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Introduction
(Classical) rejection sampling

Algorithmic tool introduced by von Neumann (1951)

Can be used to sample from arbitrary distributions

Numerous applications:  Metropolis algorithm [MRRTT53]
 Monte-Carlo simulations
 optimization (simulated annealing)
 etc...

Quantum rejection sampling

Natural quantum analogue:  probabilities ➜ amplitudes

New algorithmic tool

Applications:  Linear system of equations [HHL09]
 Quantum Metropolis algorithm
 Boolean hidden shift problem
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Classical resampling problem
Setup:
    and    : two probability distributionsP S

Resampling problem
Given the ability to sample according 
to    , produce a sample distributed 

according to   .
P

S

P k ⇠ pk
Accept/
reject ?

k ⇠ sk

reject

accept
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Rejection sampling

P k ⇠ pk
Accept/
reject ?

k ⇠ sk

reject

accept

Pr[accept k] = �
sk

pk

� = min
k

pk

sk

  

 

 Expected number of required samples: 

 This is optimal [Letac75]

 Many applications in randomized algorithms

T =
1

�

[vonNeumann51]

pk

sk

k

�sk
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Quantum resampling problem
Given access to a black box      preparing a state

known amplitudes unknown states

Prepare the state
|�⇠i =

X

k

�k|⇠ki|ki

different amplitudes same states

|⇡⇠i =
X

k

⇡k|⇠ki|ki
O⇠

Question: How many calls to      are necessary?O⇠

Tool: Query complexity
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Classical query complexity

Function        , where 

Oracle 

Goal: Compute         given black-box access tof(x) O
x

f(x)
x = (x1, . . . , xn)

O
x

: i ! x
i

Randomized query complexity

Minimum # calls to     necessary to compute    
with success probability 

O
x

f(x) (1 � ")

R"(f)
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Quantum query complexity
Different quantum extensions:

1. Can query      in superposition

2. Instead of computing a function        ,  generate a 
quantum state

3. Oracle      is a unitary that hides the label    in a 
non-explicit way

Example: Quantum resampling

O
x

f(x)
| 

x

i

) Q"(f)  R"(f)

O
x|0i

|ii |ii
|xii

|0i O⇠

X

k

⇡k|⇠ki|ki

O⇠ ⇠
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Set of quantum states

Set of oracles  

Quantum state generation problem     defined by 

Goal: Generate         given black-box access to

Quantum state generation

P ( ,O)

Quantum query complexity

Minimum # calls to     necessary to generate        
a state  

work space

Q"(P)

 = {| ⇠i : ⇠ 2 X}

O = {O⇠ : ⇠ 2 X}

| ⇠i O⇠

O⇠p
1 � "| ⇠i|¯0i +

p
"|error⇠i
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Quantum rejection sampling
O⇠Use oracle      to create the original state

Use control-rotation on an ancilla qubit

If we measure the ancilla and obtain      (“accept”):

OK if     is close to    , more precisely:

|1i
1

k~↵k
X

k

↵k|⇠ki|ki

~↵ ~�

~� · ~↵
k~↵k

�
p
1 � "

Will be chosen later

X

k

|⇠ki|ki
�p

|⇡k|2 � |↵k|2|0i + ↵k|1i
�

9

|0i

X

k

⇡k|⇠ki|kiO⇠|0i =

!

X

k

⇡k|⇠ki|ki

Need to change                     .⇡k ! �k
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Optimization

We measure      (“accept”) with probability 

Naive approach: repeat                    times

Using amplitude amplification: reduce to

Optimizing      : Semidefinite program 

k~↵k2|1i

X

k

|⇠ki|ki
�p

|⇡k|2 � |↵k|2|0i + ↵k|1i
�

O(1/ k~↵k)

O(1/ k~↵k2)

[BrassardHøyerMoscaTapp00]
~↵

Maximize subject to 0  ↵k  ⇡k 8 kk~↵k
~� · ~↵
k~↵k

�
p
1 � "

10



/ 23

Optimal solution
Let                  ↵k(�) = min{⇡k, ��k}

k

⇡k

��k

�k

Theorem
Q"(QSampling~⇡!~�) = ⇥(1/ k~↵(�̄)k)

We take

We can prove that this leads to an optimal algorithm             

�̄ = max � such that

~� · ~↵(�)

k~↵(�)k
�

p
1 � "

Matching lower bound uses automorphism 
principle with                      .G = Zn

2 ⇥ U(N � 1)
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Applications

Linear system of equations [HHL09]

QRS was used implicitly

Quantum Metropolis algorithm

Improvement on the original algorithm [TOVPV11]

Boolean hidden shift problem

New algorithm!

☛12
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Linear system of equations
Setup:

Invertible          matrix    

Vector 

[HHL09]

Ad ⇥ d

|bi 2 Cd

Quantum linear equations problem

Prepare the state      such that|xi
A|xi = |bi

Main idea: use quantum phase estimation (QPE) [Kitaev95,CEMM97]

                + quantum rejection sampling (QRS)

can be assumed Hermitian
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Algorithm
Let                          , where

        are the eigenstates of 

      are the corresponding eigenvalues

Use QPE to prepare

Use QRS to get 

Known amplitude (ratios): 

Unknown states: 

Undo phase estimation to obtain 

[HarrowHassidimLloyd09]

| ki A

�k

��1
k

| ki

|bi =
P

k bk| ki|�ki
P

k bk�
�1
k | ki|�ki

|xi =
P

k bk�
�1
k | ki = A

�1|bi

|bi =
P

k bk| ki

☛14

A|xi = |bi
,

|xi = A

�1|bi
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Quantum Metropolis algorithm
Setup:

Hamiltonian

Eigenstates

Eigenenergies 

Inverse temperature 

H

| ki

Ek

Metropolis sampling problem
Prepare the thermal state                    , 

where                         is the Gibbs 
distribution

pk ⇠ exp(��Ek)

P
k pk| kih k|

�
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Classical solution
If     is diagonal (=classical)

Eigenstates         are known

Eigenenergy       can be efficiently computed from  

Start from a random

Apply a “kick” to get another

Compute the energies      and  

If                 , accept the move

If                 , accept only with probability

Repeat

[MRRTT53]

H

| ki

| kiEk

| ki

| li

Ek El

El > Ek exp(�(Ek � El))

El  Ek

e.g., spin flip
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Quantum Metropolis algorithm
If     is not diagonal (=quantum)

Eigenstates         and eigenergies      are not known to start with

But: we can project onto the        -basis and get the corresponding       by 
using quantum phase estimation (QPE).

Prepare a random        using QPE (and record     )

Apply a “kick” (random unitary gate)

Use QPE to project on another       (and record     )

Compare the energies      and  

If                 , accept the move

If                 , accept only with probability

H

| ki

| ki Ek

| ki

| li

Ek

El

El > Ek

El  Ek

Ek

Ek El

17
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Quantum Metropolis algorithm
Problem:

Rejected moves require to revert the state from        to  

We cannot keep a copy of         (requires to clone an unknown state!)

Two solutions:

Temme et al. [TOVPV11] propose a “rewinding” technique to revert 
to         ,  based on a series of projective measurements.

Use quantum rejection sampling! Equivalent to amplifying accepted 
moves, therefore avoiding having to revert moves at all.

| li | ki

| ki

| ki

☛18
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Boolean hidden shift
Setup:

       :(known) Boolean function

                          , with an (unknown) shift  

f(x)

fs(x) = f(x + s) s 2 {0, 1}n

Boolean hidden shift problem

Given black-box access to         ,
find the hidden shift     

fs(x)

s

x

f(x)
fs(x)

s
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Special cases

Delta function

= Grover’s search problem

Requires              queries [Grover96]

Bent functions

= Functions with flat Fourier spectrum

Can be solved with   query! [Rötteler10]

What about other functions???

f(x) = �

xx0

⇥(
p
2n)

1

x

f(x) fs(x)
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New algorithm based on QRS
Use the following circuit, where

   is the Hadamard transform

     is the black box for    , acting as 

H

Ofs fs O
fs |xi = (�1)fs(x)|xi

|0i H

Ofs

H

|0i H H
...

...
...

|0i H H

X

w

(�1)w·sf̂(w)|wi

9
>>>>>=

>>>>>;

Use QRS to produce the state

Known amplitudes = Fourier coefficients

Unknown “states” = phases

Use a final Fourier transform       to get  

f̂(w)

(�1)w·s

H⌦n |si

1p
2n

X

w

(�1)w·s|wi
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Wrap-up
Rejection sampling has found many applications in 
classical computing

Quantum rejection sampling could be as useful for 
quantum computing!

Example: 3 diverse applications

Linear system of equations [HarrowHassidimLloyd09]

Quantum Metropolis algorithm

Boolean hidden shift problem

22
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Outlook
Other applications

Amplifying QMA witnesses 
[MarriottWatrous05,NagajWocjanZhang09]

Preparing PEPS states [SchwarzTemmeVerstraete11]

???

Adversary method for this extend model of 
quantum query complexity?

Non-trivial error dependence

Infinite-size adversary matrices

23
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