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Introduction
Query complexity: Compute         given black-box 
access to

Different lower bound methods for            :

Adversary methods:

Idea: bound the change in a progress function for each 
query

Different variations: additive, negative weights, 
multiplicative

Polynomial method:

Idea: bound the degree of polynomials approximating 
the function
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f(x)

Q"(f)

x = (x1, . . . , xn)
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Question I
The different methods have different advantages:

Additive adversary with negative weights:

Tight for bounded error

Multiplicative adversary and polynomial:

Better bounds for low success probability 

Bounds for specific problems
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Question I
Is there a method that combines all 

advantages?

4



Question II
Suppose we want to evaluate    on    different 
inputs 
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Question II
Can we do much better than just applying 

times the algorithm for   ?

f k
x

(1)
, . . . , x

(k)

k f

If not : “Strong direct product theorem” (SDPT) for

Success    for   application     success     for   applications

Requires to prove lower bound for exponentially small success probability

 SDPTs known for:

Classical query complexity [Drucker'11], one-way classical communication 
[Jain’10], parallel repetition theorem for games [Raz’98] 
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A brief history
of

lower bound methods

6



Adversary method
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MADV"(f)

ADV±
" (f) ADVmax

" (f)

ADV"(f) gdeg"(f)?
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Quantum lower bounds by 
quantum arguments [Ambainis’02]

Hybrid argument [BBBV’97]

Different variations
[Amb’03,BS’04,HNS’08,LM’08]

All equivalent
[ŠpalekSzegedy’06]
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Polynomial method
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Polynomial method 
[BBCMdW’98]

General SDPT for the 
polynomial method [Sherstov’11]

MADV"(f)

ADV±
" (f) ADVmax

" (f)

ADV"(f) gdeg"(f)?
SDPT

1

SDPT for OR
[KŠdW’07]

Lower bound for Collision 
[Aaronson,Shi’04]

Incomparable!
[AS’04,Zhang’05,ŠS’06,Ambainis’06]

8



Generalized adversary method
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Adversary method with negative 
weights

[HøyerLeeŠpalek’07]
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Multiplicative adversary method
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New lower bounds and SDPT
[AŠdW’06]

Multiplicative adversary method
[Špalek’08]
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Optimality of adversary method
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Adversary method is tight for 
bounded error!

[Reichardt’11,LMRŠS’11]
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Our results
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MADV generalizes all methods
[AMRR’11,MR’12?]

SDPT for any function
[LR’12]
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Techniques
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• Set of quantum states

• Oracle 

• Goal: Generate         given black-box access to

• Observation: Problem only depends on Gram matrix

Quantum state generation
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Quantum query complexity

Minimum # calls to     necessary to generate        
a state  
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Reducing to zero-error case
      : state of the algorithm after   queries on input

Gram matrix

Initially: 

At the end:  
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MT M
Algorithm

What distance?
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Output conditions
                                            [Ambainis02]

                                            [HøyerLeeŠpalek07]

                                            [LeeR11]
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��MT � M
��
1  2

p
"

�2(M
T � M)  2

p
"

FH(MT ,M) �
p
1 � "

Algorithm

where FH(MT ,M) = max

|ui
F(MT � |uihu|,M � |uihu|)

FH

�2

`1

Q"(M) = min
FH(N,M)�p

1�"
Q0(N)

• Theorem:  The last condition is tight     
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Multiplicative >= Additive
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Additive adversary
Progress function:

Initial value:  

Additive change for one query: 

Final value after T queries:  
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Additive adversary bound

subject to

Adversary 
matrix

W[M t] = Tr[(� � M t)vv⇤]

ADV

±
0 (M) = max

�
k� � (J � M)k

k� � (J � �i)k  1 ) |W[M t+1] � W[M t]|  1

|W[MT ] � W[M0]|  T

k� � (J � �i)k  1 8i

[HøyerLeeŠpalek07]

W[J ] = Tr[�vv⇤]
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Multiplicative adversary
Progress function:

Initial value:  

Multiplicative change for one query: 

Maximum value after T queries:  
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Multiplicative adversary bound

subject to

Adversary 
matrix

[Špalek08]

c�1 · � � � � �i � c · � ) W[M t+1]  c · W[M t]

MADV

c
0(M) =

1

log c
max

�m⌫0
log

Tr[(�m � M)vv⇤
]

Tr[�mvv⇤
]

W[J ] = Tr[�mvv⇤]

W[M t] = Tr[(�m � M t)vv⇤]

W[MT ]  cT · W[J ]

c�1 · � � � � �i � c · � 8i
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Multiplicative >= Additive

Proof idea:

Use the adversary matrix: 

Show that it satisfies the conditions for

Show the we get the same bound for  
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Theorem
lim
c!1

MADVc(M) � ADV±(M)

c = 1 + �

� ! 0

�m = I + � · (k�k I � �)
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Multiplicative >= Polynomial
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Polynomial method
Let                                be a Boolean function

Approximate degree:
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f : {0, 1}n ! {0, 1}

gdeg"(f) = min
p

{deg(p) : 8x 2 {0, 1}n
, |f(x) � p(x)|  "}

Polynomial method

• Proof idea:

After   queries, 

where           are polynomials of degree at most  ↵

t
k(x) k

| t

x

i =
X

k

↵

t

k

(x)|kit

[BBCMdW97]
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New adversary method

1. Initialization: 

2. Change due to 1 query:
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(Sk : 0  k  K)

• Let us partition the Hilbert space into subspaces

such that:
Tr(⇧S0J) = Tr(J)

if |k � k0| > 1 or |k � k00| > 1

• Therefore: Tr(⇧SkM
t) = 0 8k > t

Max-adversary method

ADV

max

(M) = max

(Sk),k0

{k
0

: Tr(⇧Sk0
M) 6= 0}

⇧Sk0 (⇧Sk � �i)⇧Sk00 = 0
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Multiplicative >= Max

Proof idea:

Use the adversary matrix: 

Show that it satisfies the conditions for

Show the we get the same bound for  
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Theorem
lim
c!1

MADVc(M) � ADVmax(M)

c = 3�

� ! 1

�m =
X

k

�k⇧Sk

24



Max >= Polynomial
Let    be the Gram matrix for computing    in the 
phase, i.e., for generating

We have  
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f�

(�1)f(x)|0̄i

Q(1�p
1�")/2+"/4(f)  Q"(�)  2Q(1�p

1�")/2(f)
[LeeR11]

Theorem
ADVmax

" (�) � gdeg"(f)

Proof idea:

• We use the Fourier basis:

• Subspaces are defined as

• We show that if                    , every Gram matrix 

      -approximating     has overlap on some        with 

Sk = Span{|�wi : |w| = k}

|�
w

i =
1

p
2n

X

x2{0,1}n

(�1)w·x|xi

gdeg"(f) � t

" � |�wi

M

|w| � t
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Strong direct product theorem
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SDPT

Proof idea:

Use optimality of           :

Use                                     for

Using adversary matrix       , we have:  

Almost there... but this is for zero error!
27

Theorem

Let 
f

(k)(x(1)
, . . . , x

(k)) = (f(x(1)), . . . , f(x(k)))

Q1��k/2(f (k)) �
k · ln(3�/2)

C
· Q1/4(f)

ADV±

c = 1 + 1

ADV±
0 (F )

�⌦k
m

MADVc
0(F

⌦k) � k · MADVc
0(F )

MADVc
0(F ) �

ADV±
0 (F )

2

Q1/4(f)  C · ADV±
0 (F ) [LMRŠS11]
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SDPT
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MADVc
0(F

⌦k) � k · MADVc
0(F )

We have 

We show that if                         ,

then

Therefore:             

MADVc
"(F

⌦k) = min
M

MADVc
0(M)

FH(F⌦k,M) �
p
1 � "subject to

Theorem

Q1��k/2(f (k)) �
k · ln(3�/2)

C
· Q1/4(f)

Proof idea (continued):

FH(F⌦k,M) � �k/2

Tr[(�⌦k
m � M)(vv⇤)⌦k] � (3�/2)k · Tr[(�m � F )vv⇤]k

MADVc
0(M) � k · ln(3�/2) · MADVc

0(F )
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Conclusion
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Conclusion and future work
Multiplicative adversary                 generalizes all 
known methods:          

Additive adversary                for

Polynomial method               for

Polynomial method    fixed adversary matrix 
(independent of   )     insight for its limitations

General SDPT for any function

XOR lemma for Boolean functions

Other applications? (new lower bounds, time-
space tradeoffs,...)
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MADVc(f)

ADV±(f)

gdeg"(f) c ! 1

Support:

f )
⇡

c ! 1
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