Quantum query complexity: Adversaries, polynomials and direct product theorems

Jérémie Roland

Université Libre de Bruxelles

NEC Laboratories America

Based on joint work with

Andris Ambainis Loïck Magnin

Troy Lee Martin Rötteler

[AMRR, CCC'11, arxiv:1012.2112] [LeeR, CCC'12, arxiv:1104.4468]

IQC - PI, April 2012

1

Introduction

Introduction

- st Query complexity: Compute f(x) given black-box access to $x = (x_1, \dots, x_n)$
- st Different lower bound methods for $Q_arepsilon(f)$:
 - Adversary methods:
 - Idea: bound the change in a progress function for each query
 - Different variations: additive, negative weights, multiplicative
 - Polynomial method:
 - Idea: bound the degree of polynomials approximating the function

Question I

* The different methods have different advantages:

- Additive adversary with negative weights:
 - Tight for bounded error
- Multiplicative adversary and polynomial:
 - Better bounds for low success probability
- O Bounds for specific problems

```
Question I
Is there a method that combines all
advantages?
```

Question II

* Suppose we want to evaluate f on k different inputs $x^{(1)},\ldots,x^{(k)}$

Question II Can we do much better than just applying k times the algorithm for f?

 \ast If not :"Strong direct product theorem" (SDPT) for f

* Success p for 1 application \Rightarrow success p^k for k applications

- Requires to prove lower bound for exponentially small success probability
- * SDPTs known for:
 - Classical query complexity [Drucker'II], one-way classical communication [Jain'I0], parallel repetition theorem for games [Raz'98]

A brief history of Lower bound methods

Polynomial method

Generalized adversary method

Our results

Techniques

Quantum state generation

- Set of quantum states $\{\ket{\psi_x}:x\in\mathcal{D}^n\}$
- Oracle $O_x: |i
 angle |b
 angle \mapsto |i
 angle |b\oplus x_i
 angle$
- Goal: Generate $\ket{\psi_x}$ given black-box access to O_x
- Observation: Problem only depends on Gram matrix

$$M_{xy} = \langle \psi_x | \psi_y
angle$$

Quantum query complexity $Q_{\varepsilon}(M)$ Minimum # calls to O_x necessary to generate a state $\sqrt{1-\varepsilon}|\psi_x\rangle|\bar{0}\rangle + \sqrt{\varepsilon}|\mathrm{error}_x\rangle$ work space

Output conditions

Multiplicative >= Additive

Additive adversary
[HøyerLeeŠpalek07]
* Progress function:
$$\mathcal{W}[M^{t}] = \operatorname{Tr}[(\Gamma \circ M^{t})vv^{*}]$$

* Initial value: $\mathcal{W}[J] = \operatorname{Tr}[\Gamma vv^{*}]$ Adversary
matrix
* Additive change for one query:
 $\|\Gamma \circ (J - \Delta_{i})\| \leq 1 \Rightarrow |\mathcal{W}[M^{t+1}] - \mathcal{W}[M^{t}]| \leq 1$
* Final value after T queries: $|\mathcal{W}[M^{T}] - \mathcal{W}[M^{0}]| \leq T$
Additive adversary bound
 $\operatorname{ADV}_{0}^{\pm}(M) = \max_{\Gamma} \|\Gamma \circ (J - M)\|$
subject to $\|\Gamma \circ (J - \Delta_{i})\| \leq 1 \quad \forall i$

Multiplicative adversary [Špalek08]
* Progress function:
$$W[M^t] = \text{Tr}[(\Gamma_m \circ M^t)vv^*]$$

* Initial value: $W[J] = \text{Tr}[\Gamma_m vv^*]$
Adversary
matrix
* Multiplicative change for one query:
 $c^{-1} \cdot \Gamma \preceq \Gamma \circ \Delta_i \preceq c \cdot \Gamma \Rightarrow W[M^{t+1}] \le c \cdot W[M^t]$
* Maximum value after T queries: $W[M^T] \le c^T \cdot W[J]$
Multiplicative adversary bound
MADV_0^c(M) = $\frac{1}{\log c} \max_{\Gamma_m \succeq 0} \log \frac{\text{Tr}[(\Gamma_m \circ M)vv^*]}{\text{Tr}[\Gamma_m vv^*]}$
subject to $c^{-1} \cdot \Gamma \preceq \Gamma \circ \Delta_i \preceq c \cdot \Gamma \quad \forall i$

Multiplicative >= Additive

$\lim_{c \to 1} \operatorname{MADV}^c(M) \ge \operatorname{ADV}^{\pm}(M)$

Proof idea:

- * Use the adversary matrix: $\Gamma_m = I + \gamma \cdot (\|\Gamma\| I \Gamma)$
- # Show that it satisfies the conditions for $c = 1 + \gamma$
- \ast Show the we get the same bound for $\gamma \rightarrow 0$

Multiplicative >= Polynomial

Polynomial method [BBCMdW97]

Let $f: \{0,1\}^n \to \{0,1\}$ be a Boolean function

* Approximate degree:

 $\widetilde{\deg}_{\varepsilon}(f) = \min_{p} \{ \deg(p) : \forall x \in \{0,1\}^n, |f(x) - p(x)| \le \varepsilon \}$ Polynomial method $Q_{\varepsilon}(f) \ge \frac{\widetilde{\deg}_{\varepsilon}(f)}{2}$

• Proof idea:

After t queries, $|\psi_x^t\rangle = \sum_k \alpha_k^t(x)|k\rangle$ where $\alpha_k^t(x)$ are polynomials of degree at most k

New adversary method

- Let us partition the Hilbert space into subspaces $(S_k: 0 \le k \le K)$ such that:
 - I. Initialization: $Tr(\Pi_{S_0}J) = Tr(J)$
 - 2. Change due to 1 query: $\Pi_{S_{k'}}(\Pi_{S_k} \circ \Delta_i)\Pi_{S_{k''}} = 0$ if |k - k'| > 1 or |k - k''| > 1
 - Therefore: $\operatorname{Tr}(\Pi_{S_k}M^t) = 0 \; \forall k > t$

Max-adversary method
$$ADV^{\max}(M) = \max_{(S_k),k_0} \{k_0 : Tr(\Pi_{S_{k_0}}M) \neq 0\}$$

Multiplicative >= Max

$\lim_{c \to \infty} \operatorname{MADV}^c(M) \geq \operatorname{ADV}^{\max}(M)$

Proof idea:

- * Use the adversary matrix: $\Gamma_m = \sum_k \lambda^k \Pi_{S_k}$
- * Show that it satisfies the conditions for $c = 3\lambda$
- \ast Show the we get the same bound for $\lambda \to \infty$

Max >= Polynomial

- * Let Φ be the Gram matrix for computing f in the phase, i.e., for generating $(-1)^{f(x)}|\bar{0}\rangle$

Proof idea:

- ullet We use the Fourier basis: $|\chi_w
 angle = rac{1}{\sqrt{2^n}} \sum_{x\in\{0,1\}^n} (-1)^{w\cdot x} |x
 angle$
- Subspaces are defined as $S_k = \text{Span}\{|\chi_w\rangle : |w| = k\}$
- ullet We show that if $\widetilde{\deg}_arepsilon(f)\geq t$, every Gram matrix M

arepsilon-approximating Φ has overlap on some $|\chi_w
angle$ with $|w|\geq t$

Strong direct product theorem

SDPT

Let
$$f^{(k)}(x^{(1)}, \dots, x^{(k)}) = (f(x^{(1)}), \dots, f(x^{(k)}))$$

★ Use optimality of ADV[±]: Q_{1/4}(f) ≤ C · ADV[±]₀(F) [LMRŠS11]
★ Use MADV^c₀(F) ≥ $\frac{ADV^{\pm}_{0}(F)}{2}$ for $c = 1 + \frac{1}{ADV^{\pm}_{0}(F)}$ ★ Using adversary matrix Γ^{⊗k}_m, we have:
MADV^c₀(F^{⊗k}) ≥ k · MADV^c₀(F)

* Almost there... but this is for zero error!

SDPT

$$Theorem \ Q_{1-\delta^{k/2}}(f^{(k)}) \geq rac{k \cdot \ln(3\delta/2)}{C} \cdot Q_{1/4}(f)$$

Proof idea (continued): $MADV_0^c(F^{\otimes k}) \ge k \cdot MADV_0^c(F)$

 $* We have MADV_{\varepsilon}^{c}(F^{\otimes k}) = \min_{M} MADV_{0}^{c}(M)$ subject to $\mathcal{F}_{H}(F^{\otimes k}, M) \geq \sqrt{1-\varepsilon}$

★ We show that if *F_H*(*F*^{⊗k}, *M*) ≥ δ^{k/2},
★ then Tr[(Γ^{⊗k}_m ∘ *M*)(vv^{*})^{⊗k}] ≥ (3δ/2)^k · Tr[(Γ_m ∘ *F*)vv^{*}]^k
★ Therefore: MADV^c₀(*M*) ≥ k · ln(3δ/2) · MADV^c₀(*F*)

Conclusion

Conclusion and future work

- * Multiplicative adversary $MADV^{c}(f)$ generalizes all known methods:
 - O Additive adversary $\mathrm{ADV}^{\pm}(f)$ for $c \to 1$
 - O Polynomial method $\widetilde{\deg}_{\varepsilon}(f)$ for $c \to \infty$
- ★ Polynomial method ≈ fixed adversary matrix (independent of f) ⇒ insight for its limitations
- * General SDPT for any function
- * XOR lemma for Boolean functions
- * Other applications? (new lower bounds, timespace tradeoffs,...)

