Search via quantum walk Jérémie Roland UC Berkeley

Joint work with

Frédéric Magniez¹ Ashwin Nayak² Miklos Santha¹

¹LRI-CNRS, France

²Univ. Waterloo/Perimeter Institute, Canada

STOC 2007

Abstract search problem

The problem

Input:

- a set of elements X
- a set of marked elements $M \subseteq X$ $\left(\varepsilon = \frac{|M|}{|X|}\right)$

Output:

• a marked element $x \in M$

t m on y z

Available procedures

- Setup (cost S): pick a random x ∈ X
- Check (cost C): check whether $x \in M$
- Update (cost U): make a random walk F

- here: assume P ergodic, symmetric
- $\delta = \text{e-v gap of } F$

Abstract search problem

The problem

Input:

- a set of elements X
- a set of marked elements $M \subseteq X$ $\left(\varepsilon = \frac{|M|}{|X|}\right)$

Output:

• a marked element $x \in M$

Available procedures

- Setup (cost S): pick a random x ∈ X
- Check (cost \mathbb{C}): check whether $x \in M$
- Update (cost U):
 make a random walk P

- here: assume P ergodic, symmetric
- δ = e-v gap of P

Naive algorithm

Repeat
$$T_1 \times$$

$$\left(T_1=O(\frac{1}{\varepsilon})\right)$$

- Pick random $x \in X$
 - **(S)**
- (C) • Check whether $x \in M$

Cost: $\frac{1}{\varepsilon}(S+C)$

Naive algorithm

Repeat
$$T_1 \times \left(T_1 = O(\frac{1}{\varepsilon})\right)$$

- Pick random $x \in X$ (S)
- Check whether $x \in M$ (C)

Cost: $\frac{1}{\varepsilon}(S+C)$

Idea: Use random walk!

$$T_2 \times \text{ random walk} \qquad \left(\tau_2 = O(\frac{1}{\delta}) \right) \approx \text{pick random } x$$

Random walk 1

- Pick random $x \in X$ (S)
- Repeat T₁×
 - Check whether $x \in M(\mathbb{C})$
 - Repeat T₂×
 - Random walk (U)

Cost: $S + \frac{1}{\varepsilon} (\frac{1}{\delta}U + C)$

Random walk 2

- Pick random $x \in X$
- Repeat $T_1T_2 \times$
 - Check whether $x \in M$ (C
 - Random walk (U)

Cost: $S + \frac{1}{\varepsilon \delta}(U + C)$

Naive algorithm

Repeat
$$T_1 \times \left(T_1 = O(\frac{1}{\varepsilon})\right)$$

- Pick random $x \in X$ (S)
- Check whether $x \in M$ (C)

Cost: $\frac{1}{\varepsilon}(S+C)$

Idea: Use random walk!

$$T_2 \times \text{ random walk} \qquad \left(\tau_2 = O(\frac{1}{\delta}) \right) \approx \text{pick random } x$$

Random walk 1

- Pick random $x \in X$ (S)
- Repeat T₁×
 - Check whether $x \in M$ (C)
 - Repeat T₂×
 - Random walk (U)

Cost: $S + \frac{1}{\varepsilon} (\frac{1}{\delta}U + C)$

Random walk 2

- Pick random $x \in X$ (§
- Repeat $I_1I_2\times$
 - Check whether $x \in M$ (C)
 - Random walk (U

Cost: $S + \frac{1}{\varepsilon \delta}(U + C)$

Naive algorithm

Repeat
$$T_1 \times \left(T_1 = O(\frac{1}{\varepsilon})\right)$$

- Pick random $x \in X$ (S)
- Check whether $x \in M$ (C)

Cost: $\frac{1}{\varepsilon}(S+C)$

Idea: Use random walk!

$$T_2 \times \text{ random walk} \qquad \left(\tau_2 = O(\frac{1}{\delta}) \right) \approx \text{pick random } x$$

Random walk 1

- Pick random $x \in X$ (S)
- Repeat T₁×
 - Check whether $x \in M$ (C)
 - Repeat T₂×
 - Random walk (U)

Cost: $S + \frac{1}{\varepsilon} (\frac{1}{\delta} U + C)$

Random walk 2

- Pick random x ∈ X
- Repeat $T_1T_2 \times$
 - Check whether $x \in M$ (C)
 - Random walk

Cost: $S + \frac{1}{\epsilon \delta}(U + C)$

(S)

Quantum search problem

Two related problems

Input:

- a set of elements X
- a set of marked elements
 M ⊆ X

Output:

- Find a marked element $x \in M$
- **Detect** whether there is a marked element $(M = \emptyset?)$

Available procedures

- Setup (cost S): prepare $|\pi\rangle = \frac{1}{\sqrt{|X|}} \sum_{x} |x\rangle$
- reflection / marked element
- $\operatorname{ref}_M : |x\rangle \mapsto \left\{ \begin{array}{ll} |x\rangle & \text{if } x \in M \\ -|x\rangle & \text{otherwise} \end{array} \right.$
- apply quantum walk W

4/14

Quantum search problem

Two related problems

Input:

- a set of elements X
- a set of marked elements
 M ⊆ X

Output:

- Find a marked element $x \in M$
- Detect whether there is a marked element $(M = \emptyset?)$

Available procedures

- Setup (cost S): prepare $|\pi\rangle = \frac{1}{\sqrt{|X|}} \sum_{x} |x\rangle$
- Check (cost C): reflection / marked elements

$$\operatorname{ref}_M : |\mathbf{x}\rangle \mapsto \left\{ \begin{array}{cc} |\mathbf{x}\rangle & \text{if } \mathbf{x} \in M \\ -|\mathbf{x}\rangle & \text{otherwise} \end{array} \right.$$

Update (cost U):apply quantum walk W

Grover's algorithm

- We start with $|\pi\rangle = \frac{1}{\sqrt{|X|}} \sum_{\mathbf{x} \in X} |\mathbf{x}\rangle$
- Goal: prepare $|M\rangle = \frac{1}{\sqrt{|M|}} \sum_{x \in M} |x\rangle$
- We use 2 reflections:
 - through $|M^{\perp}\rangle$: ref_M $^{\perp} = -\text{ref}_M$
 - through $|\pi\rangle$: ref_{π}

Grover's algorithm

- **(S)** • Prepare $|\pi\rangle$
- Repeat $T_1 \times$
 - apply ref_M⊥

(C)

apply ref_π

(S)

Cost: $T_1(S+C)$

$$\frac{\sin \varphi}{=} \frac{\langle M | \pi \rangle}{\sqrt{\frac{|M|}{|X|}}} \\
= \sqrt{\varepsilon}$$

Grover's algorithm

- We start with $|\pi\rangle = \frac{1}{\sqrt{|X|}} \sum_{\mathbf{x} \in \mathbf{X}} |\mathbf{x}\rangle$
- Goal: prepare $|M\rangle = \frac{1}{\sqrt{|M|}} \sum_{x \in M} |x\rangle$
- We use 2 reflections:
 - through $|M^{\perp}\rangle$: $\operatorname{ref}_{M^{\perp}} = -\operatorname{ref}_{M}$ (C)
 - through $|\pi\rangle$: ref_{π} (S

Grover's algorithm

- Prepare $|\pi\rangle$ (S)
- Repeat T₁×
 - apply ref_M⊥

(C)

ullet apply ref_{π}

(S)

Cost: $T_1(S+C)$

$$\frac{\sin \varphi}{} = \frac{\langle M | \pi \rangle}{\sqrt{\frac{|M|}{|X|}}} \\
= \sqrt{\varepsilon}$$

Grover's algorithm

- We start with $|\pi\rangle = \frac{1}{\sqrt{|X|}} \sum_{\mathbf{x} \in \mathbf{X}} |\mathbf{x}\rangle$
- Goal: prepare $|M\rangle = \frac{1}{\sqrt{|M|}} \sum_{x \in M} |x\rangle$
- We use 2 reflections:
 - through $|M^{\perp}\rangle$: ref_M $^{\perp} = -\text{ref}_M$
 - through $|\pi\rangle$: ref_{π}

Grover's algorithm

- Prepare $|\pi\rangle$
- Repeat $T_1 \times$
 - apply ref_M⊥
 - apply ref_π

(S)

(S)

Cost: $\frac{1}{\sqrt{\epsilon}}(S+C)$

$$\begin{array}{rcl} \sin \varphi & = & \langle M | \pi \rangle \\ & = & \sqrt{\frac{|M|}{|X|}} \\ & = & \sqrt{\varepsilon} \end{array}$$

Grover's algorithm: Comments

- Quantum analogue of the naive algorithm "pick and check".
- $\frac{1}{\sqrt{\varepsilon}}(S+C)$ vs $\frac{1}{\varepsilon}(S+C)$ \Longrightarrow Grover's quadratic speed-up

What if S is high?

 \implies Replace ref_{π} by some quantum walk W!

Quantum walk W(P):

- State space: Pairs of neighbours $|x\rangle|y\rangle \Longrightarrow$ Walk on edges (x,y)
- Two steps
 - Diffusion of y over the neighbours of x
 - Diffusion of x over the neighbours of y

We use diffusions à la Grover, i.e., reflections

- Superposition over neighbours of x: $|p_x\rangle = \sum_v \sqrt{p_{yx}} |y\rangle$
- $\operatorname{ref}_{\mathcal{X}}$: reflection through subspace $\mathcal{X} = \{|x\rangle|p_x\rangle : x \in X\}$
- Similarly for)

We define the quantum walk W as

$$W = \operatorname{ref}_{\mathcal{X}} \cdot \operatorname{ref}_{\mathcal{X}}$$

Quantum walk W(P):

- State space: Pairs of neighbours $|x\rangle|y\rangle \Longrightarrow \text{Walk on edges }(x,y)$
- Two steps
 - Diffusion of y over the neighbours of x
 - Diffusion of x over the neighbours of y

We use diffusions à la Grover, i.e., reflections

- Superposition over neighbours of x: $|p_x\rangle = \sum_{v} \sqrt{p_{yx}} |y\rangle$
- ref_{\mathcal{X}}: reflection through subspace $\mathcal{X} = \{|x\rangle|p_x\rangle : x \in X\}$
- Similarly for \mathcal{Y}

We define the quantum walk W as

$$W = \operatorname{ref}_{\mathcal{Y}} \cdot \operatorname{ref}_{\mathcal{X}}$$

Random walk

- \bullet $P = (p_{XV})$
- E-v: $\lambda_k = \cos \theta_k$
- Stationary dist. $(\cos \theta_0 = 1)$:

$$\pi = (\pi_X)$$

• E-v gap: $\delta = 1 - |\cos \theta_1|$

Quantum walk

- $W = \operatorname{ref}_{\mathcal{Y}} \cdot \operatorname{ref}_{\mathcal{X}}$
- E-v (on $\mathcal{X} \oplus \mathcal{Y}$): $e^{\pm 2i\theta_k}$
- Stationary state ($\theta_0 = 0$): $|\pi\rangle = \sum_{\mathbf{x}} \sqrt{\pi_{\mathbf{x}}} |\mathbf{x}\rangle |\rho_{\mathbf{x}}\rangle$
- phase gap: $\Delta = |2\theta_1|$

Random walk

- \bullet $P = (p_{XV})$
- E-v: $\lambda_k = \cos \theta_k$
- Stationary dist. $(\cos \theta_0 = 1)$:

$$\pi = (\pi_X)$$

• E-v gap: $\delta = 1 - |\cos \theta_1|$

Quantum walk

- $W = \operatorname{ref}_{\mathcal{Y}} \cdot \operatorname{ref}_{\mathcal{X}}$
- E-v (on $\mathcal{X} \oplus \mathcal{Y}$): $e^{\pm 2i\theta_k}$
- Stationary state ($\theta_0 = 0$):

$$|\pi\rangle = \sum_{x} \sqrt{\pi_x} |x\rangle |p_x\rangle$$

• phase gap: $\Delta = |2\theta_1|$

$$\Delta = O(\sqrt{\delta})$$
 \downarrow

quantum phase gap = $O(\sqrt{\text{classical e-v gap}})$

Quantum walk for element distinctness [Ambainis'04]

IDEA:

- Replace ref_{π} by W^{T_2} in Grover's algorithm
- with $T_2 = O(\frac{1}{\Delta}) = O(\frac{1}{\sqrt{\delta}})$

Works under some assumptions:

- Johnson graphs (element distinctness)
- Unique solution (classical reduction to this case)

Properties

- Finds a marked element
- Cost

$$S + \frac{1}{\sqrt{\varepsilon}} (\frac{1}{\sqrt{\delta}} U + C)$$

Notable application

Triangle Finding

[Magniez, Santha, Szegedy'05]

Quantum walk for element distinctness [Ambainis'04]

IDEA:

- Replace ref_{π} by W^{T_2} in Grover's algorithm
- with $T_2 = O(\frac{1}{\Delta}) = O(\frac{1}{\sqrt{\delta}})$

Works under some assumptions:

- Johnson graphs (element distinctness)
- Unique solution (classical reduction to this case)

Properties:

- Finds a marked element
- Cost

$$S + \frac{1}{\sqrt{\varepsilon}} (\frac{1}{\sqrt{\delta}} U + C)$$

Notable application:

Triangle Finding

[Magniez, Santha, Szegedy'05]

- Quantum analogue of the marked random walk:
 Check if x ∈ M
 - If so: Stay in x
 - Otherwise: Apply random walk P
- Works for any symmetric, ergodic Markov chain
- Cost

$$S + \frac{1}{\sqrt{\epsilon \delta}}(U + C)$$

- Detects marked items, but does not find them!
- Notable applications
 - Matrix Product Verification
 - Group Commutativity

[Buhrman, Špalek'06] [Magniez, Nayak'05]

- Quantum analogue of the marked random walk:
 Check if x ∈ M
 - If so: Stay in x
 - Otherwise: Apply random walk P
- Works for any symmetric, ergodic Markov chain
- Cost

$$S + \frac{1}{\sqrt{\varepsilon \delta}}(U + C)$$

- Detects marked items, but does not find them!
- Notable applications
 - Matrix Product Verification
 - Group Commutativity

[Buhrman, Špalek'06] [Magniez, Nayak'05]

Our idea

IDEA: Using W, simulate ref_{π} to use Grover's algorithm

- $W|\pi\rangle = |\pi\rangle$
- $W|\psi_k\rangle = e^{i\theta_k}|\psi_k\rangle$

- $\operatorname{ref}_{\pi}|\pi\rangle = |\pi\rangle$
- $\bullet \operatorname{ref}_{\pi} |\psi_{\mathbf{k}}\rangle = -|\psi_{\mathbf{k}}\rangle$

We need a procedure to discriminate between eigenstates

- $|\psi_k\rangle$ with $|\theta_k| \geq \Delta$
- $|\pi\rangle$ with $\theta_0 = 0$.

Our idea

IDEA: Using W, simulate ref_{π} to use Grover's algorithm

- $W|\pi\rangle = |\pi\rangle$
- $W|\psi_{k}\rangle = e^{i\theta_{k}}|\psi_{k}\rangle$

- $\operatorname{ref}_{\pi}|\pi\rangle = |\pi\rangle$
- $\bullet \operatorname{ref}_{\pi} |\psi_{\mathbf{k}}\rangle = -|\psi_{\mathbf{k}}\rangle$

We need a procedure to discriminate between eigenstates

- $|\psi_k\rangle$ with $|\theta_k| \geq \Delta$
- $|\pi\rangle$ with $\theta_0 = 0$.

Quantum phase estimation [Kitaev'95, Cleve et al'98]

- Let W be a unitary operator such that $W|\psi_k\rangle=e^{i heta_k}|\psi_k
 angle$
- Quantum phase estimation E(W) is a quantum circuit such that

$$E(W): |\psi_k\rangle|0\rangle \mapsto |\psi_k\rangle \ \left[|\tilde{\theta}_k\rangle + |\text{error}\rangle\right]$$

where $\tilde{\theta}_k$ is an approximation of θ_k

• $|\tilde{\theta}_k - \theta_k| < \Delta$ requires $O(\frac{1}{\Delta})$ calls to W

We may now simulate ref_{π} :

- do phase estimation E(W)
- flip sign if $\tilde{\theta}_k \neq 0$
- undo phase estimation E(W)

Quantum phase estimation [Kitaev'95, Cleve et al'98]

- Let W be a unitary operator such that $W|\psi_k\rangle=e^{i heta_k}|\psi_k
 angle$
- Quantum phase estimation E(W) is a quantum circuit such that

$$E(W): |\psi_k\rangle|0\rangle \mapsto |\psi_k\rangle \left[|\tilde{\theta}_k\rangle + |\text{error}\rangle\right]$$

where $\tilde{\theta}_k$ is an approximation of θ_k

• $|\tilde{\theta}_k - \theta_k| < \Delta$ requires $O(\frac{1}{\Delta})$ calls to W

We may now simulate ref_{π} :

- do phase estimation E(W)
- flip sign if $\tilde{\theta}_k \neq 0$
- undo phase estimation E(W)

Our quantum walk algorithm

Using this reflection in Grover's algorithm, we obtain

- Search algorithm via quantum walk
- from any irreducible Markov chain
- Cost:

$$S + \frac{1}{\sqrt{\varepsilon}} (\frac{1}{\sqrt{\delta}} U + C)$$

- finds marked elements
- |error> due to imperfect phase estimation handled with a recursive search algorithm à la [Høyer, Mosca, de Wolf'04]

Applications

- Polylog factor improvement for Triangle Finding [MSS'05]
- Unified framework for this and

 Element Distinctness 	[A'04]
 Matrix Product Verification 	[BŠ'06]

- Group Commutativity [MN'05]
- Better algorithms for applications in which checking cost is higher than update cost
- New application: Semigroup Problem [DT'07]
- Open: Spatial search [AA'05,AKR'05,CG'04,S'04]