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We introduce new types of superadditivity for classical capacity of quantum channels which involves the properties of channels’ environment. By imposing different

restrictions on the total energy contained in channels’ environment we can consider different types of superadditivity. Using lossy bosonic and classical additive noise

quantum channels as examples, we demonstrate that their capacities can be either additive or superadditive depending on the values of channels parameters. The

parameters corresponding to transition between the additive and superadditive cases are related with recently found critical and supercritical parameters for Gaussian

quantum channels.

Gaussian classical channels

• n parallel channels:

Yj = Xj + Zj, Zj ∼ N (0, Nj), j = 1, . . . , n

Capacity:

C =
1

2

n
∑

j=1

log2

(

1 +
Pj

Nj

)

,

n
∑

j=1

Pj = P, EX2
j = Pj

• What is the best distribution of Nj if total amount
of noise is fixed? What is the optimal workpoint of the
parallel channels in this case?

If
n

∑

j=1

Nj = N, then max
Nj

C — ? (1)

• Given no any other restrictions,

max
Nj

C =∞, if ∃ j
∣

∣ Nj = 0

It is non-physical result. Actually, classical informa-
tion theory cannot properly address this question.
•How to pose this problem correctly? Let an extra re-
striction be Nj > minNj = Nmin > 0, then the optimal
distribution:
{

N1 = N − (n− 1)Nmin ← one “garbage” channel

N2, . . . , Nn = Nmin ← n− 1 “noiseless” channels

Gaussian quantum channels

• Gaussian quantum channel with classical additive
noise is a quantum extension of the classical Guas-
sian channel. Can it address the problem (1) correctly?
Yes! [1] The non-vanishing vacuum noise always ex-
ist. In terms of number of photons we get:
{

N1 = N ← one “garbage mode”

N2, . . . , Nn = 0 ← n− 1 “noiseless modes”
(2)

• What is about other Gaussian quantum channels?
E.g. lossy bosonic? Is the solution (2) universal? No,
but... is very similar! Depending on the parameters of
the channel and N it has either superadditive type [2]
{

N1 = N − (n− 1)Nmin ← one “garbage mode”

N2, . . . , Nn = Nmin ← n− 1 “noiseless modes”

or additive type

N1, . . . , Nn = N/n

So, by varying some parameter we can go from one
type of solution to another. E.g., if we consider lossy
bosonic channel and vary beam-splitter transmissiv-
ity η, we can see the transitions between the additive
and superadditive cases:
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Fig.1 The optimal {Nk} (corresponds to Pk of classical channel)

and the optimal {Nenv,k} (corresponds to Nk of classical channel)

for lossy bosonic quantum channel.

• Can we pose the problem of “environment” (su-
per)additivity for arbitrary quantum channel? E.g. for
arbitrary Gaussian [3]? Yes!

Superadditivity over inputs. Can we see it?

• Classical capacity is additive (conventional defini-
tion) if

C1(Φ⊗ Ψ) = C1(Φ) + C1(Ψ)

Here C1 is one-shot capacity. It is supremum of Holevo
χ quantity over the input quantum ensembles.
• The capacity is

C = lim
n→∞

C1(Φ
⊗n)

n
,

where C = C1(Φ) if C1 is additive.
• Cause of superadditivity: the channels are allowed
to share a joint input state which may be correlated be-
twen the inputs or even entangled.
• Continuous variables channels always require en-
ergy restriction at the input.
• Given the restrictions N1 and N2 for channels Φ and
Ψ, respectively, the capacity is strongly additive [4, 5] if

C1(ΦN1
⊗ ΨN2

) = C1(ΦN1
) + C1(ΨN2

).

• Suppose that the restriction is imposed only on
N = 1

2 (N1 +N2) but N1 and N2 may vary, then the ca-
pacity is weakly additive if [4]

C1

(

(Φ⊗ Ψ)2N
)

= max
N1+N2=2N

[

C1(ΦN1
) + C1(ΨN2

)
]

.

• Both strong and weak additivities imply that the
optimal input (symbol) states can be realized by the
states factorized over the channels.
• One-shot capacity C1 of any bosonic channel ΦN is
a concave function of the amount of input photons
N [4, 5].
• If bosonic channel ΦN is strongly additive, the op-
timal distribution of the photons between the chan-
nels’ inputs is uniform⇒ the capacity is additive for
all n [6]:

C1(Φ
⊗n
nN) = nC1(ΦN)

Despite strong additivity is not proved in general,
it holds, e.g., for the entanglement breaking bosonic
channels [7].
• There is a strong believe that classical capacity of
all bosonic Gaussian channels is always additive over
the input energy N ⇒ most probably, there is no
superadditivity over inputs.

Superadditivity over environments

• Stinespring dilation of quantum channel:

Φ(ρ̂in) = Trenv
[

Û(ρ̂in ⊗ ρ̂env)Û
†].

• Instead of associating Φ with the pair (Û , ρ̂env) let us
associate Φ only with unitary Û saying that Alice and
Bob may choose ρ̂env which will be the same for all in-
formation transmissions and will be the best for that.
•What happens with the capacity of n parallel chan-
nels if their “environments” are allowed to be in a
joint arbitrary n-partite state similarly to the channels’
inputs? (This problem is known to appear in the study
of memory channels realized by correlated noise).
• For a certain types of noise, the correlations be-
tween the environment modes may increase the ca-
pacity compared to the non-correlated environment
with the same number of “environment” photons per
mode [2] (here the energy restriction for the multi-
mode environment appeares natuarally).
• Let us define the capacity of product channels as a
maximum over both (I) the distribution of the amount
of photons N between channels’ inputs and (II) the
distribution of the amount of photons in environment

Nenv between the channels’ environments. Hence,
the capacity becomes a function of two variables:
C = C(N,Nenv).

Nenv; ρ̂env

Unitary UN ; ρ̂in ρ̂out

• Then, we propose a new formulation of the super-
additivity problem:
Given the average numbers of photons for the channels in-
put nN and for their environment nNenv,
•What is the channel capacity?
•What is the optimal channel input state?
•What is the optimal state of the channel environment?

In particular, we call the capacity additive over the envi-
ronment if

max
Φ(2)

[

C1

(

(

Φ(2)
)2Nenv

2N

)]

= 2C1

(

ΦNenv

N

)

(3)

where the maximum at the left side is taken over all
possible channels Φ(2) whose dimensions are the same
as for the product Φ⊗Φ and whose amount of photons
in the environment is equal to 2Nenv (lower and upper
indecies denote the amount of input and environment
photons granted for the channel, respectively).
• We assume that the entangled inputs are not nec-
essary for bosonic Gaussian channels to achieve the
maximum in the left side of (3), therefore it can be
rewritten as

max
Φ(2)

[

C1

(

(

Φ(2)
)2Nenv

2N

)]

=

max
Nenv,1+Nenv,2=2Nenv

[

max
N1+N2=2N

(

C1

(

Ψ
Nenv,1

N1

)

+ C1

(

Ξ
Nenv,2

N2

)

)]

(the channels Φ(2) and Ψ⊗ Ξ act in the same space).
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Fig.2 Classical capacity (left) and heterodyne rate (right) of lossy

bosonic Gaussian quanum channel optimized with respect to its

environment. It is plotted vs the amount of channel modes n

(left) and beam-splitter transmissivity η (right). The grey curve is

the heterodyne rate without optimization over the environment.
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