Quantum rejection sampling

Introduction

O (Classical) rejection sampling Algorithmic tool introduced by von Neumann (1951) Can be used to sample from arbitrary distributions Numerous applications: * Metropolis algorithm [MRRTT53] * Monte-Carlo simulations * optimization (simulated annealing) * etc... O Quantum rejection sampling ■ Natural quantum analogue: probabilities → amplitudes New algorithmic tool Applications: * Linear system of equations [HHL09] * Quantum Metropolis algorithm * Boolean hidden shift problem

2 / 23

Classical resampling problem

Setup:

 \bigcirc P and S: two probability distributions

Resampling problem

Given the ability to sample according to P, produce a sample distributed according to S.

Rejection sampling

- $\bigcirc \Pr[\text{accept } k] = \gamma \frac{s_k}{p_k}$
- $oldsymbol{\circ} \gamma = \min_{k} rac{p_k}{s_k}$

- O Expected number of required samples: $T=rac{1}{\gamma}$
- OThis is optimal [Letac75]
- O Many applications in randomized algorithms

Quantum resampling problem

O Given access to a black box O_{ξ} preparing a state

$$|\pi^{oldsymbol{\xi}}
angle = \sum_{oldsymbol{k}} \pi_{oldsymbol{k}} |\xi_{oldsymbol{k}}
angle |k
angle$$
 known amplitudes unknown states

O Prepare the state

$$|\sigma^{oldsymbol{\xi}}
angle = \sum_{oldsymbol{k}} \sigma_{oldsymbol{k}} |oldsymbol{\xi}_{oldsymbol{k}}
angle |oldsymbol{k}
angle | k
angle$$
 different amplitudes same states

- O Question: How many calls to O_{ξ} are necessary?
- O Tool: Query complexity

Classical query complexity

- O Function f(x), where $x=(x_1,\ldots,x_n)$
- O Oracle $O_x: i \to x_i$
- **O** Goal: Compute f(x) given black-box access to O_x

Randomized query complexity $R_{\varepsilon}(f)$

Minimum # calls to O_x necessary to compute f(x) with success probability (1-arepsilon)

Quantum query complexity

Different quantum extensions:

I. Can query O_x in superposition $\Rightarrow Q_{\varepsilon}(f) \leq R_{\varepsilon}(f)$

- 2. Instead of computing a function f(x), generate a quantum state $|\psi_x\rangle$
- 3. Oracle O_{ξ} is a unitary that hides the label ξ in a non-explicit way

Example: Quantum resampling

$$|0\rangle \longrightarrow O_{\xi} \longrightarrow \sum_{k} \pi_{k} |\xi_{k}\rangle |k\rangle$$

Quantum state generation

- **O** Set of quantum states $\Psi = \{|\psi_{\xi}\rangle: \xi \in \mathcal{X}\}$
- **O** Set of oracles $\mathcal{O} = \{O_{\xi} : \xi \in \mathcal{X}\}$
- O Quantum state generation problem ${\mathcal P}$ defined by $(\Psi,{\mathcal O})$
- **O** Goal: Generate $|\psi_{\xi}
 angle$ given black-box access to O_{ξ}

Quantum query complexity $Q_{\varepsilon}(\mathcal{P})$

Minimum # calls to O_ξ necessary to generate a state $\sqrt{1-\varepsilon}|\psi_\xi\rangle|\bar{0}\rangle+\sqrt{\varepsilon}|\mathrm{error}_\xi\rangle$

work space

Quantum rejection sampling

Need to change $\,\pi_k o \sigma_k \,$

O Use oracle O_{ξ} to create the original state

$$O_{\xi}|0
angle = \sum_{k} \pi_{k} |\xi_{k}
angle |k
angle$$

O Use control-rotation on an ancilla qubit

$$|0
angle
ightarrow \sum_{k} |\xi_k
angle |k
angle (\sqrt{|\pi_k|^2-|lpha_k|^2}|0
angle + lpha_k|1
angle)$$

Will be chosen later

O If we measure the ancilla and obtain $|1\rangle$ ("accept"):

$$rac{1}{\|ec{lpha}\|} \sum_{m{k}} lpha_{m{k}} | m{\xi}_{m{k}}
angle | k
angle$$

O OK if $\vec{\alpha}$ is close to $\vec{\sigma}$, more precisely:

$$\frac{\vec{\sigma} \cdot \vec{\alpha}}{\|\vec{\alpha}\|} \ge \sqrt{1 - \varepsilon}$$

Optimization

$$\sum_{k} |\xi_k
angle |k
angle ig(\sqrt{|\pi_k|^2-|lpha_k|^2}|0
angle + lpha_k|1
angleig)$$

- **O** We measure $|1\rangle$ ("accept") with probability $\|ec{lpha}\|^2$
- O Naive approach: repeat $O(1/\|\vec{\alpha}\|^2)$ times
- O Using amplitude amplification: reduce to $O(1/\|\vec{\alpha}\|)$ [BrassardHøyerMoscaTapp00]
- O Optimizing $\vec{\alpha}$: Semidefinite program

$$\begin{array}{lll} \text{Maximize} & \|\vec{\alpha}\| & \text{subject to} & 0 \leq \alpha_k \leq \pi_k & \forall \ k \\ & & \frac{\vec{\sigma} \cdot \vec{\alpha}}{\|\vec{\alpha}\|} \geq \sqrt{1 - \varepsilon} \end{array}$$

Optimal solution

O Let $\alpha_k(\gamma) = \min\{\pi_k, \gamma\sigma_k\}$

O We take $\bar{\gamma} = \max \gamma$ such that

$$rac{ec{\sigma} \cdot ec{lpha}(\gamma)}{\|ec{lpha}(\gamma)\|} \geq \sqrt{1-arepsilon}$$

O We can prove that this leads to an optimal algorithm

Matching lower bound uses automorphism principle with $G=\mathbb{Z}_2^n imes U(N-1)$

Theorem

$$Q_{\varepsilon}(\operatorname{QSampling}_{\vec{\pi} \to \vec{\sigma}}) = \Theta(1/\|\vec{\alpha}(\bar{\gamma})\|)$$

Applications

- O Linear system of equations [HHL09]
 - QRS was used implicitly
- O Quantum Metropolis algorithm
 - Improvement on the original algorithm [TOVPVII]
- O Boolean hidden shift problem
 - ☐ New algorithm!

Linear system of equations [HHL09]

Setup:

- O Invertible $d \times d$ matrix A
- **O** Vector $|b
 angle \in \mathbb{C}^d$

can be assumed Hermitian

Quantum linear equations problem

Prepare the state $|x\rangle$ such that

$$A|x
angle=|b
angle$$

Main idea: use quantum phase estimation (QPE) [Kitaev95,CEMM97] + quantum rejection sampling (QRS)

Algorithm

[HarrowHassidimLloyd09]

- **O** Let $|b\rangle = \sum_{k} b_{k} |\psi_{k}\rangle$, where
 - $|\psi_{m{k}}
 angle$ are the eigenstates of A
 - \square λ_k are the corresponding eigenvalues

O Use QPE to prepare $|b\rangle = \sum_k b_k |\psi_k\rangle |\lambda_k\rangle$

$$|b
angle = \sum_k b_k |\psi_k
angle |\lambda_k
angle$$

O Use QRS to get

$$\sum_k b_k \lambda_k^{-1} |\psi_k
angle |\lambda_k
angle$$

- Known amplitude (ratios): λ_{k}^{-1}
- Unknown states: $|\psi_{k}\rangle$
- O Undo phase estimation to obtain

$$|x
angle = \sum_k b_k \lambda_k^{-1} |\psi_k
angle = A^{-1} |b
angle$$

Quantum Metropolis algorithm

Setup:

- O Hamiltonian H
 - lacksquare Eigenstates $|\psi_{m{k}}
 angle$
 - lacksquare Eigenenergies $E_{m{k}}$
- O Inverse temperature β

Metropolis sampling problem

Prepare the thermal state $\sum_k p_k |\psi_k\rangle\langle\psi_k|$, where $p_k \sim \exp(-\beta E_k)$ is the Gibbs distribution

Classical solution

[MRRTT53]

- O If H is diagonal (=classical)
 - lacksquare Eigenstates $|\psi_{m{k}}
 angle$ are known
 - lacksquare Eigenenergy E_k can be efficiently computed from $|\psi_k
 angle$
- O Start from a random $|\psi_{k}\rangle$

e.g., spin flip

- **O** Apply a "kick" to get another $|\psi_l
 angle$
- O Compute the energies E_k and E_l
 - lacksquare If $E_l \leq E_k$, accept the move
 - \square If $E_l > E_k$, accept only with probability $\exp(eta(E_k E_l))$
- O Repeat

Quantum Metropolis algorithm

- O If H is not diagonal (=quantum)
 - lacksquare Eigenstates $|\psi_{m{k}}
 angle$ and eigenergies $E_{m{k}}$ are not known to start with
 - But: we can project onto the $|\psi_k\rangle$ -basis and get the corresponding E_k by using quantum phase estimation (QPE).
- O Prepare a random $|\psi_{m{k}}\rangle$ using QPE (and record $E_{m{k}})$
- O Apply a "kick" (random unitary gate)
- **O** Use QPE to project on another $|\psi_l
 angle$ (and record E_l)
- O Compare the energies E_k and E_l
 - lacksquare If $E_l \leq E_k$, accept the move
 - \square If $E_l > E_k$, accept only with probability $\exp(-eta(E_l E_k))$

Quantum Metropolis algorithm

O Problem:

- lacksquare Rejected moves require to revert the state from $|\psi_l
 angle$ to $|\psi_k
 angle$
- \square We cannot keep a copy of $|\psi_k\rangle$ (requires to clone an unknown state!)

O Two solutions:

- Temme et al. [TOVPVII] propose a "rewinding" technique to revert to $|\psi_{m k}
 angle$, based on a series of projective measurements.
- Use quantum rejection sampling! Equivalent to amplifying accepted moves, therefore avoiding having to revert moves at all.

Boolean hidden shift

Setup:

- $\mathbf{O} f(x)$:(known) Boolean function
- $O f_s(x) = f(x+s),$ with an (unknown) shift $s \in \{0,1\}^n$

Boolean hidden shift problem

Given black-box access to $f_s(x)$, find the hidden shift s

Special cases

- O Delta function $f(x) = \delta_{xx_0}$
 - = Grover's search problem
 - \square Requires $\Theta(\sqrt{2^n})$ queries [Grover96]

- O Bent functions
 - = Functions with flat Fourier spectrum
 - Can be solved with 1 query! [Rötteler 10]
- O What about other functions???

New algorithm based on QRS

O Use the following circuit, where

- \square H is the Hadamard transform
- $igsqcup O_{f_s}$ is the black box for f_s , acting as $O_{f_s}|x
 angle=(-1)^{f_s(x)}|x
 angle$

- O Use QRS to produce the state $\frac{1}{\sqrt{2^n}}\sum_w (-1)^{w\cdot s}|w\rangle$
 - \square Known amplitudes = Fourier coefficients $\hat{f}(w)$
 - \square Unknown "states" = phases $(-1)^{w \cdot s}$
- O Use a final Fourier transform $H^{\otimes n}$ to get $|s\rangle$

Wrap-up

- O Rejection sampling has found many applications in classical computing
- O Quantum rejection sampling could be as useful for quantum computing!
- O Example: 3 diverse applications
 - Linear system of equations [HarrowHassidimLloyd09]
 - Quantum Metropolis algorithm
 - ☐ Boolean hidden shift problem

Outlook

- O Other applications
 - ☐ Amplifying QMA witnesses
 [MarriottWatrous05,NagajWocjanZhang09]
 - Preparing PEPS states [SchwarzTemmeVerstraetell]
 - □ ????
- O Adversary method for this extended model of quantum query complexity?
 - □ Non-trivial error dependence
 - ☐ Infinite-size adversary matrices

Support:

