Quantum rejection sampling

To appear in ITCS'12 [arXiv:1103.2774]

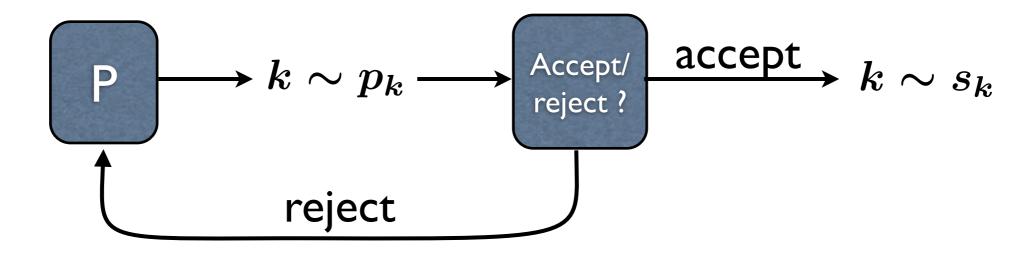
Introduction

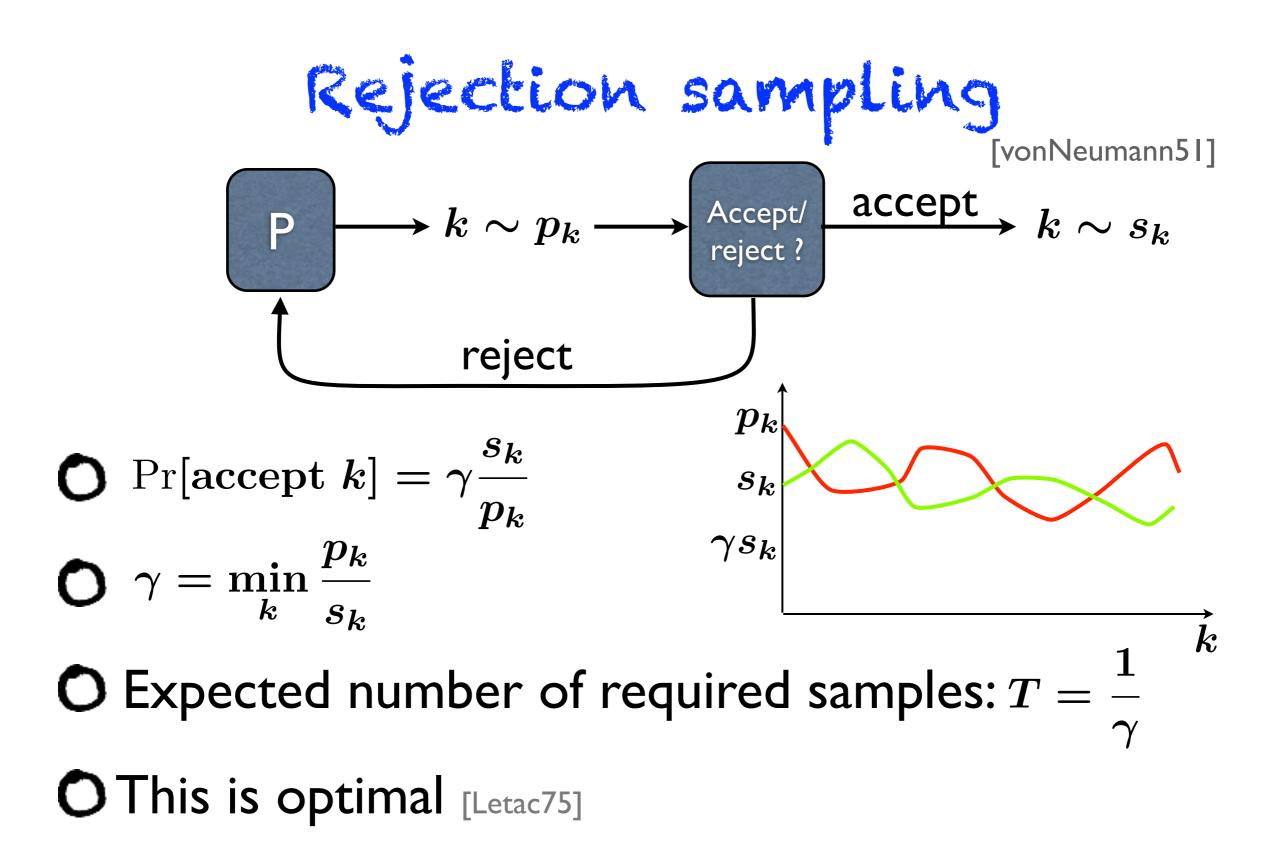
O (Classical) rejection sampling

- Algorithmic tool introduced by von Neumann (1951)
- Can be used to sample from arbitrary distributions
- Numerous applications: * Metropolis algorithm [MRRTT53]
 * Monte-Carlo simulations
 * optimization (simulated annealing)
 * etc...
- O Quantum rejection sampling

 - New algorithmic tool
 - **Applications:** * Linear system of equations [HHL09]
 - * Quantum Metropolis algorithm
 - * Boolean hidden shift problem

Classical resampling problem Setup: **O** P and S: two probability distributions Resampling problem Given the ability to sample according to P, produce a sample distributed according to S.

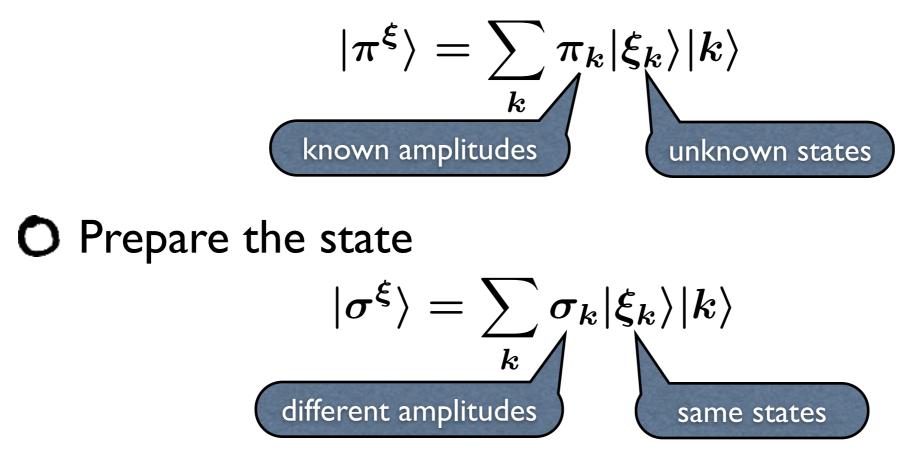




O Many applications in randomized algorithms

Quantum resampling problem

O Given access to a black box O_{ξ} preparing a state



O Question: How many calls to O_{ξ} are necessary?

O Tool: Query complexity

Classical query complexity

- **O** Function f(x), where $x = (x_1, \ldots, x_n)$
- **O** Oracle $O_x: i \to x_i$
- $lacebox{O}$ Goal: Compute f(x) given black-box access to O_x

Randomized query complexity $R_{\varepsilon}(f)$ Minimum # calls to O_x necessary to compute f(x) with success probability $(1 - \varepsilon)$

Quantum query complexity Different quantum extensions:

I. Can query O_x in superposition $\Rightarrow Q_{\varepsilon}(f) \leq R_{\varepsilon}(f)$

$$|i\rangle \longrightarrow O_x \qquad \Rightarrow |i\rangle \\ |0\rangle \longrightarrow V x_i\rangle$$

2. Instead of computing a function f(x), generate a quantum state $|\psi_x
angle$

3. Oracle O_{ξ} is a unitary that hides the label ξ in a non-explicit way

Example: Quantum resampling

$$|0\rangle \longrightarrow O_{\xi} \longrightarrow \sum_{k} \pi_{k} |\xi_{k}\rangle |k\rangle$$

Quantum state generation

old n Set of quantum states $\Psi = \{ |\psi_{oldsymbol{\xi}}
angle : oldsymbol{\xi} \in \mathcal{X} \}$

- **O** Set of oracles $\mathcal{O} = \{O_{\xi} : \xi \in \mathcal{X}\}$
- O Quantum state generation problem ${\mathcal P}$ defined by $(\Psi, {\mathcal O})$
- **O** Goal: Generate $|\psi_{\xi}
 angle$ given black-box access to O_{ξ}

Quantum query complexity
$$Q_{\varepsilon}(\mathcal{P})$$

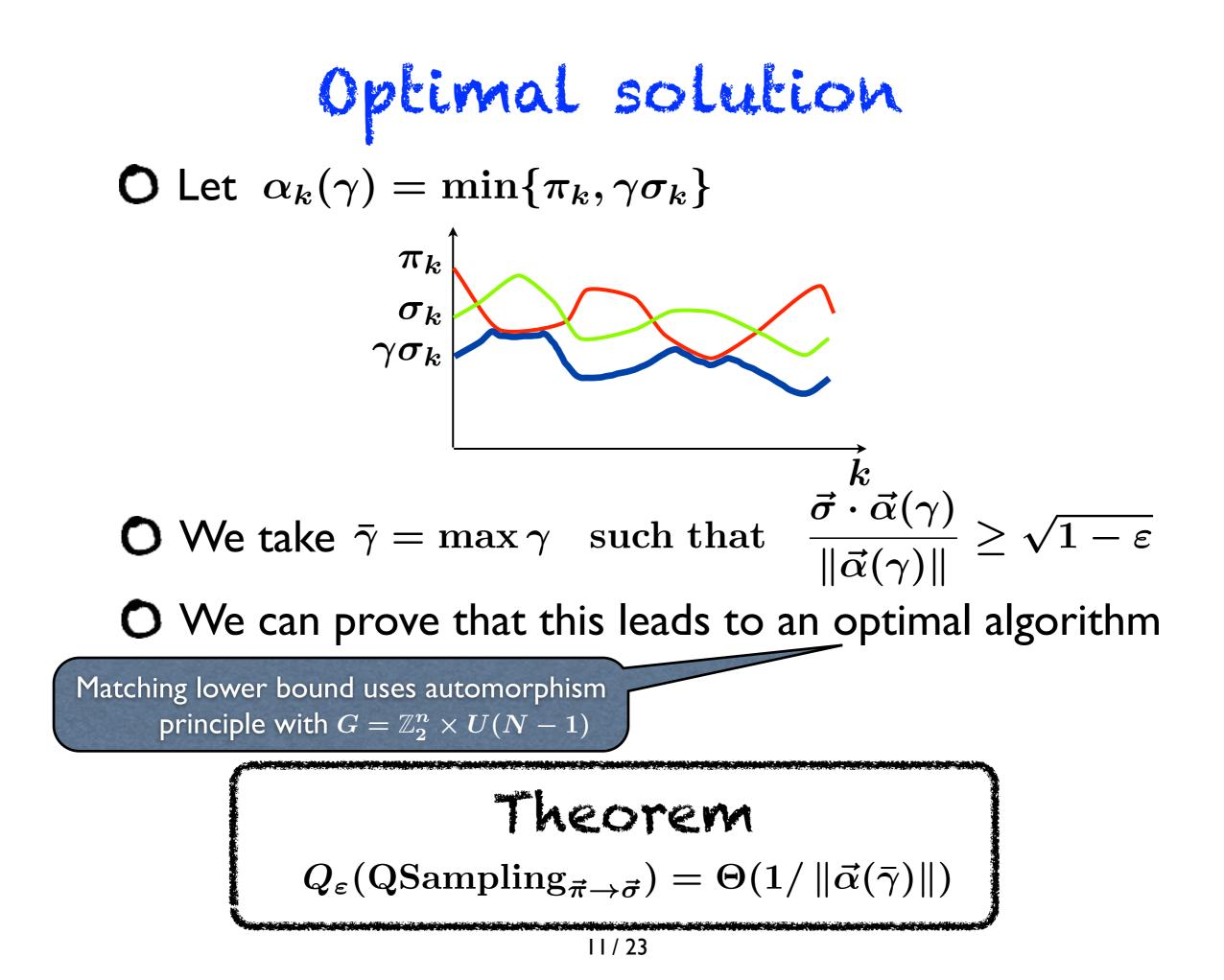
Minimum # calls to O_{ξ} necessary to generate
a state $\sqrt{1-\varepsilon}|\psi_{\xi}\rangle|\bar{0}\rangle + \sqrt{\varepsilon}|\mathrm{error}_{\xi}\rangle$
work space

Quantum rejection sampling
Need to change
$$\pi_k \to \sigma_k$$

O Use oracle O_{ξ} to create the original state
 $O_{\xi}|0\rangle = \sum_{k} \pi_k |\xi_k\rangle |k\rangle$
O Use control-rotation on an ancilla qubit
 $|0\rangle \to \sum_{k} |\xi_k\rangle |k\rangle (\sqrt{|\pi_k|^2 - |\alpha_k|^2}|0\rangle + \alpha_k |1\rangle)$
O If we measure the ancilla and obtain $|1\rangle$ ("accept"):
 $\frac{1}{\|\vec{\alpha}\|} \sum_{k} \alpha_k |\xi_k\rangle |k\rangle$
O OK if $\vec{\alpha}$ is close to $\vec{\sigma}$, more precisely:
 $\frac{\vec{\sigma} \cdot \vec{\alpha}}{\|\vec{\alpha}\|} \ge \sqrt{1 - \varepsilon}$

Optimization

$$\sum_{k} |\xi_{k}\rangle |k\rangle (\sqrt{|\pi_{k}|^{2} - |\alpha_{k}|^{2}}|0\rangle + \alpha_{k}|1\rangle)$$
O We measure $|1\rangle$ ("accept") with probability $\|\vec{\alpha}\|^{2}$
O Naive approach: repeat $O(1/\|\vec{\alpha}\|^{2})$ times
O Using amplitude amplification: reduce to $O(1/\|\vec{\alpha}\|)$
[BrassardHøyerMoscaTapp00]
O Optimizing $\vec{\alpha}$: Semidefinite program



Applications

- O Linear system of equations [HHL09]
 - **QRS** was used implicitly
- O Quantum Metropolis algorithm
 - Improvement on the original algorithm [TOVPVII]
- O Boolean hidden shift problem
 - New algorithm!

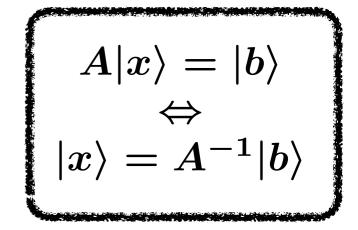
Linear system of equations [HHL09] Setup:

O Invertible $d \times d$ matrix A C Vector $|b\rangle \in \mathbb{C}^d$ Can be assumed Hermitian Quantum linear equations problem Prepare the state $|x\rangle$ such that $A|x\rangle = |b\rangle$

Main idea: use quantum phase estimation (QPE) [Kitaev95,CEMM97] + quantum rejection sampling (QRS)

Algorithm [HarrowHassidimLloyd09]

- **O** Let $|b
 angle = \sum_k b_k |\psi_k
 angle$, where
 - lacksquare $|\psi_k
 angle$ are the eigenstates of A
 - lacksquare λ_k are the corresponding eigenvalues



O Use QPE to prepare $|b\rangle = \sum_k b_k |\psi_k\rangle |\lambda_k\rangle$ **O** Use QRS to get $\sum_k b_k \lambda_k^{-1} |\psi_k\rangle |\lambda_k\rangle$

$$\square$$
 Known amplitude (ratios): λ_k^{-1}

lacksquare Unknown states: $|\psi_k
angle$

O Undo phase estimation to obtain

$$|x
angle = \sum_k b_k \lambda_k^{-1} |\psi_k
angle = A^{-1} |b
angle$$

Quantum Metropolis algorithm

Setup:

O Hamiltonian H

lacksquare Eigenstates $|\psi_k
angle$

 \Box Eigenenergies E_k

O Inverse temperature β

Metropolis sampling problem Prepare the thermal state $\sum_k p_k |\psi_k\rangle \langle \psi_k |$, where $p_k \sim \exp(-\beta E_k)$ is the Gibbs distribution

Classical solution

e.g., spin flip

O If H is diagonal (=classical)

- lacksquare Eigenstates $|\psi_k
 angle$ are known
- lacksquare Eigenenergy E_k can be efficiently computed from $|\psi_k
 angle$
- **O** Start from a random $|\psi_k
 angle$
- **O** Apply a "kick" to get another $|\psi_l
 angle$
- O Compute the energies E_k and E_l
 - lacksquare If $E_l \leq E_k$, accept the move
 - \square If $E_l > E_k$, accept only with probability $\exp(eta(E_k E_l))$

O Repeat

Quantum Metropolis algorithm

O If H is not diagonal (=quantum)

- lacksquare Eigenstates $|\psi_k
 angle$ and eigenergies E_k are not known to start with
- \square But: we can project onto the $|\psi_k\rangle$ -basis and get the corresponding E_k by using quantum phase estimation (QPE).
- **O** Prepare a random $|\psi_k\rangle$ using QPE (and record E_k)
- **O** Apply a "kick" (random unitary gate)
- **O** Use QPE to project on another $|\psi_l\rangle$ (and record E_l)
- **O** Compare the energies E_k and E_l
 - \square If $E_l \leq E_k$, accept the move
 - \square If $E_l > E_k$, accept only with probability $\exp(-eta(E_l-E_k))$

Quantum Metropolis algorithm

O Problem:

- \square Rejected moves require to revert the state from $|\psi_l
 angle$ to $|\psi_k
 angle$
- \square We cannot keep a copy of $\ket{\psi_k}$ (requires to clone an unknown state!)

O Two solutions:

- Temme et al. [TOVPVII] propose a "rewinding" technique to revert to $|\psi_k\rangle$, based on a series of projective measurements.
- Use quantum rejection sampling! Equivalent to amplifying accepted moves, therefore avoiding having to revert moves at all.

Boolean hidden shift

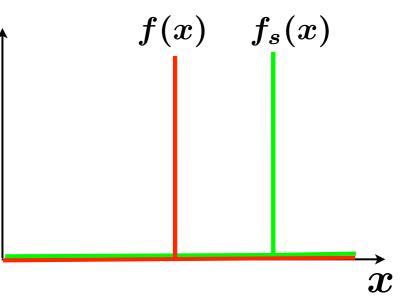
Setup:

O f(x):(known) Boolean function

 $\mathbf{O} f_s(x) = f(x+s)$, with an (unknown) shift $s \in \{0,1\}^n$ $f(x) \quad f_s(x)$ \overline{x} Boolean hidden shift problem Given black-box access to $f_s(x)$, find the hidden shift s

Special cases

- **O** Delta function $f(x) = \delta_{xx_0}$
 - **□** = Grover's search problem
 - lacksquare Requires $\Theta(\sqrt{2^n})$ queries [Grover96]
- O Bent functions
 - I = Functions with flat Fourier spectrum
 - Can be solved with 1 query! [Rötteler10]
- What about other functions???

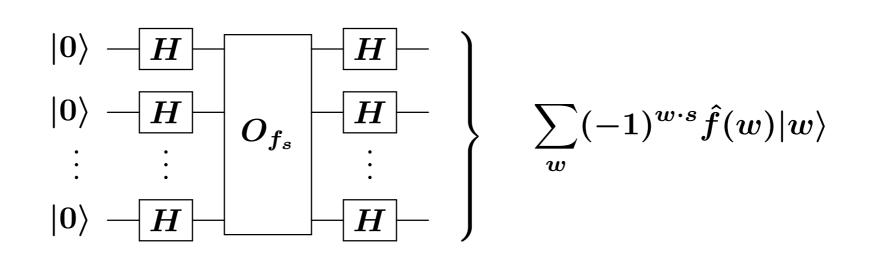


New algorithm based on QRS

O Use the following circuit, where

 \square *H* is the Hadamard transform

 \square O_{f_s} is the black box for f_s , acting as $O_{f_s}|x
angle=(-1)^{f_s(x)}|x
angle$



O Use QRS to produce the state $\frac{1}{\sqrt{2^n}}\sum_{k=1}^{w \cdot s} |w\rangle$

Known amplitudes = Fourier coefficients $\hat{f}(w)$

Unknown "states" = phases $(-1)^{w \cdot s}$

O Use a final Fourier transform $H^{\otimes n}$ to get $|s\rangle$

Wrap-up

- O Rejection sampling has found many applications in classical computing
- O Quantum rejection sampling could be as useful for quantum computing!
- O Example: 3 diverse applications
 - **Linear system of equations** [HarrowHassidimLloyd09]
 - Quantum Metropolis algorithm
 - Boolean hidden shift problem

Outlook

O Other applications

- C Amplifying QMA witnesses [MarriottWatrous05,NagajWocjanZhang09]
- Preparing PEPS states [SchwarzTemmeVerstraetell]
- O Adversary method for this extend model of quantum query complexity?
 - Non-trivial error dependence
 - Infinite-size adversary matrices

Support:

