive white Gaussian noise of covariance Cn = E(nnH) = 2N

0

E
Pilot

IL
p

. A constraint
on the total energy ET used by the pilots is assumed such that EPilot = E

T

L
p

= ME
S

L
p

.
The Lp ⇥ L matrix � is commonly known as the measurement matrix.

If the number of transmitted pilots is larger than or equal to the maximal channel
length, Lp � L, a classical approach in the literature [1] is to use a least square (LS)
criterion to estimate h. The estimator of the CIR is then given by

ĥLS = argmin
h̃

kHL
p

� �h̃k2

= (�H�)�1�HHL
p

= h + (�H�)�1�Hn. (2)

This estimator converges asymptotically towards the true CIR h at high SNR. The
work in [1] has shown that to minimize the noise amplification due to the inverse in
last expression, one should place the pilot subcarriers in an equispaced way. This could
actually be predicted by Shannon sampling theory. Since h[l] has a length limited to
L samples, there will not be any aliasing if its DFT is sampled uniformly at maximal
sampling period 1/L which is obtained as soon as Lp � L.

However, if Lp < L, the least squares problem is underdetermined. Inspired by
sparse approximation theory, most CS reconstruction techniques leverage the sparsity
of h to regularize the least squares problem, i.e.,

ĥ = argmin
h̃

kHL
p

� �h̃k2 s.t. kh̃k0  K, (3)

where k.k0 is the number of non-zero coefficients in a vector. The estimator ĥ of (3)
is NP-hard to compute due to the combinatorial number of possible supports for h̃.
However, there exist several ways to find a good approximation to ĥ, e.g., by `1�norm
relaxation [2]. In this work, the Iterative Hard Thresholding (IHT) algorithm is for
estimating ĥ. This procedure is simple, fast and it provides guarantees of good recon-
struction quality [8].

In this particular setup, the optimal pilot positions are not known. The problem
addressed in this paper is the choice of the pilot subcarrier positions in order to recover
h based on the channel observations HL

p

.

Equispaced allocation One could think at first that placing the subcarriers in an
equispaced manner over the band is still a good idea. Nevertheless, regarding Shannon
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sampling theory, this allocation would result in strong aliasing since the frequency
band is not sampled at a sufficient rate. Sparse approximation theory also supports
this fact. Indeed, it is known that one can find a unique sparse representation (here h),
of a signal (here HL

p

) in a redundant dictionary � only when the coherence of that
dictionary is small [9]. The coherence µ of � is defined as the maximum normalized
absolute correlation between two columns,

µ = max
0m<nL�1

�H
m�n

k�mk2k�nk2

, (4)

that is, in this case,

µ = max
0m<nL�1

1

Lp

L
p

�1
X

l=0

e�j 2⇡

M

k
l

(n�m)

= max
1cL�1

1

Lp

L
p

�1
X

l=0

!k
l

c
M , (5)

where !k
M = e�j 2⇡

M

k and c = n�m. Let’s assume that Lp divides M and the subcarriers
are placed equispaced, that is, kl = lML

p

. While the condition Lp � L gives a zero
coherence due to the orthogonality property of the root of unity, the underdetermined
case Lp < L allows c = Lp, that is,

µ = max
1cL�1

1

Lp

L
p

�1
X

l=0

e
�j 2⇡

M

l M
L

p

c
=

1

Lp

L
p

�1
X

l=0

!lL
p

L
p

= 1. (6)

This shows that if Lp < L, placing the subcarrier uniformly is the worst choice in the
sense of the minimal coherence criterion.

Fully random allocation Following CS theory, when L = M , i.e., the time range
of h is equal to the number of subcarriers, a good choice for the subcarrier assignment
scheme (SAS) is simply to choose fully randomly Lp subcarriers and one could expect
much better performance than with equispaced placement. In particular, it has been
shown that in this case, the condition

Lp � CK log(M) (7)

with C a reasonably small fixed constant, guarantees perfect recovery in the noiseless
case and robust recovery in the presence of noise [3]. This SAS will be further referred
to as the fully random SAS.

The limitation of the fully random SAS is that it does not take into account the
maximal channel length L that is smaller than M in practice. Fully randomly selecting
the subcarriers would wastefully allow to have a time range up to M taps in time
domain (TD). A second way to interpret this limitation is that the CFR should not
be sampled too fast. Indeed, a small distance between pilot subcarriers would give
useless information on the taps which are far from the origin and known to be zero.
Yet another way to see this is by acknowledging the fact that two frequency samples
that are next to each other are strongly correlated and their mutual information is very
low.
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Proposed hybrid allocation Considering the limitation of the fully random SAS, a
constraint can be added to restrict the distance between pilot subcarriers to be bigger
than M

L . Instead of fully randomly selecting among the M subcarriers this paper
proposes to perform a two-step hybrid SAS:

• The frequency candidates are first restricted to a subset of L equispaced subcar-
riers.

• The Lp positions are randomly selected among these L candidates.
This allocation is referred to as "hybrid" between equispaced and purely random since
it randomly selects Lp subcarriers among the frequency candidates of the Lp = L equi-
spaced SAS which corresponds to an optimal Shannon sampling. Doing so, we try to
ensure minimum correlation between pilots.

Furthermore, if L is assumed1 to divide M , this hybrid SAS leads to a simplified
system model as

HL
p

= SFM⇥M⌃h + n

= S0F L⇥Lh + n. (8)

where S0 is the new selection matrix with indices belonging to [0, L� 1]. The previous
DFT simplification comes from the fact that the L first columns and the L equispaced
rows of FM⇥M are selected.

This simplification has two advantages. On the one hand, the complexity of the
reconstruction algorithm is reduced since the DFT size decreases by a factor M

L
p

. On
the other hand, this allows to use the results of [3] but with L instead of M , namely,

Lp � CK log(L), (9)

which implies a reduction in the required number of pilots to guarantee perfect recon-
struction in the noiseless case and robust recovery in the presence of noise.

3 Simulation results

In the simulations, M = 256 subcarriers are assumed, the maximal length of the
channel is set to L = M/4 = 64 and K = 6 taps are non negligible. The first
tap is placed in 0 and the five remaining tap delays follow a uniform distribution in
{1, · · · , L � 1}. A uniform PDP of the channel is considered such that each non zero
tap has a zero mean and a variance exponentially decaying with the delay with a 20dB
attenuation of the last tap with respect to the first. 100 channel realizations and 100
SAS realized for each of the hybrid and fully random SAS while only one realization
for the equispaced SAS (since it is deterministic). The metric used to evaluate each
method is the normalized mean squared error (NMSE) defined as

NMSE = E
(

kh � ĥk2
2

khk2
2

)

, (10)

which is averaged over all channel and SAS realizations. The method used to recon-
struct the channel based on the observations is Iterative Hard Thresholding (IHT) [8].

1If it is not true, one can increase L up to the point where it becomes true.
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We fix the number of iterations to 50 and the gradient step size parameter of the line
search is computed at each iteration to minimize the LS criterion. This method as-
sumes the channel maximal length and the number of non zero taps are known by the
receiver. However, one could as well use another CS technique which does not know
exactly the sparsity a priori, e.g. basis pursuit denoising [2].
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Figure 2: NMSE as a function of the number of pilots for different SAS and ES/N0 = 30dB.

Figure 2 shows the evolution of the NMSE as a function of the number of pilots
for ES/N0 = 30dB. As expected, the equispaced SAS performs very badly2. Moreover,
the hybrid SAS clearly outperforms the fully random SAS. There is a 12dB gap and a
17dB gap between the two methods for Lp = 32 and Lp = 40 respectively.

The results in Figure 2 are based on the NMSE which gives no information on the
distribution of the normalized squared error (NSE) of reconstruction. Figure 3 depicts
the cumulative density function (CDF) of the NSE for the different SAS and Lp = 32.
As explained before, the reconstruction fails for almost all realizations using the equis-
paced SAS. We also see that the probability of good reconstruction for the hybrid SAS
is higher than for the random SAS, e.g. about 99% of the NSE realizations are below
-35dB for the hybrid allocation compared to about 70% of the NSE realization using
the fully random SAS.

Figure 4 shows the NMSE as a function of the ES/N0 ratio for different SAS. As
explained, if Lp < L, the equispaced SAS performs very badly. For Lp = L, a LS
estimator can be computed for which the equispaced SAS is optimal. Moreover, the
LS estimator thresholded to the 6 more significant taps is also shown3 and is the best
performance obtained. The fully random SAS performs well at low SNR while at high

2Note that the equispaced is only averaged over one SAS realization since it is deterministic versus
100 for the two other SAS.

3Since the IHT method is assumed to know the number of non zero taps, it is also more fair to
threshold the result of the LS estimator.
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30dB, Lp = 32.
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Figure 4: NMSE as a function of ES/N0 ratio (L = 64). The presented SAS are tested
with Lp = 40 < L. A classical LS estimator is computed with Lp = 64 = L, for which the
equispaced SAS is optimal. The LS estimator thresholded to its K highest coefficients is also
shown for fair comparison with an ideal case.

SNR, the reconstruction error imposes a NMSE floor. Then, the two LS methods
perform better at the cost of more pilots. However, the hybrid technique performs
almost as well as the LS thresholded estimator still at high SNR and with only L = 40
pilots.
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4 Conclusion

This paper investigated the issue of allocating the pilots for sparse channel estimation.
In situations where the number of pilots is larger than or equal to the channel maximal
length, this issue is well-known and the optimal allocation is equispaced. However, if
the number of pilots is strictly smaller than the channel length, the problem remains
open. This paper showed that still placing the subcarriers in an equispaced way is the
worst choice in the sense of the minimal coherence criterion. Rather than selecting the
pilots at random among the subcarriers, this paper proposed to use a two-step hybrid
allocation. The first step restricts the frequency candidates to a subset of equispaced
subcarriers and the second step randomly selects positions among these candidates.
This allocation allows to significantly reduce the complexity of the reconstruction by
decreasing the DFT matrix size. The performance of the method was demonstrated
through simulations and compared with fully random allocation approach and other
classical approaches based on the LS criterion. The hybrid allocation clearly outper-
forms the fully random allocation while reaching almost the same performance as a LS
thresholded estimator requiring much more pilots.
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Abstract

In recent years, the Open Data movement has gained momentum, mainly driven
by the idea of Open Data as fuel for innovation. Unfortunately, the publication
of large sets of Open Data may also lead to unforeseen breaches to the privacy of
individuals. In order to investigate this, we conducted interviews with the policy-
makers responsible for Open Data publication in the Netherlands, during which
we observed that little is known about the possible privacy issues surrounding
the publication of Open Data by the organizations responsible for its publica-
tion. In addition, we observed that little attention is given to the preservation of
utility in anonymized Open Data sets. Following these central observations, we
present an updated data publishing process, supported by an automated decision
support system (ADSS) to help data publishers to make informed decisions on
the choice of anonymization algorithm. We also provide a reference implemen-
tation to illustrate the use of ADSS that involves a number of commonly used
anonymization algorithms.

1 Introduction

The online publication of (governmental) data which can be used and republished
without restrictions, so called the Open Data movement, has gained momentum in
recent years [8]. The main idea in Open Data movement is to increase governmental
transparency by making public information more easily accessible. Many countries,
including the Netherlands, have set targets on the adaptation to this movement [21].
An example of Open Data in Europe is the publication of patient data with medical
details in the UK that aims to improve public health [2].

Open Data movement was initiated as it is believed that there are a number of
advantages. Huijboom and van den Broek [8] summarized them as follows: (1) in-
creasing democratic control and public participation, (2) fostering service and product
innovation and (3) strengthening law enforcement. On the other hand, the movement
has also a disadvantage. Although the Open Data movement is considered as a tool
for transparency and economic growth, the open publication of governmental datasets,
which often contain a wide range of governmental data, may lead to unforeseen privacy
and security breaches due to unintended publication of sensitive data and unpredicted
combinations with other data [7], which in turn may lead to legal and economic con-
sequences.

A good example of such unforeseen uses of data for malicious purposes is the so-
called “Makkie Klauwe”⇤ app (“easy stealing”). The application directs burglars in
Amsterdam to houses which are easy to break into and are expected to generate a
nice profit, by combining public data such as area value, reported problems and how

⇤http://www.bramfritz.nl/makkieklauwe/
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much the municipality can spend on area improvement and repairs. For example it
may suggest a house in an expensive neighbourhood where the street-light is broken
(easy to break into undetected).

The existing research in data anonymization is focused on data privacy. However,
as demonstrated by the example above, we observe that the risks of data publica-
tion range beyond privacy breaches alone. To better understand whether these risks
are understood and su�ciently mitigated in practice, we conducted interviews with
policymakers responsible for the publication of Open Data in the Netherlands from
the following institutions: Rijkswaterstaat (responsible for the roads, water and in-
frastructure in The Netherlands), Kadaster (responsible for parcel information), Am-
sterdam Economic Board (responsible for strategies for the economic development of
the Amsterdam region) and Statistics Netherlands - CBS (supplier of most statisti-
cal information in The Netherlands). These interviews revealed that there are neither
clear procedures to mitigate the risks related to Open Data publication, nor su�cient
understanding on the impact of the risks within most of the institutions.

In this paper, we address the data privacy considerations in the Open Data publica-
tion process. We lay a foundation to an enhanced data publishing process, supported
by an automated decision support system. This system assists policy makers (as well
as data publishers) in assessing the risk of publishing data sets as Open Data, with-
out assuming deep knowledge of privacy attack mechanisms. Therefore, we describe a
system which provides insight on the potential risks associated with data leakage and
which provides advice on how to anonymize data. By means of this enhanced data
publishing process, we aim to build a bridge between theory and practice in open data
publishing.

The main contributions to existing research in this paper are:

Improved Data publishing process We present an improved data publishing pro-
cess which serves as the foundation towards automated data publishing.

Automated decision support system (ADSS) We present a reference implemen-
tation of an automated decision support system, which assists a data publisher in
understanding the privacy risks. Unlike other frameworks, the proposed system eval-
uates and visualizes the performance of a number of state-of-the-art algorithms on a
given data set, enabling the data publisher to make an informed choice based on the
privacy and utility metrics presented.

Testing As a proof of principle we provide results of a comparative study of the algo-
rithms included in the ADSS, to better understand the privacy-utility trade-o↵.

We believe that the improved Open Data publication process presented in this
paper combined with the ADSS will help authorities to better mitigate the privacy
risks associated with the publication of their datasets, while preserving the utility of
the published data. Moreover, we provide a discussion on the issues we observe in
practice, issues that may guide the research community to address the needs of the
data publishing authorities.

The remainder of the paper is organized as follows. We present related work in
the field in Section 2. A brief description of the used privacy models is presented
in Section 3. In Section 4 we provide an overview of the data publishing process.
Following this, we give a high level overview of the ADSS in Section 5. We provide
some insights on the experiments conducted on the ADSS using a public data set in
Section 6. Finally, we draw conclusions in Section 7.
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2 Related Work

To the best of our knowledge, little research has been conducted on the privacy risks
associated with Open Data. However, there does exist a large body of literature on
anonymization of data and on the quantification of anonymity and utility, for an
overview we refer readers to the paper by Fung et al. [6]. In the remainder of this
section, we describe frameworks that use anonymization techniques and quantify the
associated privacy-utility trade-o↵.

Duncan et al. [4] present the idea of the trade-o↵ between privacy and utility and
formally define the Risk-Utility maps as a way to visualize this trade-o↵. One limitation
of their work is that applying the concept in practice requires expert level statistical
and mathematical knowledge.

Sramka et al. [18] took another approach to the problem and defined two types
of utility: bad utility and good utility. The former represents the usefulness to an
attacker while the latter to a legitimate user. In this context, Sramka models privacy
in terms of bad utility. The less bad utility a data set contains, the less useful it is
to an attacker and thus, the more privacy preserving it is. The authors propose a
framework to anonymize and then analyze the data from a data-mining perspective.
The framework uses data-mining algorithms to compute the privacy and utility metrics.
This idea complements our reference implementation since our metrics provide micro-
level information, while the data- mining metrics provide macro-level information.

Lin and Kifer [16] propose another framework to extract semantic privacy guaran-
tees from the anonymized data. In other words, the authors seek an answer for the
question “what does privacy guarantee Y protect?”. The authors rely on the change in
beliefs of Bayesian attackers (attackers who use Bayesian inference to breach privacy)
to build their proof. To achieve this, the privacy definition is restated in the language
of set theory and then a geometric object called the row cone is extracted. This object
encapsulates all the ways in which an attacker’s prior beliefs can become posterior
beliefs after seeing the data.

The framework of Beck and Marhöfer [3] is built on top of the UTD [17] anonymiza-
tion toolkit and uses sdcMicro [20] module to measure risk. Unlike our system, the
authors only test how a classifier behaves on anonymized user profiles.

The only framework we know of as being used in practice on large scale is µ-
argus [9, 10]. The framework uses k-anonymity [19] and suppression to anonymize
the data. sdcMicro [20] has been developed by the same community that developed
µ-argus, so privacy is measured in a similar way.

In adddition to the above frameworks, a few tools are available to anonymize data.
UTD [17] is a simple tool that provides the means to anonymize the data; sdcMicro [20]
is an R language module which can also anonymize data and compute several metrics.

3 Preliminaries

One of the core contributions in this paper is an automated decision support system
as part of Open Data publishing process. For our reference implementation of this
system, we have chosen four privacy models: k-anonymity [19], t-closeness [14], (n,t)-
closeness [15] and (n,t)-closeness together with k-anonymity. These models are widely
used in literature as baseline or reference and some of them are applied in practice.
Our framework relies on two implementations for k-anonymity: one is based on the
Incognito [12] algorithm and the other is based on the Mondrian [13] algorithm. The
other models have been implemented by relying on either Incognito or Mondrian as
follows. t-closeness extends the Incognito implementation of k-anonymity, while (n,t)-
closeness and (n,t)-closeness with k-anonymity both use the Mondrian algorithm. In
the remainder of this section we provide brief descriptions of the aforementioned privacy
models for the sake of completeness.
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An important concept is that of a Quasi-IDentifier or QID. It represents a set of
attributes of the current data set used for linking with external information in order
to uniquely identify individuals. These include attributes, which at first glance may
seem harmless, such as the combination of postcode, gender and age, that uniquely
identifies people.

k-anonymity This model works as follows. Let qid represent a QID value combi-
nation for a record in a data set. k-anonymity only requires that every single qid value
appears at least k times in the data set. This means that the QID values of the records
in the data set are generalised in such a way that grouping by QID values generates
bins called equivalence classes (EC) of size at least k. The e↵ect of k-anonymity is that
an attacker can link an individual to a record with a maximum probability of 1/k. k
can take any positive integer value.

t-closeness The privacy model t-closeness also uses generalisation of QID values
to achieve its privacy requirement. But instead of requiring a minimum group size, it
requires a maximum distance between two distributions. A data set is said to achieve
t-closeness if for every EC, the distribution of the sensitive values in the EC is within
t of the distribution of sensitive values in the whole data set. t can take any real
values between 0 and 1. The reasoning behind it is to limit the information gain from
an individual EC, compared to the information already gained from the whole data set.

(n,t)-closeness (n,t)-closeness builds on top of t-closeness. The main advantage
is that it distorts the data less. It requires the distribution of sensitive values for every
EC to be within t of a population of size at least n. This population must be su�ciently
large of size at least n, and needs to be a natural superset of its respective EC. n can
be a positive integer of at most the size of the full data set.

(n,t)-closeness with k-anonymity For this privacy model, Mondrian has been
used as the base algorithm. The requirement for the cut step, explained above, has
to respect both the k-anonymity and the (n,t)-closeness privacy requirements: the EC
has to be at least of size k and within t distance of a natural superset of size at least
n.

4 Data Publishing Process

In this section, we present a 6-step publishing guideline that considers the legal, eth-
ical and technical aspects of the process. This is based on the guideline presented
in [10, Ch. 3.2] and adapted to be applicable to Open Data and to account for the
decision support system presented in Section 5.

Assess need for confidentiality protection. The first step involves analyzing the data set
to be published for the presence of information requiring protection. The decision on
what needs to be protected and what does not is based on legislation, common sense
and experience. In the case of the Netherlands, legislation includes the Personal Data
Protection Act and domain specific acts for, e.g., medical data.

Identifying data characteristics and data usage. This step involves gaining a better
understanding of the characteristics of the data and how these data can and may be
used by di↵erent parties. Characteristics include the type of data (e.g. textual, numer-
ical), distribution of values, etc. The usage of the data is di�cult to determine. In the
context of Open Data, there is no intended way to use the data. One can only attempt
to estimate the possible usage, but we may expect (and hope for) users to bring new
insights by using and combining the data in novel and unforeseen ways.

177



Disclosure risk. Disclosure relates to re-identifying a sensitive (protected) piece of in-
formation in the published data. There are several types of disclosure including identity
disclosure, attribute disclosure, inferential disclosure and table linkage. [10, Ch. 3]. De-
pending on the obtained data, di↵erent disclosure risks exist. Based on the gathered
information from other sources, the data publisher tries to develop scenarios which
demonstrate how the data can be misused. A possibly useful framework for this is
described in [5].

Configuration of the automated decision support tool. In this step, the user configures
the system by selecting the privacy and utility metrics to be included in the analysis
of the data (and related parameters).
Selecting the algorithm to be used for publishing. The user runs the automated software
to analyze the data set. As a result, he receives information on all algorithms and
their performances given their Risk Utility maps [4]. This is a plot which shows an
algorithm’s performance, measured by the privacy and utility metrics, when executed
using di↵erent parameter values.

If needed, the publisher can execute post-anonymization data processing. Examples
include suppressing certain values or changing the format of the data(e.g. if the date
should follow a specific standard) before it is published. Finally, the data is written
out to the configured location.

Data audit and documentation. This last step is required in order to create valid
expectations on behalf of the future data users. The data publisher should choose
which pieces of information can be released to the public. Two important pieces of
information are the results of the utility metrics and the methods used to protect the
data. The former gives insight on how usable the data set can be towards certain tasks,
The later should be made public for reasons of transparency. The data can be checked
by an external party for compliance with the regulations. The documentation needs
to explain the legal or administrative reasons behind the data anonymization process.
Furthermore, information about the anonymization process can help users understand
what has been changed and what the impact could be on their data usage. This is
important because it is possible, for example, to calibrate data mining algorithms to
account for modifications made by applying a privacy model such as k-anonymity.

5 Automated Decision Support System

The purpose of our automated decision support tool (ADSS) is to assist data publishers
in anonymization of the data, without assuming deep knowledge of anonymization
algorithms and utility metrics. It anonymizes a data set in many di↵erent ways and
then presents the data publisher with the results of di↵erent metrics computed for
each anonymization. Using this information, the data publisher can now make a better
choice as to which anonymization to use. Our focuss is on the non-expert users because
the government does not have the expert manpower to assess all the data sets that it
needs to publish, within a reasonable amount of time.

The performance of each anonymization algorithm strongly depends on the data
set. Currently, there is no single best anonymization algorithm. One needs to assess
the guarantees o↵ered by each technique. In the context of Open Data, utility deserves
special attention. If one releases a data set with low utility, it might not be worth
publishing at all.

Our proposed ADSS consists of 6 modules, depicted in figure 1. The Configure and
Control modules are responsible for configuring the algorithms used and controlling
the overall program flow respectively. The Data operations module reads and writes
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data from and to persistent storage. The Anonymize, Measure and Visualize will be
discussed below.

Figure 1: Modules and dataflow for the Automated Decision Support System

Anonymize The anonymize module applies a (configurable) number of anonymiza-
tion algorithms to a given dataset. Intermediate (sanitized) results are persisted for
measurement and visualization. The anonymize module is designed to be easily ex-
tendible with anonymization algorithms.

Measure Within the measure module, privacy and utility metrics are applied to
the anonymized datasets resulting by the anonymize module. Outcomes are normal-
ized to allow visual comparison in the visualize module.

Visualize Visualization of the results is done by plotting the outcomes of the
various metrics and algorithms into a single image. In order to make the metric values
meaningful for any non-expert, we defined a factor as the value of the utility metric
applied to the anonymized data set divided by the value of the same utility metric
applied to the original data set (ODS). This factor is a positive value: A value of less
than 1 implies an improvement over the ODS, while a value greater than 1 implies a
decrease in utility. A value smaller than 1 is possible because the anonymized data set
removes some of noise contained by the ODS. Similarly, we use normalized results of
the privacy metrics. The outcomes of the various metrics are visualized in a colored
scatter-plot, privacy on the X-axis and utility on the Y-axis. A lower-left quadrant
indicates the algorithms and configurations which are optimal, and boundaries can be
visualized for the required levels of privacy and utility.

6 Reference Implementation and Experimental Re-
sults

In this section, we describe our reference implementation for the ADSS and provide a
high level analysis of an experiment that compares the most commonly used anonymiza-
tion techniques. The metrics used in this experiment give some insights in the success
of the used algorithms, in terms of privacy-utility trade-o↵.

Our reference implementation has been built by extending and modifying the Uni-
versity of Dallas Texas anonymization toolbox [17]. The toolbox provides a number
of anonymization algorithm implementations and has capabilities to read, write and
transform data. However, the tool has been changed significantly to enable running
multiple anonymizations, automatically generating algorithm configurations, and com-
puting and visualising the results. Moreover, we’ve added Mondrian (n,t) and (k,n,t)
to the suite.

For the experiments, the Adult data set† from the UC Irvine machine learning

†
http://archive.ics.uci.edu/ml/datasets/Adult
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Figure 2: QID4 and QID7 comparison for NormCM.

repository has been used. It consists of data collected from the US census. Records
with missing values have been removed, resulting in a data set consisting of 30162
records in total.

To simulate the e↵ect of combining the Adult data set with external sources, we
experimented with QID sizes of 4 and 7, which are represented as QID4 and QID7,
respectively. The two sets of QIDs are {Age, Occupation, Race, Gender} and {Age,
Education, Marital status, Occupation, Race, Gender, Native country}. For brevity
reasons, the attribute details of this data set have been ommited.

The experiments were conducted on several machines with Intel(R) Xeon(R) CPU
2 GHz with at least 32 GB of RAM. The reference implementation runs on Java and
makes use of an internal SQLite library for data storage and processing.

The metrics used is our experiments are the Classification Metric (CM) [11], the
Discernibility metric (DM) [1] and the Normalized average equivalence class size (NormAvgECSize)
[13]. Furthermore, since CM and DM are values that depend on the number of records,
their normalized forms were used in our experiments.

6.1 Privacy-Utility Metrics

In our experiments we analyse the algorithms on an individual and collective level.
However, for space constraints, we present only the latter in this paper, a comparison
of the four algorithms based on the utility and privacy metrics mentioned above.

NormCM In Figure 2 we observe that for QID4, Incognito K and Mondrian NT o↵er
the best utility and second best privacy. Incognito T, as expected, o↵ers the best
privacy but at a high utility cost. In this scenario, the worst case value for utility is
on par with that of the ODS.

For a QID of size 7, it becomes clear that Incognito T is the best choice. Because
Mondrian tries to slice the QID space as uniformly as possible, it does not provide
optimal aggregation of values and incurs a higher classification penalty for its two im-
plementations. k-anonymity is limited by the value of k to the minimum bin size. This
makes it possible for mixed values to be grouped together and incur a higher penalty.
Incognito T manages to achieve a grouping of values into smaller bins and yet preserve
privacy.

NormDM In both cases in Figure 3, where the QID set size was 4 and 7, all algo-
rithm anonymizations have, for a given parameter value, a global re-identification rate
of 0.7% for approximately the same utility value. The only relevant fact is that the
Mondrian based algorithms managed to find anonymizations with a better utility level
than when the QID set size was equal to 4. KNT managed a factor of 5 w.r.t to the
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ODS while NT a factor of 1.3 to 2. The reason why NT outperforms KNT is that the
former is not limited by a minimum EC size of k.

NormAvgECSize We observe in Figure 4 that Incognito T o↵ers the best anonymiza-
tion possible for QID4. In QID7, Incognito T is on par with Mondrian KNT. Incog-
nito T requires a taxonomy tree for every attribute in order to work. Having a better
result than Mondrian KNT means that the user defined taxonomy tree for QID4 is bet-
ter than the Mondrian self generated partitioning. In QID7 we see that Mondrian KNT
is able to find a similar partitioning to that of Incognito T.

Figure 3: QID4 and QID7 comparison for NormDM.

Figure 4: QID4 and QID7 comparison for NormAvgECSize

7 Conclusion

In this paper, we address the privacy considerations associated with the publication of
Open Data in practice. We provide an enhanced guideline for the publication proce-
dure and present a reference implementation of an automated decision support system
that compares the performance of a number of widely used anonymization algorithms
given certain metrics for a particular data set. Our goal is to enable decision makers
to e↵ectively compare the performance of di↵erent anonymization algorithms using
privacy-utility metrics, without understanding these metrics and algorithms in detail,
since in the end, there is no best algorithm. The data publishing procedure and the
automated decision support system we propose make a step towards closing the gap
between theory and practice in Open Data publishing. However, additional aspects
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to improve the framework remain. Firstly, the proposed ADSS currently handles rela-
tional data only. But many other types of data are considered for publication, including,
and not limited to transactional, locational, social and graphical data. Secondly, other
algorithms which are deemed suitable for those new kinds of data should be integrated
to the framework. Thirdly, the e↵ects of combining information from other sources
such as social networks, should be investigated in terms of privacy and utility. Never-
theless, we believe that our enhanced data publishing procedure and the ADSS provide
an important step towards building a bridge between the theory and practice in open
data publishing.

References

[1] Roberto J Bayardo and Rakesh Agrawal. Data privacy through optimal k-
anonymization. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st In-
ternational Conference on, pages 217–228. IEEE, 2005.

[2] BBC. Everyone ‘to be research patient’, says David Cameron. http://www.bbc.
co.uk/news/uk-16026827, 5 December 2011. Online.

[3] Martin Beck and Michael Marhofer. Privacy-preserving data mining demonstra-
tor. In Intelligence in Next Generation Networks (ICIN), 2012 16th International
Conference on, pages 210–216. IEEE, 2012.

[4] George T. Duncan, Sallie A. Keller-mcnulty, and S. Lynne Stokes. Disclosure risk
vs. data utility: The r-u confidentiality map. Technical report, Chance, 2001.

[5] Mark Elliot and Angela Dale. Scenarios of attack: the data intruders perspective
on statistical disclosure risk. Netherlands O�cial Statistics, 14(Spring):6–10, 1999.

[6] Benjamin Fung, Ke Wang, Rui Chen, and Philip S Yu. Privacy-preserving data
publishing: A survey of recent developments. ACM Computing Surveys (CSUR),
42(4):14, 2010.

[7] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam Smith. Com-
position attacks and auxiliary information in data privacy. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 265–273. ACM, 2008.

[8] Noor Huijboom and Tijs Van den Broek. Open data: an international comparison
of strategies. European journal of ePractice, 12(1):1–13, 2011.

[9] A Hundepool et al. Mu-argus 4.2 users maual. Statistics Netherlands, 2008.

[10] Anco Hundepool, Josep Domingo-Ferrer, Luisa Franconi, Sarah Giessing,
Eric Schulte Nordholt, Keith Spicer, and Peter-Paul de Wolf. Statistical Disclosure
Control. Wiley, 2012.

[11] Vijay S Iyengar. Transforming data to satisfy privacy constraints. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 279–288. ACM, 2002.

[12] Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. Incognito: E�cient
full-domain k-anonymity. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pages 49–60. ACM, 2005.

182



[13] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Mondrian multi-
dimensional k-anonymity. In Ling Liu, Andreas Reuter, Kyu-Young Whang, and
Jianjun Zhang, editors, International Conference on Data Engineering, page 25.
IEEE Computer Society, 2006.

[14] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy
beyond k-anonymity and l-diversity. In Rada Chirkova, Asuman Dogac, M. Tamer
zsu, and Timos K. Sellis, editors, International Conference on Data Engineering,
pages 106–115. IEEE, 2007.

[15] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. Closeness: A new
privacy measure for data publishing. IEEE Trans. Knowl. Data Eng., 22(7):943–
956, 2010.

[16] Bing-Rong Lin and Daniel Kifer. A framework for extracting semantic guarantees
from privacy. CoRR, abs/1208.5443, 2012.

[17] University of Texas at Dallas. Anonymization toolbox. http://cs.utdallas.
edu/dspl/cgi-bin/toolbox/index.php, October 2013.

[18] Michal Sramka, Reihaneh Safavi-Naini, Jörg Denzinger, and Mina Askari. A
practice-oriented framework for measuring privacy and utility in data sanitiza-
tion systems. In Proceedings of the 2010 EDBT/ICDT Workshops, EDBT ’10,
pages 27:1–27:10, New York, NY, USA, 2010. ACM.

[19] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

[20] Matthias Templ. Statistical disclosure control for microdata using the r-package
sdcmicro. Transactions on Data Privacy, 1(2):67–85, 2008.

[21] Thijs van den Broek, Noor Huijboom, Arjanna van der Plas, Bas Kotterink, and
Wout Hofman. Open overheid, January 2011. Retrieved May 2013.

183



Analysis of Direct Signal Recovery Scheme for
DVB-T Based Passive Radars

Osama Mahfoudia Xavier Neyt
Royal Military Academy

Dept.CISS
Avenue de la renaissance 30, 1000 Bruxelles

osama.mahfoudia@rma.ac.be xavier.neyt@rma.ac.be

Abstract

In this work, a directed signal reconstruction scheme for Digital Video Broadcast
Terrestrial-based passive radars is assessed. The direct signal reconstruction
provides a noiseless and multipath-free estimate of the reference signal which
improves the static clutter rejection (SCR) e�ciency. The direct signal recovery
is performed by demodulating and remodulating the base-band received signal.
The recovery process induces errors leading to a mismatch between the estimated
and the true copies of the reference signal. The impact of this mismatch on the
SCR is studied and an expression is derived to evaluate the degradation of the
SCR e�ciency.

1 Introduction

Passive radars perform target detection using signals from non-cooperative sources of
illumination in the environment. Target detection in passive radars requires reference
and surveillance signals. On the principle, the reference signal is obtained by an an-
tenna directed towards the transmitter and the surveillance signal is received by an
antenna directed to the area of interest. In addition to the target echo, the surveillance
signal contains direct path signal and multipath echoes which decreases the detection
performances. To cope with this issue, undesirable echoes removal is performed using
an adequate filter, this operation is named the static clutter rejection (SCR) [1].

The SCR process requires a noiseless multipath-free template of the reference signal
to achieve the total undesirable echoes removal. However, the received reference signal
is a↵ected by reception noise and multipath fading which decreases the SCR e�ciency.
DVB-T based passive radars benefit of the reference signal reconstruction possibility; it
is performed by demodulating and remodulating the received signal which increases the
SCR e�ciency. The process of the reference signal reconstruction and the encountered
issues are detailed in the next sections.

This paper is organized as follows, section 2 presents the system model and details
the demodulation/remodulation task. Section 3 treats the SCR operation and proposes
an expression for SCR e�ciency degradation. In the section 4, the simulation scheme
is presented and simulation results are given to validate the derived expression. Section
5 concludes the paper.

2 DVB-T direct signal recovery

2.1 System model

Considering the DVB-T based passive radar presented in figure 1, we denote the re-
ceived reference signal by xref (n) and the surveillance signal by xs(n) [2]. The received
reference signal xref(n) is given by

184



xref (n) = ↵0x(n � ⌧0) +
K�1
X

i=1

↵ix(n � ⌧i) + ⇠r(n), (1)

where, x(n) is the transmitted signal after undergoing the e↵ects of a frequency-
selective channel H , ↵0 is the complex gain of the direct path signal, the coe�cient
↵i represents the complex gain of the ith static scatterer, ⌧i is the delay corresponding
to the ith range-cell, K is the number of range-cells and ⇠r(n) is the additive white
Gaussian noise (AWGN) for the reference channel.

The surveillance signal xs(n) includes target returns in the form of delayed, atten-
uated and Doppler-shifted versions of the transmitted signal. In addition, it contains
static clutter, noise and possible direct path signals. The surveillance signal model is

xs(n) =
N
X

i=1

�ix(n � ⌧i) +
M
X

l=1

�lx(n � ⌧l)exp(j!ln) + ⇠s(n), (2)

with �i represents the scattering coe�cient at the ith static scatterer, N is the number
of the considered range-cells, �l is the reflection coe�cient for the lth moving target,
M is the moving targets number, !l the shift caused by the Doppler e↵ect for the lth

moving target and ⇠s(n) is the AWGN for the surveillance channel. If we note z(n) the
sum of the noise and the target echoes signal in the surveillance signal, we may write

xs(n) =
N
X

i=1

�ix(n � ⌧i) + z(n) with z(n) =
M
X

l=1

�lx(n � ⌧l)exp(j!ln) + ⇠s(n). (3)

DVB-T transmitter

Surveillance 
channel

Reference 
channel

Static scatterers

Moving scatterer

Figure 1: Configuration of a DVB-T based passive radar.

2.2 Synchronization

The demodulation of the base-band received reference signal is preceded by the transmitter-
receiver synchronization. The synchronization is achieved by the estimation of the fol-
lowing parameters: the coarse time delay, the fractional frequency o↵set (FFO), the
integer time delay and the integer frequency o↵set (IFO).

• The coarse time synchronization aligns the FFT window with the received DVB-T
symbols by estimating the beginning of the DVB-T symbol.

• The integer time synchronization estimates the order of each DVB-T symbol.
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• The frequency synchronization compensates the transmitter-receiver frequency
o↵set, it consists of two steps: FFO and IFO compensations.

Coarse time and FFO estimation exploits the cyclic nature of DVB-T symbols; a
cyclic prefix (called also the guard interval) is inserted at the beginning of each DVB-T
symbol. The cyclic prefix is formed by the last Ng samples of the DVB-T symbol, with
Ng the length of the guard interval. In the present work, an autocorrelation-based
method is applied for coarse time and FFO estimation [3].

The subcarrier pilots (continuous pilots and the scattered pilots) are one type of
the transmitted subcarriers, they are modulated by a known Pseudo-Random Binary
Sequence (PRBS) with a boosted amplitudes compared to other subcarriers (±4/3).
In addition to the use for synchronization, subcarriers pilots are used for channel esti-
mation and equalization [7].

After coarse time correction and FFO compensation, a pilot-aided method is ap-
plied for IFO and integer time estimations [4]. IFO compensation is required to align
each subcarrier with the corresponding FFT bin and integer time synchronization es-
timates the scattered pilots pattern for the first symbol. The received reference signal
synchronization is achieved by the frequency o↵set compensation (FFO and IFO) of
the time synchronized signal (after considering the coarse time delay).

2.3 Demodulation

The demodulation of the synchronized signal is performed by removing the cyclic prefix
from each DVB-T symbol and applying an FFT on the useful samples. The result for
each DVB-T symbol is a constellation of coded symbols (64-QAM in our case). The re-
ceived constellation is a↵ected by propagation channel e↵ect, noise and synchronization
imperfections. The kth coded symbol(kmax = 1705 for the 2k-mode and kmax = 6817
for the 8k-mode) from the lth DVB-T symbol is given by

Xref(l, k) = H(l, k)Xt(l, k) + W (l, k), (4)

where H(l, k) is the channel weight, Xt(l, k) is the exact transmitted QAM symbol and
W (l, k) includes the AWGN and the multipath.

The transmitted coded symbols for subcarrier pilots are known, which allows the
channel response estimation over pilot subcarriers bins. Then, the resulting estimate is
interpolated to obtain the channel response for the remaining subcarriers. In this work,
the least-squares (LS) estimator is used for channel estimation [6]. The LS estimator
ignores the e↵ect of the noise W (l, k) and gives the channel estimate for subcarrier
pilots by

Ĥ
p

(l) = X�1

t,p

(l)X
ref,p

(l), (5)

with X
t,p

is a matrix with the known transmitted pilot amplitudes on its diagonal
(±4/3) and X

ref,p

represents the array of the received symbols Xref(l, k) at the pilot
subcarriers, i.e., k 2 P with P indicates the pilot subcarriers positions.

The channel response for the lth DVB-T symbol, Ĥ(l), is obtained by the interpo-
lation of the pilots response Ĥ

p

(l). After the channel estimation, the equalization of
the received symbols is performed by

Xref,eq(l, k) = Xref(l, k)/Ĥ(l, k). (6)

The transmitted symbols, X̂t(l, k), are estimated by approximating the equalized
symbols, Xref,eq(l, k), to the nearest QAM symbol. The LS estimator is characterized
by its simplicity and its sensitivity to noise. One can reduce the noise e↵ect by averaging
the channel response for pilot subcarriers X

ref,p

(l) over L DVB-T symbols.
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2.4 Remodulation

It has been proven that remodulating the recovered QAM symbols without the rein-
troduction of the channel e↵ects and the frequency o↵sets creates a mismatch between
the reconstructed and the true reference signals [2]. Therefore, The channel e↵ect is
reintroduced as follows

X̂(l, k) = Ĥ(l, k)X̂t(l, k). (7)

The channel estimate Ĥ is a↵ected by errors caused by zero-forcing (LS estimator),
interpolation of the subcarrier pilots channel response and synchronization imperfec-
tions. If we note the estimation error e, the channel estimate is

Ĥ(l, k) = H(l, k) + e(l, k). (8)

We define the normalized estimation error variance �2
�H as

�2
�H = �2

e/�
2
H = SNR�1

H , (9)

where �2
H is the channel variance, �2

e represents the channel estimation error variance
and SNRH is the signal-to-noise ratio for the channel estimate. We use (8) in (7), we
get

X̂(l, k) = H(l, k)X̂t(l, k) + V (l, k) with V (l, k) = e(l, k)X̂t(l, k). (10)

The SNR for the symbols X̂ is

SNRX̂ = (�2
H�

2
X)/(�2

e�
2
X) = �2

H/�
2
e = (�2

�H)�1. (11)

The noiseless multipath-free estimate of the reference signal, x̂(n), is obtained by
applying an IFFT on the symbols X̂(l, k) [7]. The remodulation result is given by

x̂(n) = x(n) + v(n), (12)

with x(n) is the true multipath-free estimate of the reference signal and v(n) represents
the estimation error.

If we consider v(n) (with variance �2
v) as a noise uncorrelated with x(n) (with

variance �2
x), the SNR for the estimated signal x̂ is determined by

SNRx̂ = �2
x/�

2
v . (13)

Since x̂ is the time-domain version of X̂, we may write SNRx̂ = SNRX̂ . Using the
SNR equality with (11) leads to

�2
�H = SNR�1

x̂ . (14)

If we consider a channel response averaging along L DVB-T symbols, the channel
estimate is

Ĥav(k) =
1

L

L
X

l=1

(H(l, k) + e(l, k)), (15)

the averaging process reduces the estimation error variance by a factor of L, we may
write the normalized estimation error in (9) as

�2
�Ĥ

av

= �2
�H/L. (16)

Thus, equation (14) becomes

SNRx̂ = L (�2
�H)�1, (17)

where, SNRx̂ is the SNR of the estimated reference signal, �2
�H is normalized estima-

tion error variance and L is the channel averaging length.
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3 Static clutter rejection

The static clutter rejection removes zero-Doppler echoes form the received signal, which
allows the detection of targets with weak echoes. The SCR e�ciency is evaluated with
the residual power Pr, it is the power of the post-SCR signal [5]. For a perfect SCR, Pr
represents the power of targets echoes and surveillance channel noise. Poor SCR leads
to a Pr with residual static clutter. The SCR is performed using an adequate filter
which requires a reference signal to operate. One of the SCR e�ciency degradation
factors is a noisy reference signal. The recovery of the reference signal provides a
noiseless multipath free reference signal increasing the SCR e�ciency. In practice,
even the recovered signal is a↵ected by channel estimation errors among other factors.
In this section, a theoretical approach is applied to retrieve an expression relating the
channel estimation errors to the post-SCR signal power. We consider a finite impulse
response (FIR) Wiener filter [8] for the SCR, the filter weights, w, are defined by

w = R�1
x̂,x̂

r
x̂,xs , (18)

with R
x̂,x̂

is the autocorrelation matrix of x̂ and r
x̂,xs is the cross-correlation of x̂ and

xs. The values of the previous quantities can be approximated as follows
⇢

R
x̂,x̂

= diag(�2
x + �2

v)
r
x̂,xs(i) = �i�2

x
(19)

Hence, using (19) in (18) yields to relate Wiener filter weights to the exact multipath
coe�cients;

wi = �i/(1 + SNR�1
x̂ ). (20)

The SCR output signal is denoted by y(n), it is given by subtracting the Wiener
filter output x̂s(n) from the surveillance signal xs(n);

y(n) = xs(n) � x̂s(n) with x̂s(n) =
N
X

i=1

wix̂(n � ⌧i). (21)

After replacing xs(n) and x̂s(n) by their values, we get

y(n) =
N
X

i=1

�ix(n � ⌧i) + z(n) �
N
X

i=1

wix̂(n � ⌧i), (22)

where z(n) includes targets echoes and surveillance channel noise; it is the residual
signal after a perfect SCR (equation 3). It follows that

y(n) =
N
X

i=1

(�i � wi)x(n � ⌧i) + z(n) �
N
X

i=1

wiv(n � ⌧i). (23)

The di↵erence (�i �wi) can be defined from (20) as �i �wi = wiSNR�1
x̂ , this yields

to

y(n) = SNR�1
x̂

N
X

i=1

wix(n � ⌧i) + z(n) �
N
X

i=1

wiv(n � ⌧i). (24)

The post-SCR signal power can be approximated by

Py = SNR�2
x̂ �2

x

N
X

i=1

| wi |2 +Pz + �2
v

N
X

i=1

| wi |2 . (25)
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Therefore,

Py = (SNR�2
x̂ �2

x + �2
v)

N
X

i=1

| wi |2 +Pz, (26)

we get

Py = �2
x(SNR�2

x̂ + SNR�1
x̂ )

N
X

i=1

| wi |2 +Pz. (27)

We denote the static clutter power by Psc

Psc = �2
x

N
X

i=1

| �i |2 . (28)

To represent Py as a function of Psc and SNRx̂, the value of wi in (27) is replaced
by (20):

Py = (SNR�2
x̂ + SNR�1

x̂ )(1 + SNR�1
x̂ )�2�2

x

N
X

i=1

| �i |2 +Pz. (29)

The post-SCR signal power is summarized by writing

Py = Pz + Psc/(1 + SNRx̂). (30)

Finally, we replace (17) in (30)

Py = Pz + Psc/(1 + L(�2
�H)�1). (31)

Thus, equation (31) gives an estimate of the residual static clutter power. It proves
the impact of the channel estimation error on the SCR performances; the SCR e�ciency
decreases significantly for high channel estimation error.

4 Simulation

4.1 Simulation scheme

Figure 2 illustrates the simulation scheme. The reference signal is formed by a strong
line of sight signal, multipath components and additive white Gaussian noise (AWGN).
The surveillance signal comprises multipath returns, moving targets returns and AWGN.
In the reference signal reconstruction stage, an estimate of the propagation channel is
used: Ĥ = H + e with H denotes the exact channel and e represents the estimation
error. The SCR stage is performed using a FIR Wiener filter.

To investigate the impact of the channel estimation error e on the SCR perfor-
mances, the residual power for di↵erent values of e is calculated. The channel estima-
tion error is modeled by a zero-mean complex Gaussian noise with variance �2

e . The
channel H is considered time-unvarying during the observation time.
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Figure 2: Simulation scheme.

4.2 Simulation results

Figure 3 is a comparison of the simulation results and the results from the model 31
for the case L = 1 (no channel averaging). We notice that the model fits perfectly
the simulation. The results show the sensitivity of the SCR performances for channel
estimation error. For large channel estimation errors (� 10 dB) the SCR e↵ect vanishes.
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Figure 3: Validation of the theoretical formula.

To reduce the impact of the channel estimation errors, we perform an averaging
of the subcarrier pilots response for L DVB-T symbols. Figure 4 shows the impact of
channel response averaging (L = 100) on the SCR e�ciency; a considerable improve-
ment can be noticed.
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Figure 4: Averaging channel response impact on SCR e�ciency.
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5 Conclusion

In this paper, a reference signal recovery method is analyzed. The methods applied
on the synchronization, demodulation and remodulation are tested on real-world data
proving their e�ciency. A theoretical analysis led to the expression for the post-SCR
signal power. Simulation results proved that the channel estimation errors e↵ect can
be reduced by an averaging of the pilots channel response.
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