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Why quantum computing?

Quantum computing provides speed-up for specific problems

• Factoring
• Discrete logarithms
• etc...

What about NP-complete problems?

• 3-SAT: 

(x1 _ ¹x2 _ x5) ^ ( ¹x1 _ x3 _ ¹x5) ^ ( ¹x2 _ x4 _ x5)











Adiabatic evolution

¢(t)

Slow evolution → Stay in ground state (=lowest energy)

Prob. of jumping depends on:

• Total time T (slower is better)
• Gap Δ(t)  (larger gap is better)

T À 1

¢2
min



Quantum approach to optimization

•Problem: Find minimum of a function  f(x) 
1) Choose physical system with known minimum energy state

2) Modify energy function to match f(x)  

f(x)

x

H0 Hf

This is “Adiabatic Quantum Computation”
[Farhi et al. '00]



How powerful is it?

• It is quantum! Unstructured search in time            (cf Grover)

• It is universal for quantum computation

[vanDam-Mosca-Vazirani'01,Roland-Cerf'02]

[Aharonov et al.'05]

Good, but what about NP-complete problems?

• Numerical simulations: promising scaling
[Farhi et al.'00,Hogg'03,Banyuls et al.'04,Young et al.'08]

O(
p
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How powerful is it?

• It is quantum! Unstructured search in time            (cf Grover)

• It is universal for quantum computation

[vanDam-Mosca-Vazirani'01,Roland-Cerf'02]

[Aharonov et al.'05]

• But exponentially small gap

• for specifically designed hard instances

[Znidaric-Horvat'06,Farhi et al.'08]

[vanDam-Vazirani'03,Reichardt'04]

But maybe typical gaps are only polynomial?

Good, but what about NP-complete problems?

• Numerical simulations: promising scaling
[Farhi et al.'00,Hogg'03,Banyuls et al.'04,Young et al.'08]

• for bad choice of initial Hamiltonian

O(
p
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Exact-Cover 3 (EC3)

• NP complete problem (similar to 3-SAT)

• N bits ~x = (x1; : : : ; xN )

• M clauses of 3 bits: 
(xiC ; xjC ; xkC ) satis¯ed , xiC + xjC + xkC = 1

, 100; 010 or 001

•Problem: Find assignment      satisfying all clauses~x

Minimize function f(~x) =
X

C

(xiC + xjC + xkC ¡ 1)2

#clauses with bit i

#clauses

#clauses with bits i,j

= M ¡
X

i

Bixi + 2
X

i;j

Jijxixj



Random instances

• Pick M clauses uniformly at random

• Hardness depends on clauses-to-bit ratio:  ® =
M

N

High density
of solutions

Isolated clusters 
of solutions

Essentially
no solution

Easy EasyHard

Very 
hard

 ®c  ®s 0 ® 

Pr[9 solution]
1



From bits to spins
Spins

+1

¡1

Bits xi  

Energy term 

→magnetic field   
Bixi

Energy term

→magnetic coupling  
Jijxixj

Hamiltonian Hf
(“energy function”)

We use
“physicist's bits”

Bit strings: ~x = (+1;+1;¡1;+1;¡1)

f(~x) = M ¡ 1

2

X

i

Bixi +
1

2

X

i;j

Jijxixj





From annealing to adiabatic QC

Quantum Mechanics: spins can be “both up and down”

Initialization: Instead of high temperature
→  strong transverse magnetic field

=

H0



Adiabatic quantum algorithm
Consider Hamiltonian H(¸) = Hf + ¸ H0

¸ = 0 ¸À 1

000 001 010 011 100 101 110 111

Hf H0
000 001 010 011 100 101 110 111

Start hereDecrease  ̧

Decrease  ̧



Anderson localization

P. Anderson
Nobel Prize

Physics 1977

“Extended states become localized due to disorder”

Model:
• Grid with coupling λ
• Random energies

→ Extended state  → Metal¸ > ¸c
→ Localized state  → Insulator¸ < ¸c

In our case:

• Hypercube with coupling λ
• Energies from random Exact-Cover 3

000 001
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110 111
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Localized and extended states
¸ = 0

• State is localized

•Transverse field “spreads” the state

¸ > 0

¸À 1

• State is extended
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Tunneling: extended state
What if a local minimum later becomes the global minimum?

Sees the
other minimum

¸0

localized extended

¸c

E
ne

rg
y 

le
ve

ls

Δ large

¸¤

Crossing avoided
due to “spreading”

→  Tunneling

¸ < ¸¤¸ > ¸¤



Tunneling: localized state
What if a local minimum later becomes the global minimum?

¸0

localized extended

¸c

E
ne

rg
y 

le
ve

ls

¸¤

Little “spreading”

¸ < ¸¤¸ > ¸¤

→  Inefficient tunneling

Does not see the
other minimum

Δ small



Our result

¸0

localized extended

¸c ¸¤

1) Anderson localization would imply
As the size of the problem N increases

2) Anti-crossings for smaller and smaller ¸¤ = (CN)¡1=8

we have ¸¤ < ¸cFor N >
1

C¸8c

The algorithm fails (stuck in a local minimum)

¸c = (1= logN)



Level anti-crossings

¸0 ¸¤

0

Study slopes by perturbation theory

As N increases, 

• Standard deviation σ increases

¸¤• Position of anti-crossing       goes to 0

Random instances ⇒ random slopes!



Level anti-crossings

E1(0) = E2(0) = 0

Suppose

E1(¸¤) ¡E2(¸¤) > 4

Consider EC3 instance with 2 solutions  ~x1; ~x2

Add a clause

• satisfied by 

• violated by

~x1

~x2

anti-crossing

→  Gap ¢ » ¸n¤

d(~x1; ~x2) = n



Perturbation theory

We compute E1,2(¸) by perturbation theory

E~x(¸) = E~x(0) +
1X

m=1

¸2mF
(m)
~x

We prove: F
(m)
~x = O(N ) 8m

(F
(m)
1 ¡ F (m)2 )2 = O(N) 8m

 For 2 solutions, the difference has zero mean, so



Numerical simulations

• We generated EC3 random instances with >2 solutions

• then computed                           by order 4 perturbation theoryE1(¸) ¡E2(¸)

Leading order because:
• Odd orders are zero
• Order 2 is solution-independent for EC3



Numerical simulations

• We generated EC3 random instances with >2 solutions

• then computed                           by order 4 perturbation theoryE1(¸) ¡E2(¸)

forWe have E1(¸) ¡E2(¸) > 4 ¸ >
p

2(CN)¡1=8

(E1(¸) ¡E2(¸))2 ¼ CN¸8

 Each data point computed
from 2500 instances



How small is the gap?

We show that up to leading order in perturbation theory: 

¢ < (2¸¤)
n

Since: 1) level crossings appear at ¸¤ = O(N¡1=8)

2) typical distance between solutions is n = £(N)

We have: ¢ = O(exp(¡N logN))



Can we trust perturbation theory?

Anderson localization theory

⇒  Perturbation theory valid as long as states are localized

Cayley tree with branching number K  :

Here: Energy E   and degree K   are  Θ(N)    , which would imply

¸c = £

µ
E

K logK

¶

However,                                       suggests ¸c = £(1)F
(m)
~x = O(N ) 8m



Degeneracy of the ground state

¸0

0

• Ground state is degenerate

• Our estimation:

• Also: as

Effect of degeneracy only appears for large N

[Knysh-Smelyanskiy'10]

BUT

• First excited state is more degenerate!



OR

Effect of path change

• Idea: Pick random            (“path change”) to obtain case II
[Farhi et al.'09]

• Avoid 1 crossing:

III



OR

Effect of path change

• Idea: Pick random            (“path change”) to obtain case II
[Farhi et al.'09]

• Avoid 1 crossing:

• Avoid poly # of crossings:

• Estimated # of crossings: exp(N= log8N)

III



Conclusion

● Anderson localization causes exponentially small gaps in adiabatic
 quantum optimization

• Does not depend on the particular problem (same for 3SAT)

• Does not depend on the particular path H(s)   either  

(as long as H(s)    is local)

• Important assumption: Localization on the hypercube

 ⇒ should be studied more closely
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Thank you!
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