Estimating capacities and rates of Gaussian quantum channels

Stefano Mancini
School of Science
University of Camerino, Italy
Motivations

- Most of the performed studies e.g. on classical capacity concern simple settings (memoryless and vacuum environment)
- No general methods available for evaluating, e.g. classical capacity
- Rates usually derived in a different way with respect to capacity
- Consider lossy bosonic channel as a paradigm of Gaussian channels
- Introduce a generic model for multiple channel uses and devise a method to evaluate the Holevo function (turns out to be useful for classical capacity as well as for dyne rates)
- Maximization problem can be split it into “inner” one and “outer” one

based on Pilyavets, Lupo & Mancini, arXiv0907.1532 (provisionally accepted by IT Trans)
Outline

- Gaussian channels
 - Lossy bosonic channel
- Classical capacity and rates
- Single channel use (bosonic mode)
 - The “inner” optimization problem
 - Solution
 - Its properties (critical parameters)
- Multiple channel uses (bosonic modes)
 - The “outer” optimization problem
 - Solution
 - Its properties (and applications)
- Conclusions and outlook
Gaussian channels

They map Gaussian states into Gaussian states; for single use:

\[\{a, V\} \mapsto \{X^T a + d, X^T V X + Y\} \]

Channel defined by the triad: \((d, X, Y)\)

For \(n\) uses channel defined by a triad:

\[
(d_n, X_n, Y_n) = \begin{cases}
= (\oplus^n d, \oplus^n X, \oplus^n Y) & \text{memoryless} \\
\neq (\oplus^n d, \oplus^n X, \oplus^n Y) & \text{memory}
\end{cases}
\]
The lossy channel

\[X = \sqrt{\eta} I, \quad Y = (1 - \eta)V_{\text{env}} \]

The eigenvalues of the various matrices will be denoted by \((e_u, i_u, \bar{i}_u, m_u, o_u, \bar{o}_u)\)
Classical capacity and rates

\[C_n := \frac{1}{n} \max_{V_{\text{in}}, V_{\text{mod}}} \chi^G_n \]

\[\chi^G_n := \sum_{k=1}^{n} \left[g(\bar{o}_k - \frac{1}{2}) - g(o_k - \frac{1}{2}) \right] \]

\[g(x) := (x + 1) \log(x + 1) - x \log x \]

\[\frac{\text{Tr} V_{\text{in}}}{2n} \leq \overline{N}_{\text{in}} + \frac{1}{2} \]

To the logarithmic approximation of \(g \)

\[C^{\log} = \frac{1}{n} \max_{V_{\text{in}}, V_{\text{mod}}} \sum_{k=1}^{n} \log \frac{\bar{o}_k}{o_k} \]

\[R_n^{\text{hom}} = C^{\log}_n \]

\[R_n^{\text{het}} = C^{\log}_n [V_{\text{env}} \rightarrow V_{\text{env}}^{\text{het}}] \]
Single channel use

Theorem
The max of Holevo function over Gaussian states is achieved for V_{in}, V_{mod}, V_{env} simultaneously diagonalizable and the optimal V_{in} corresponds to a pure state

Corollary
If V_{in}, V_{mod}, V_{env} are simultaneously diagonalizable, the maximum of dyne rates is achieved by input pure states

Covariance matrices parametrized as

$$V = \left(\mathcal{N} + \frac{1}{2} \right) \begin{pmatrix} e^s & 0 \\ 0 & e^{-s} \end{pmatrix}$$

$$\frac{\text{Tr}V}{2} \leq N + \frac{1}{2}$$
The “inner” optimization problem

Maximize χ_1^G

With

\[i_u > 0 \quad (i_{u*} = 1/(4i_u)) \]
\[m_u, m_{u*} \geq 0 \]
\[i_u + \frac{1}{4i_u} + m_u + m_{u*} = 2\bar{N}_{in} + 1 \]

Definition
Solution belongs to the **1st stage** if $m_u, m_{u*}=0$ are optimal
Solution belongs to the **2nd stage** if only $m_u =0$ (or m_{u*}) is optimal
Solution belongs to the **3rd stage** if $m_u, m_{u*}>0$ are optimal

Remark
Stages are crossed (from 1st to 3rd) by increasing the input energy
1st stage capacity equal to zero

\[
\overline{N}_{in}(1 \to 2) = 0
\]

2nd stage solution for \(i_u \) of the transcendent equation

\[
\bar{o}g' \left(\bar{o} - \frac{1}{2} \right) \left(\frac{1}{o_u} - \frac{1}{\bar{o}_{u*}} \right) - \sigma g' \left(\sigma - \frac{1}{2} \right) \left(\frac{1}{o_u} - \frac{1}{4i_u^2 o_{u*}} \right) = 0
\]

\[
\overline{N}_{in}(2 \to 3) = \frac{1}{2} \left(\sqrt{\frac{e_u}{e_{u*}}} - 1 \right) - \frac{1-\eta}{\eta} \left(N_{env} - e_u + \frac{1}{2} \right)
\]

3rd stage

\[
C_1 = g \left(\eta \overline{N}_{in} + (1 - \eta) N_{env} \right) - g \left((1 - \eta)N_{env} \right)
\]
Properties of the solution

Theorem:
\(C_1 \) is a concave and increasing function of \(\bar{N}_{in} \)

The one-shot capacity for fixed \(e_u, e_u^*, \eta \) can be considered as a black-box returning \(C_1 \) upon inputting \(\bar{N}_{in} \), while preserving the concavity

\[
\bar{N}_{in} \rightarrow C_1 = C_1 (\bar{N}_{in}) \rightarrow C_1
\]

Corollary:
\(C_1 \) is additive

Theorem:
\(C_1 \) is a monotonic function of all its parameters \((\eta, \bar{N}_{in}, s_{env}, N_{env})\) except \(s_{env} \)
Critical parameters at boundaries of regimes, e.g. $\eta_\star = 1 - \frac{1}{\sqrt{3}}$
Domains

In the domain 1: $\tilde{\eta} < \bar{\eta} < \eta_0 < \eta^*$

In the domain 2: $\tilde{\eta} < \bar{\eta} < \eta^* < \eta_0$

In the domain 3: $\exists \tilde{\eta}, \bar{\eta}$

Critical parameters at boundaries of domains, e.g. $N_{in}^* = \sqrt{\frac{3\sqrt{3}+5}{8\sqrt{3}}} - \frac{1}{2}$
Multiple channel uses

Different single channel uses come from memory unravelling
Lupo & Mancini, PRA 81, 052314 (2010)

The action of E could be reduced to that of E_1, E_1, \ldots, E_n by finding suitable Gaussian encoding/decoding unitaries

\[
(0, E_n, 0), (0, D_n, 0) \mid D_n X_n E_n = \bigoplus_{k=1}^{n} X^{(k)}; \quad D_n Y_n D_n^T = \bigoplus_{k=1}^{n} Y^{(k)}; \quad E_n^T E_n = I_n
\]

Always possible for E pure, or thermal squeezed!
The “outer” optimization problem

To maximize χ_n^G it now suffices to consider:

\[
\begin{align*}
N_{\text{in},1} & \rightarrow \quad C_1^{(1)} = C_1^{(1)} \left(N_{\text{in},1} \right) \rightarrow C_1^{(1)} \\
N_{\text{in},2} & \rightarrow \quad C_1^{(2)} = C_1^{(2)} \left(N_{\text{in},2} \right) \rightarrow C_1^{(2)} \\
& \quad \vdots \\
N_{\text{in},n} & \rightarrow \quad C_1^{(n)} = C_1^{(n)} \left(N_{\text{in},n} \right) \rightarrow C_1^{(n)}
\end{align*}
\]

Find the distribution of $N_{\text{in},k} \quad \left(\sum_{k=1}^{n} N_{\text{in},k} = n \bar{N}_{\text{in}} \right)$

giving the maximum of $\sum_{k=1}^{n} C_1^{(k)}$

This “outer” optimization problem can be interpreted as the search for the optimal distribution of modes across stages.
Due to the properties of C_1 it’s possible to define $\lambda_{\text{max}} := \max_k \frac{\partial C_1^{(k)}}{\partial N_{\text{in},k}} (N_{\text{in},k} = 0) < +\infty$

$$\lambda_{1 \to 2}(k) = \frac{\partial C_1^{(k)}}{\partial N_{\text{in},k}} (N_{\text{in},k}(1 \to 2)); \lambda_{2 \to 3}(k) = \frac{\partial C_1^{(k)}}{\partial N_{\text{in},k}} (N_{\text{in},k}(2 \to 3))$$

Convex separable programming guarantees uniqueness and optimality of the solution together with convergence of the algorithm.
In the stage 1: \(\overline{N}_{in,k} = 0 \)

In the stage 2: \(\overline{N}_{out,k} = \frac{1}{e^{\omega_k/T} - 1} \)

\[\overline{N}_{out,k} = \bar{\sigma}_k - 1/2, \quad \omega_k = \bar{\sigma}_k/\bar{o}_{u,k}, \quad T = \eta/\lambda \]

\(\overline{N}_{out,k} \) can be expressed by means of \(\overline{N}_{in,k} \)

upon solving the “inner” problem

In the stage 3: \(\overline{N}_{in,k} = \frac{1}{\eta} \left[\frac{1}{e^\lambda/\eta - 1} - (1 - \eta)N_{env,k} \right] \)

If all modes belong to the 3rd stage

\[C_n = g \left(\eta \overline{N}_{in} + (1 - \eta)N_{env} \right) - \frac{1}{n} \sum_{k=1}^{n} g ((1 - \eta)N_{env,k}) \]
Quantum water filling

\[V_{\text{env}} = \left(N_{\text{env}} + \frac{1}{2} \right) \begin{pmatrix} e^{\Omega s_{\text{env}}} & 0 \\ 0 & e^{-\Omega s_{\text{env}}} \end{pmatrix} \]

\[\Omega_{i,j} = \delta_{i,j+1} + \delta_{i,j-1} \]
Super-additivity

For a fixed N_{env}, sufficient condition to have

$$\sum_{k=1}^{n} C_1^{(k)} < nC_1 \left| \sum_{k=1}^{n} N_{in,k} = nN_{in} \right.$$

is $\eta < \eta^*$, $\sum_{k=1}^{n} N_{in,k} > nN_{in}^*$
\[V_{\text{env}} = \left(N_{\text{env}} + \frac{1}{2} \right) \begin{pmatrix} e^{\Omega s_{\text{env}}} & 0 \\ 0 & e^{-\Omega s_{\text{env}}} \end{pmatrix} \]

\[\Omega_{i,j} = \delta_{i,j+1} + \delta_{i,j-1} \]
Conclusions and outlook

- Optimization methods for capacity and rates
- Full characterization of the single-mode lossy channel
- Concavity (and then additivity) of the one-shot capacity
- Full characterization of the multiple use lossy channel
- Superadditivity for memory channel related to critical parameters
- Application to other Gaussian channels [additive noise, J. Schafer et al. arXiv1011.4118]
- Application to other capacities
- Open questions: optimality of Gaussian input states; coding theorems for generic memory channels