Quantum rejection sampling

Maris Ozols
University of Waterloo

Martin Rötteler
NEC Laboratories America

Jérémie Roland
Université Libre de Bruxelles

[ITCS’12, arXiv:1103.2774]
Introduction

- (Classical) rejection sampling
 - Algorithmic tool introduced by von Neumann (1951)
 - Can be used to sample from arbitrary distributions
 - Numerous applications: * Metropolis algorithm [MRRTT53]
 - Monte-Carlo simulations
 - optimization (simulated annealing)
 - etc...

- Quantum rejection sampling
 - Natural quantum analogue: probabilities \rightarrow amplitudes
 - New algorithmic tool
 - Applications: * Linear system of equations [HHL09]
 - Quantum Metropolis algorithm
 - Boolean hidden shift problem
Classical resampling problem

Setup:

- P and S: two probability distributions

Resampling problem

Given the ability to sample according to P, produce a sample distributed according to S.

\[k \sim p_k \rightarrow \text{Accept/reject?} \rightarrow k \sim s_k \]
Rejection sampling

\[P \xrightarrow{k \sim p_k} \text{Accept/reject?} \xrightarrow{\text{accept}} k \sim s_k \]

- \(\Pr[\text{accept } k] = \gamma \frac{s_k}{p_k} \)
- \(\gamma = \min_k \frac{p_k}{s_k} \)

Expected number of required samples: \(T = \frac{1}{\gamma} \)

- This is optimal [Letac75]
- Many applications in randomized algorithms
Quantum resampling problem

- Given access to a black box O_ξ preparing a state
 \[|\pi^\xi\rangle = \sum_k \pi_k |\xi_k\rangle |k\rangle \]
 known amplitudes unknown states

- Prepare the state
 \[|\sigma^\xi\rangle = \sum_k \sigma_k |\xi_k\rangle |k\rangle \]
 different amplitudes same states

- Question: How many calls to O_ξ are necessary?

- Tool: Query complexity
Classical query complexity

- Function $f(x)$, where $x = (x_1, \ldots, x_n)$
- Oracle $O_x : i \rightarrow x_i$
- Goal: Compute $f(x)$ given black-box access to O_x

Randomized query complexity $R_\varepsilon(f)$

Minimum $\#$ calls to O_x necessary to compute $f(x)$ with success probability $(1 - \varepsilon)$
Quantum query complexity

Different quantum extensions:

1. Can query O_x in superposition $\Rightarrow Q_\varepsilon(f) \leq R_\varepsilon(f)$

2. Instead of computing a function $f(x)$, generate a quantum state $|\psi_x\rangle$

3. Oracle O_ξ is a unitary that hides the label ξ in a non-explicit way

Example: Quantum resampling
Quantum state generation

- Set of quantum states $\Psi = \{ |\psi_\xi\rangle : \xi \in X \}$
- Set of oracles $\mathcal{O} = \{ O_\xi : \xi \in X \}$
- Quantum state generation problem \mathcal{P} defined by (Ψ, \mathcal{O})
- Goal: Generate $|\psi_\xi\rangle$ given black-box access to O_ξ

Quantum query complexity $Q_\varepsilon(\mathcal{P})$

Minimum # calls to O_ξ necessary to generate a state $\sqrt{1-\varepsilon}|\psi_\xi\rangle|0\rangle + \sqrt{\varepsilon}|\text{error}_\xi\rangle$

work space
Quantum rejection sampling

- Use oracle O_ξ to create the original state
 \[O_\xi |0\rangle = \sum_k \pi_k |\xi_k\rangle |k\rangle \]

- Use control-rotation on an ancilla qubit
 \[|0\rangle \rightarrow \sum_k |\xi_k\rangle |k\rangle \left(\sqrt{\pi_k^2 - |\alpha_k|^2} |0\rangle + \alpha_k |1\rangle \right) \]

- If we measure the ancilla and obtain $|1\rangle$ (“accept”):
 \[\frac{1}{||\vec{\alpha}||} \sum_k \alpha_k |\xi_k\rangle |k\rangle \]

- OK if $\vec{\alpha}$ is close to $\vec{\sigma}$, more precisely:
 \[\frac{\vec{\sigma} \cdot \vec{\alpha}}{||\vec{\alpha}||} \geq \sqrt{1 - \varepsilon} \]
Optimization

\[\sum_{k} |\xi_k\rangle |k\rangle \left(\sqrt{|\pi_k|^2 - |\alpha_k|^2} |0\rangle + \alpha_k |1\rangle \right) \]

- We measure \(|1\rangle\) ("accept") with probability \(\|\vec{\alpha}\|^2\)
- Naive approach: repeat \(O(1/\|\vec{\alpha}\|^2)\) times
- Using amplitude amplification: reduce to \(O(1/\|\vec{\alpha}\|)\)
- Optimizing \(\vec{\alpha}\) : Semidefinite program

Maximize \(\|\vec{\alpha}\|\) subject to \(0 \leq \alpha_k \leq \pi_k \quad \forall \, k\)
\[
\frac{\vec{\sigma} \cdot \vec{\alpha}}{\|\vec{\alpha}\|} \geq \sqrt{1 - \varepsilon}
\]

[BrassardHøyerMoscaTapp00]
Optimal solution

Let $\alpha_k(\gamma) = \min\{\pi_k, \gamma\sigma_k\}$

We take $\tilde{\gamma} = \max \gamma$ such that $\frac{\tilde{\sigma} \cdot \tilde{\alpha}(\gamma)}{\|\tilde{\alpha}(\gamma)\|} \geq \sqrt{1 - \varepsilon}$

We can prove that this leads to an optimal algorithm

Matching lower bound uses automorphism principle with $G = \mathbb{Z}_2^n \times U(N - 1)$

Theorem

$Q_\varepsilon(Q\text{Sampling}_{\tilde{\pi} \rightarrow \tilde{\sigma}}) = \Theta(1/\|\tilde{\alpha}(\tilde{\gamma})\|)$
Applications

- **Linear system of equations** [HHL09]
 - QRS was used implicitly

- **Quantum Metropolis algorithm**
 - Improvement on the original algorithm [TOVPV11]

- **Boolean hidden shift problem**
 - New algorithm!
Linear system of equations

Setup:

- Invertible \(d \times d \) matrix \(A \)
- Vector \(|b\rangle \in \mathbb{C}^d \)

Quantum linear equations problem

Prepare the state \(|x\rangle \) such that

\[
A|x\rangle = |b\rangle
\]

Main idea: use quantum phase estimation (QPE) [Kitaev95,CEMM97] + quantum rejection sampling (QRS)
Algorithm

Let $|b\rangle = \sum_k b_k |\psi_k\rangle$, where

- $|\psi_k\rangle$ are the eigenstates of A
- λ_k are the corresponding eigenvalues

Use QPE to prepare

$$|b\rangle = \sum_k b_k |\psi_k\rangle |\lambda_k\rangle$$

Use QRS to get

$$\sum_k b_k \lambda_k^{-1} |\psi_k\rangle |\lambda_k\rangle$$

- Known amplitude (ratios): λ_k^{-1}
- Unknown states: $|\psi_k\rangle$

Undo phase estimation to obtain

$$|x\rangle = \sum_k b_k \lambda_k^{-1} |\psi_k\rangle = A^{-1} |b\rangle$$
Quantum Metropolis algorithm

Setup:

- Hamiltonian H
 - Eigenstates $|\psi_k\rangle$
 - Eigenenergies E_k
- Inverse temperature β

Metropolis sampling problem
Prepare the thermal state $\sum_k p_k |\psi_k\rangle \langle \psi_k|$, where $p_k \sim \exp(-\beta E_k)$ is the Gibbs distribution
Classical solution

- If H is diagonal (= classical)
 - Eigenstates $|\psi_k\rangle$ are known
 - Eigenenergy E_k can be efficiently computed from $|\psi_k\rangle$

- Start from a random $|\psi_k\rangle$

- Apply a “kick” to get another $|\psi_l\rangle$

- Compute the energies E_k and E_l
 - If $E_l \leq E_k$, accept the move
 - If $E_l > E_k$, accept only with probability $\exp(\beta(E_k - E_l))$

- Repeat
Quantum Metropolis algorithm

- If H is not diagonal (=quantum)
 - Eigenstates $|\psi_k\rangle$ and eigenergies E_k are not known to start with
 - But: we can project onto the $|\psi_k\rangle$-basis and get the corresponding E_k by using quantum phase estimation (QPE).

- Prepare a random $|\psi_k\rangle$ using QPE (and record E_k)
- Apply a “kick” (random unitary gate)
- Use QPE to project on another $|\psi_l\rangle$ (and record E_l)
- Compare the energies E_k and E_l
 - If $E_l \leq E_k$, accept the move
 - If $E_l > E_k$, accept only with probability $\exp(-\beta(E_l - E_k))$
Quantum Metropolis algorithm

Problem:

- Rejected moves require to revert the state from $|\psi_i\rangle$ to $|\psi_k\rangle$
- We cannot keep a copy of $|\psi_k\rangle$ (requires to clone an unknown state!)

Two solutions:

- Temme et al. [TOVPV11] propose a “rewinding” technique to revert to $|\psi_k\rangle$, based on a series of projective measurements.
- Use quantum rejection sampling! Equivalent to amplifying accepted moves, therefore avoiding having to revert moves at all.
Boolean hidden shift

Setup:

- \(f(x) \): (known) Boolean function
- \(f_s(x) = f(x + s) \), with an (unknown) shift \(s \in \{0, 1\}^n \)

Boolean hidden shift problem

Given black-box access to \(f_s(x) \), find the hidden shift \(s \)
Special cases

- Delta function $f(x) = \delta_{x x_0}$
 - \square = Grover’s search problem
 - \square Requires $\Theta(\sqrt{2^n})$ queries [Grover96]

- Bent functions
 - \square = Functions with flat Fourier spectrum
 - \square Can be solved with 1 query! [Rötteler10]

- What about other functions???
New algorithm based on QRS

- Use the following circuit, where
 - H is the Hadamard transform
 - O_{f_s} is the black box for f_s, acting as $O_{f_s} |x\rangle = (-1)^{f_s(x)} |x\rangle$

$$
\begin{align*}
|0\rangle &\quad H \quad H \\
|0\rangle &\quad H \quad O_{f_s} \quad H \\
\vdots &\quad \vdots \quad \vdots \\
|0\rangle &\quad H \quad H \\
\end{align*}

\begin{align*}
\sum_w (-1)^{w\cdot s} \hat{f}(w) |w\rangle
\end{align*}
$$

- Use QRS to produce the state $\frac{1}{\sqrt{2^n}} \sum_w (-1)^{w\cdot s} |w\rangle$
 - Known amplitudes = Fourier coefficients $\hat{f}(w)$
 - Unknown “states” = phases $(-1)^{w\cdot s}$

- Use a final Fourier transform $H^\otimes n$ to get $|s\rangle$
Wrap-up

☐ Rejection sampling has found many applications in classical computing

☐ Quantum rejection sampling could be as useful for quantum computing!

☐ Example: 3 diverse applications
 ☐ Linear system of equations [HarrowHassidimLloyd09]
 ☐ Quantum Metropolis algorithm
 ☐ Boolean hidden shift problem
Outlook

- Other applications
 - Amplifying QMA witnesses [MarriottWatrous05,NagajWocjanZhang09]
 - Preparing PEPS states [SchwarzTemmeVerstraete11]
 - ???

- Adversary method for this extended model of quantum query complexity?
 - Non-trivial error dependence
 - Infinite-size adversary matrices

Support: