Quantum rejection sampling

Ineroduction

O (Classical) rejection sampling
\square Algorithmic tool introduced by von Neumann (195I)
\square Can be used to sample from arbitrary distributions
\square Numerous applications: * Metropolis algorithm [MRRTT53]

* Monte-Carlo simulations
* optimization (simulated annealing)
* etc...

O Quantum rejection sampling
\square Natural quantum analogue: probabilities \rightarrow amplitudes

- New algorithmic tool
- Applications: * Linear system of equations [HHLO9]
* Quantum Metropolis algorithm
* Boolean hidden shift problem

Classical resampling problem

 Setup:$O P$ and S : two probability distributions

Resampling problem

Given the ability to sample according to P, produce a sample distributed according to S.

Rejection sampling

[vonNeumann5I]

〇 $\operatorname{Pr}[$ accept $k]=\gamma \frac{s_{k}}{p_{k}}$
○ $\gamma=\min _{k} \frac{p_{k}}{s_{k}}$
O Expected number of required samples: $T=\frac{1}{\gamma}$
O This is optimal [Letac75]
O Many applications in randomized algorithms

Quantum resampling problem

O Given access to a black box O_{ξ} preparing a state

O Prepare the state

\bigcirc Question: How many calls to O_{ξ} are necessary?

O Tool: Query complexity

Classical query complexily

O Function $f(x)$, where $x=\left(x_{1}, \ldots, x_{n}\right)$
O Oracle $O_{x}: i \rightarrow x_{i}$
O Goal: Compute $f(x)$ given black-box access to O_{x}

Randomized query complexily $R_{\varepsilon}(f)$
Minimum \# calls to O_{x} necessary to compute $f(x)$ with success probability $(1-\varepsilon)$

Quankum query complexily

 Different quantum extensions:I. Can query O_{x} in superposition $\Rightarrow Q_{\varepsilon}(f) \leq R_{\varepsilon}(f)$

2. Instead of computing a function $f(x)$, generate a quantum state $\left|\psi_{x}\right\rangle$
3. Oracle O_{ξ} is a unitary that hides the label ξ in a non-explicit way

Example: Quantum resampling

Quantum slate generation

\mathcal{O} Set of quantum states $\Psi=\left\{\left|\psi_{\xi}\right\rangle: \xi \in \mathcal{X}\right\}$
\mathcal{O} Set of oracles $\mathcal{O}=\left\{O_{\xi}: \xi \in \mathcal{X}\right\}$
\bigcirc Quantum state generation problem \mathcal{P} defined by (Ψ, \mathcal{O})
O Goal: Generate $\left|\psi_{\xi}\right\rangle$ given black-box access to O_{ξ}

Quankum query complexily $Q_{\varepsilon}(\mathcal{P})$
Minimum \# calls to O_{ξ} necessary to generate a state $\sqrt{1-\varepsilon}\left|\psi_{\xi}\right\rangle|\overline{0}\rangle+\sqrt{\varepsilon} \mid$ error $\left._{\xi}\right\rangle$

Quanbum rejection sampling

Need to change $\pi_{k} \rightarrow \sigma_{k}$
O Use oracle O_{ξ} to create thd original state

$$
O_{\xi}|0\rangle=\sum_{k} \pi_{k}\left|\xi_{k}\right\rangle|k\rangle
$$

Will be chosen later

O Use control-rotation on an ancilla qubit

$$
|0\rangle \rightarrow \sum_{k}\left|\xi_{k}\right\rangle|k\rangle\left(\sqrt{\left|\pi_{k}\right|^{2}-\left|\alpha_{k}\right|^{2}}|0\rangle+\underset{\alpha_{k}}{ }|1\rangle\right)
$$

O If we measure the ancilla and obtain $|1\rangle$ ("accept"):

$$
\frac{1}{\|\vec{\alpha}\|} \sum_{k} \alpha_{k}\left|\xi_{k}\right\rangle|k\rangle
$$

O OK if $\vec{\alpha}$ is close to $\vec{\sigma}$, more precisely:

$$
\frac{\vec{\sigma} \cdot \vec{\alpha}}{\|\vec{\alpha}\|} \geq \sqrt{1-\varepsilon}
$$

Optimization

$$
\sum_{k}\left|\xi_{k}\right\rangle|k\rangle\left(\sqrt{\left|\pi_{k}\right|^{2}-\left|\alpha_{k}\right|^{2}}|0\rangle+\alpha_{k}|1\rangle\right)
$$

O We measure $|1\rangle$ ("accept") with probability $\|\vec{\alpha}\|^{2}$
O Naive approach: repeat $O\left(1 /\|\vec{\alpha}\|^{2}\right)$ times
\bigcirc Using amplitude amplification: reduce to $O(1 /\|\vec{\alpha}\|)$
\bigcirc Optimizing $\vec{\alpha}$:Semidefinite program

Maximize $\|\vec{\alpha}\|$ subject to $0 \leq \alpha_{k} \leq \pi_{k} \quad \forall k$

$$
\frac{\vec{\sigma} \cdot \vec{\alpha}}{\|\vec{\alpha}\|} \geq \sqrt{1-\varepsilon}
$$

Optimal solution

O Let $\alpha_{k}(\gamma)=\min \left\{\pi_{k}, \gamma \sigma_{k}\right\}$

O We take $\bar{\gamma}=\max \gamma$ such that $\frac{\vec{\sigma} \cdot \vec{\alpha}(\gamma)}{\|\vec{\alpha}(\gamma)\|} \geq \sqrt{1-\varepsilon}$
O We can prove that this leads to an optimal algorithm
Matching lower bound uses automorphism
principle with $G=\mathbb{Z}_{2}^{n} \times U(N-1)$

Theorem

$Q_{\varepsilon}\left(\right.$ QSampling $\left._{\vec{\pi} \rightarrow \vec{\sigma}}\right)=\Theta(1 /\|\vec{\alpha}(\bar{\gamma})\|)$

Applicalions

O Linear system of equations [HHLO9]
\square QRS was used implicitly
O Quantum Metropolis algorithm
[Improvement on the original algorithm [TOVPVII]
O Boolean hidden shift problem

- New algorithm!

Linear system of equations

Setup:

O Invertible $d \times d$ matrix A
\mathcal{O} Vector $|\boldsymbol{b}\rangle \in \mathbb{C}^{d}$

```
can be assumed Hermitian
```

Quankum linear equations problem
Prepare the state $|x\rangle$ such that

$$
A|x\rangle=|b\rangle
$$

Main idea: use quantum phase estimation (QPE) [Kitaer95,СемM97] + quantum rejection sampling (QRS)

Algorithm

[HarrowHassidimLloyd09]

O Let $|b\rangle=\sum_{k} b_{k}\left|\psi_{k}\right\rangle$, where

- $\left|\psi_{k}\right\rangle$ are the eigenstates of A
$\square \lambda_{k}$ are the corresponding eigenvalues

$$
\begin{gathered}
A|x\rangle=|b\rangle \\
\stackrel{\Leftrightarrow}{\mid} A^{-1}|b\rangle
\end{gathered}
$$

O Use QPE to prepare $\quad|\boldsymbol{b}\rangle=\sum_{k} \boldsymbol{b}_{\boldsymbol{k}}\left|\boldsymbol{\psi}_{\boldsymbol{k}}\right\rangle\left|\boldsymbol{\lambda}_{k}\right\rangle$
O Use QRS to get $\quad \sum_{k} b_{k} \lambda_{k}^{-1}\left|\psi_{k}\right\rangle\left|\lambda_{k}\right\rangle$
\square Known amplitude (ratios): $\boldsymbol{\lambda}_{\boldsymbol{k}}^{\boldsymbol{- 1}}$

- Unknown states: $\left|\psi_{k}\right\rangle$

O Undo phase estimation to obtain

$$
|x\rangle=\sum_{k} b_{k} \lambda_{k}^{-1}\left|\psi_{k}\right\rangle=A^{-1}|b\rangle
$$

Quankum Melropolis algorithm

Setup:
O Hamiltonian \boldsymbol{H}

- Eigenstates $\left|\psi_{\boldsymbol{k}}\right\rangle$
\square Eigenenergies $\boldsymbol{E}_{\boldsymbol{k}}$
O Inverse temperature β

Metropolis sampling problem Prepare the thermal state $\sum_{k} p_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$, where $p_{k} \sim \exp \left(-\beta E_{k}\right)$ is the Gibbs distribution

Classical solution

[MRRTT53]
O If \boldsymbol{H} is diagonal (=classical)

- Eigenstates $\left|\boldsymbol{\psi}_{\boldsymbol{k}}\right\rangle$ are known
\square Eigenenergy $\boldsymbol{E}_{\boldsymbol{k}}$ can be efficiently computed from $\left|\psi_{\boldsymbol{k}}\right\rangle$
O Start from a random $\left|\psi_{k}\right\rangle$
O Apply a "kick" to get another $\left|\psi_{l}\right\rangle$
O Compute the energies \boldsymbol{E}_{k} and \boldsymbol{E}_{l}
- If $\boldsymbol{E}_{l} \leq \boldsymbol{E}_{\boldsymbol{k}}$, accept the move
\square If $\boldsymbol{E}_{l}>\boldsymbol{E}_{\boldsymbol{k}}$, accept only with probability $\exp \left(\boldsymbol{\beta}\left(\boldsymbol{E}_{\boldsymbol{k}}-\boldsymbol{E}_{l}\right)\right)$
O Repeat

Quancum Meeropolis algorichm

O If \boldsymbol{H} is not diagonal (=quantum)
\square Eigenstates $\left|\psi_{\boldsymbol{k}}\right\rangle$ and eigenergies $\boldsymbol{E}_{\boldsymbol{k}}$ are not known to start with
\square But: we can project onto the $\left|\boldsymbol{\psi}_{k}\right\rangle$-basis and get the corresponding $\boldsymbol{E}_{\boldsymbol{k}}$ by using quantum phase estimation (QPE).

O Prepare a random $\left|\psi_{k}\right\rangle$ using QPE (and record E_{k})
O Apply a "kick" (random unitary gate)
O Use QPE to project on another $\left|\psi_{l}\right\rangle$ (and record E_{l})
O Compare the energies E_{k} and E_{l}

- If $\boldsymbol{E}_{l} \leq \boldsymbol{E}_{\boldsymbol{k}}$, accept the move
\square If $E_{l}>\boldsymbol{E}_{\boldsymbol{k}}$, accept only with probability $\exp \left(-\boldsymbol{\beta}\left(\boldsymbol{E}_{l}-\boldsymbol{E}_{\boldsymbol{k}}\right)\right)$

Quantum Metropolis algorithm

O Problem:

- Rejected moves require to revert the state from $\left|\psi_{l}\right\rangle$ to $\left|\psi_{\boldsymbol{k}}\right\rangle$
\square We cannot keep a copy of $\left|\psi_{k}\right\rangle$ (requires to clone an unknown state!)
O Two solutions:
- Temme et al. [TOVPVI I] propose a "rewinding" technique to revert to $\left|\psi_{k}\right\rangle$, based on a series of projective measurements.
\square Use quantum rejection sampling! Equivalent to amplifying accepted moves, therefore avoiding having to revert moves at all.

Boolean hidden shift

Setup:
Of(x):(known) Boolean function
O $f_{s}(x)=f(x+s)$, with an (unknown) shift $s \in\{0,1\}^{n}$

Boolean hidden shift problem
Given black-box access to $f_{s}(x)$, find the hidden shift s

Special cases

O Delta function $f(x)=\delta_{x x_{0}}$
\square = Grover's search problem
\square Requires $\Theta\left(\sqrt{2^{n}}\right)$ queries [Grover96]

O Bent functions
\square = Functions with flat Fourier spectrum
\square Can be solved with 1 query! [Röteler 10]
O What about other functions???

New algorithm based on QRS

O Use the following circuit, where

- \boldsymbol{H} is the Hadamard transform
$\square O_{f_{s}}$ is the black box for f_{s}, acting as $O_{f_{s}}|x\rangle=(-1)^{f_{s}(x)}|x\rangle$

$$
\left.\begin{array}{cc|c}
|0\rangle & -H & \\
|0\rangle & -H \\
\vdots & \vdots \\
|0\rangle & -H & \\
\hline \boldsymbol{H} & O_{f_{s}} & -\boldsymbol{H} \\
\vdots \\
H
\end{array}\right\} \quad \sum_{w}(-1)^{w \cdot s} \hat{f}(w)|w\rangle
$$

O Use QRS to produce the state $\frac{1}{\sqrt{2^{n}}} \sum_{w}(-1)^{w \cdot s}|w\rangle$

- Known amplitudes $=$ Fourier coefficients $\hat{f}(w)$
\square Unknown "states" $=$ phases $(-1)^{w \cdot s}$
O Use a final Fourier transform $H^{\otimes n}$ to get $|s\rangle$

Wrap-up

O Rejection sampling has found many applications in classical computing

O Quantum rejection sampling could be as useful for quantum computing!

O Example: 3 diverse applications
\square Linear system of equations [HarrowHassidimLloyd09]
\square Quantum Metropolis algorithm
\square Boolean hidden shift problem

Outlook

O Other applications
\square Amplifying QMA witnesses
[MarriottWatrous05,NagajWocjanZhang09]
\square Preparing PEPS states [SchwarzTemmeVerstraete I I]
口???
O Adversary method for this extended model of quantum query complexity?
\square Non-trivial error dependence
\square Infinite-size adversary matrices

