

Adiabatic quantum optimization and Anderson localization

Boris Altshuler Hari Krovi*

Jérémie Roland

Columbia University

NEC Laboratories America (* Now at UConn)

October 22, 2010

Why quantum computing?

Quantum computing provides speed-up for specific problems

- Factoring
- Discrete logarithms
- etc...

What about NP-complete problems?

• 3-SAT:

 $(x_1 \vee \bar{x_2} \vee x_5) \land (\bar{x_1} \vee x_3 \vee \bar{x_5}) \land (\bar{x_2} \vee x_4 \vee x_5)$

+ of

Adiabatic evolution

Slow evolution → Stay in ground state (=lowest energy) Prob. of jumping depends on:

- Total time T (slower is better)
- Gap $\Delta(t)$ (larger gap is better)

Quantum approach to optimizationRelentless particular approach to optimization

•Problem: Find minimum of a function f(x)

1) Choose physical system with known minimum energy state

NEC 12

2) Modify energy function to match f(x)

This is "Adiabatic Quantum Computation" [Farhi et al. '00]

NEC Laboratories America Relentless passion for innovation

How powerful is it?

• It is quantum! Unstructured search in time $O(\sqrt{N})$ (cf Grover)

[vanDam-Mosca-Vazirani'01,Roland-Cerf'02]

• It is universal for quantum computation

[Aharonov et al.'05]

Good, but what about NP-complete problems?

• Numerical simulations: promising scaling

[Farhi et al.'00,Hogg'03,Banyuls et al.'04,Young et al.'08]

How powerful is it?

• It is quantum! Unstructured search in time $O(\sqrt{N})$ (cf Grover)

[vanDam-Mosca-Vazirani'01,Roland-Cerf'02]

• It is universal for quantum computation

Good, but what about NP-complete problems?

• Numerical simulations: promising scaling

- for bad choice of initial Hamiltonian
- for specifically designed hard instances

But maybe typical gaps are only polynomial?

[vanDam-Vazirani'03,Reichardt'04]

[Farhi et al.'00,Hogg'03,Banyuls et al.'04,Young et al.'08]

[Aharonov et al.'05]

Exact-Cover 3 (EC3)

- NP complete problem (similar to 3-SAT)
- N bits $\vec{x} = (x_1, \ldots, x_N)$
- *M* clauses of 3 bits: $(x_{i_C}, x_{j_C}, x_{k_C})$ satisfied $\Leftrightarrow x_{i_C} + x_{j_C} + x_{k_C} = 1$ $\Leftrightarrow 100,010 \text{ or } 001$

•Problem: Find assignment \vec{x} satisfying all clauses

Minimize function $f(\vec{x}) = \sum_{C} (x_{i_C} + x_{j_C} + x_{k_C} - 1)^2$ = $M - \sum_{i} B_i x_i + 2 \sum_{i,j} J_{ij} x_i x_j$ #clauses #clauses with bit *i* #clauses with bit *i*

Random instances

- Pick *M* clauses uniformly at random

From bits to spins

From annealing to adiabatic QC

Quantum Mechanics: spins can be "both up and down"

Initialization: Instead of high temperature

 \rightarrow strong transverse magnetic field H_0

Anderson localization

"Extended states become localized due to disorder"

Model:

- Grid with coupling λ
- Random energies

P. Anderson Nobel Prize Physics 1977

 $\lambda > \lambda_c \rightarrow$ Extended state \rightarrow Metal $\lambda < \lambda_c \rightarrow$ Localized state \rightarrow Insulator

In our case:

- \bullet Hypercube with coupling λ
- Energies from random Exact-Cover 3

Localized and extended states

• State is localized

 $\lambda > 0$

•Transverse field "spreads" the state

• State is extended

Tunneling: extended state

What if a local minimum later becomes the global minimum?

Crossing avoided due to "spreading"

Tunneling: localized state

What if a local minimum later becomes the global minimum?

Our result

As the size of the problem N increases

1) Anderson localization would imply $\lambda_c = \Omega(1/\log N)$ 2) Anti-crossings for smaller and smaller $\lambda_* = (CN)^{-1/8}$ For $N > \frac{1}{C\lambda_c^8}$ we have $\lambda_* < \lambda_c$

The algorithm fails (stuck in a local minimum)

Level anti-crossings

• Position of anti-crossing λ_* goes to 0

Consider EC3 instance with 2 solutions \vec{x}_1, \vec{x}_2

$$E_1(0) = E_2(0) = 0$$

Suppose

$$E_1(\lambda_*) - E_2(\lambda_*) > 4$$

Add a clause

• satisfied by
$$\vec{x}_1$$
 $\tilde{E}_1(0) = 0$

• violated by

$$\vec{x}_2 \quad \tilde{E}_2(0) = 4$$

n

anti-crossing

$$d(\vec{x}_1, \vec{x}_2) = n$$

 $ightarrow ext{Gap} \quad \Delta \sim \lambda_*^n$

Perturbation theory

We compute $E_{1,2}(\lambda)$ by perturbation theory

$$E_{\vec{x}}(\lambda) = E_{\vec{x}}(0) + \sum_{m=1}^{\infty} \lambda^{2m} F_{\vec{x}}^{(m)}$$

We prove:
$$F_{\vec{x}}^{(m)} = O(N) \ \forall m$$

For 2 solutions, the difference has zero mean, so

$$(F_1^{(m)} - F_2^{(m)})^2 = O(N) \ \forall m$$

Numerical simulations

- We generated EC3 random instances with >2 solutions
- then computed $E_1(\lambda) E_2(\lambda)$ by order 4 perturbation theory

Leading order because:

- Odd orders are zero
- Order 2 is solution-independent for EC3

Numerical simulations

- We generated EC3 random instances with >2 solutions
- then computed $E_1(\lambda) E_2(\lambda)$ by order 4 perturbation theory

We have $E_1(\lambda) - E_2(\lambda) > 4$ for $\lambda > \sqrt{2}(CN)^{-1/8}$

How small is the gap?

We show that up to leading order in perturbation theory:

$$\Delta < (2\lambda_*)^n$$

Since: 1) level crossings appear at $\lambda_* = O(N^{-1/8})$

2) typical distance between solutions is $n = \Theta(N)$

We have: $\Delta = O(\exp(-N\log N))$

Can we trust perturbation theory?

Anderson localization theory

 \Rightarrow Perturbation theory valid as long as states are localized

Cayley tree with branching number K:

$$\lambda_c = \Theta\left(\frac{E}{K\log K}\right)$$

Here: Energy E and degree K are $\Theta(N)$, which would imply

$$\lambda_c = \Theta((\log N)^{-1}) \gg \Theta(N^{-1/8}) = \lambda_*$$

However, $F_{\vec{x}}^{(m)} = O(N)$ $\forall m$ suggests $\lambda_c = \Theta(1)$

Degeneracy of the ground state

• Also: $\eta \to 0$ as $\alpha \to \alpha_s$

 \Rightarrow Effect of degeneracy only appears for large N

Effect of path change

- Idea: Pick random H(s) ("path change") to obtain case II [Farhi *et al.*'09]
- Avoid 1 crossing: Pr["II"] = constant

Effect of path change

- Idea: Pick random H(s) ("path change") to obtain case II [Farhi *et al.*'09]
- Avoid 1 crossing:
- Avoid poly # of crossings:
- Estimated # of crossings:

$$Pr["II"] = \text{constant}$$

$$Pr[$$
"II"] = 1/poly

$$\exp(N/\log^8 N)$$

Conclusion

- Anderson localization causes exponentially small gaps in adiabatic quantum optimization
- Does not depend on the particular problem (same for 3SAT)
- Does not depend on the particular path H(s) either
 (as long as H(s) is local)
- Important assumption: Localization on the hypercube

 \Rightarrow should be studied more closely

Thank you!