

Gaussian Classical capacity of Gaussian Quantum channels

E. KARPOV, J. SCHÄFER, O. PILYAVETS and N. J. CERF

Centre for Quantum Information & Communication

Université Libre de Bruxelles

Mathematical Challenges of Quantum Transport
St. Petersburg
13-15 March 2013

Outline

- Quantum channels for information transmission
 - Classical capacity of quantum channels
- Gaussian channels
 - Additive (classical) noise quantum channel
- Gaussian capacity
- Mathematical challenges
- Conclusion (Gaussian)

Classical capacity of quantum channel

- Quantum channel completely positive map $ho^{out} = T
 vert
 ho^{in}$
- Information encoding into quantum states modulation

$$\left\{P_i,
ho_i^{in}
ight\}$$
 – input ensemble

- Average input: $\overline{\rho^{in}} = \sum_{i} P_{i} \rho_{i}^{in}$, average output $\overline{\rho} = \sum_{i} P_{i} \rho_{i}^{out}$
- Information content Von Neumann entropy $S(\rho) = -Tr[\rho \cdot Log_2\rho]$
- Information capacity [Holevo-Schumacher-Westmoreland]

$$C_1[T] = \max_{\{P_i, \rho_i^{in}\}} \left[S(\overline{\rho}) - \sum_i P_i S(\rho_i^{out}) \right]$$

Additivity problem

 When using entangled inputs is classical capacity superadditive?

$$C_1(T_1 \otimes T_2) > C_1(T_1) + C_1(T_2)$$

sometimes yes [Hastings]

• Capacity:
$$C(T) = \lim_{n \to \infty} \frac{1}{n} C_1(T^{\otimes n})$$

- Memory channels / correlated channel uses :
 - Parallel n-mode channel $C(T) = \lim_{n \to \infty} \frac{1}{n} C_1(T^{(n)})$

Bosonic channels – continuous variables

• Quadratures of electromagnetic field mode $\hbar = \omega = 1$

$$\left[\hat{a}, \hat{a}^{\dagger}\right] = 1 \qquad \hat{q} = \frac{1}{\sqrt{2}} \left(\hat{a} + \hat{a}^{\dagger}\right) \quad \hat{p} = \frac{1}{i\sqrt{2}} \left(\hat{a} - \hat{a}^{\dagger}\right)$$

- Gaussian states are fully determined by $\rho_G \rightarrow (\vec{d}, V_{in})$
 - displacement vector $\vec{d} = (q, p)^T$ first moments
 - covariance matrix (CM) $\,V\,$ second moments
- Gaussian channels transform first and second moments

$$\overrightarrow{d}_{out} = X\overrightarrow{d}_{in} + \overrightarrow{d}$$
 , X - Real matrix $V_{out} = XV_{in}X + Y$, Y - CM

Additive noise channel

• Classical noise X = I $V_{out} = V_{in} + Y$

$$X = I$$

$$V_{out} = V_{in} + Y$$

- "displacement" with a Gaussian probability distribution
- Input energy constraint

$$Tr[V_{in} + V_m] \leq E$$

- Non-trivial optimization problem
- Challenge 1: Classical capacity of Gaussian channels is additive
 - True for "entanglement breaking" channels [Holevo 2008]
- Restriction to Gaussian states: Gaussian modulation
 - "displacement" with a Gaussian probability distribution
- Modulated output CM $V = V_{in} + V_m + Y$

Gaussian capacity

- Von Neumann entropy is a function of CM

$$C_1[T_G] = \max_{\{Tr(V_{in}+V_m)\leq E\}} \left[S(\overline{V}) - \int dq \, dp P(q,p)S(V_{out})\right]$$

All signal states at the output have the same entropy

$$C_1[T_G] = \max_{\{Tr(V_{in}+V_m)\leq E\}} \left[S(\overline{V}) - S(V_{out})\right]$$

- Challenge 2: Gaussian capacity is the capacity
 - Proven for lossy channel with vacuum noise
 [V. Giovannetti et al., Phys. Rev. Lett. 92, 027902 (2004)]

One mode problem

- 2x2 CM: Symplectic eigenvalue $V \rightarrow diag(v,v)$
- Entropy: S(V) = g(v-1/2)

$$g(x) = (x+1)Log_2(x+1) - (x)Log_2(x)$$

Optimization in terms of CM

$$C_{1}[T_{G}] = \max_{\{Tr(V_{in}+V_{m}) \leq E\}} [S(V_{in}+V_{m}+Y) - S(V_{in}+Y)]$$

 If noise CM is diagonalized by a passive symplectic transformation then optimal input and modulation are diagonal In the eigenbasis of the CM of noise

$$\overline{V} \rightarrow \overline{V} = \sqrt{(i_q + m_q + e_q)(i_p + m_p + e_p)}$$

Waterfilling solution

- Uniform distribution of the output energy is optimal
- Optimal input is a minimum output entropy Gaussian state

$$C_1[T] = g((E + e_q + e_p - 1)/2) - g(\sqrt{e_q e_p})$$

 $\overline{V}_q = \overline{V}_p$

Challenge 3: minimum output entropy is achieved on a Gaussian state (vacuum state)

$$E > E_{th} = \sqrt{\frac{e_q}{e_q}} + e_q - e_p$$

 $\frac{i_q}{i_p} = \frac{e_q}{e_p}$

 $egin{array}{c|c} m_q & m_p \ \hline i_q & \hline i_p \ e_q & e_p \end{array}$

[Holevo, et al. PRA 59, 1820 (1999)]

Optimal states for multimode channel

Non-trivial input energy distribution between the modes

- common Lagrange multiplier - waterfilling

$$\frac{l_q}{l_p} = \frac{e_q}{e_p}$$

$$\frac{i_q}{i_p} = 1$$

Solution of 2^d type

- Only one quadrature modulated
- Lagrange multipliers no explicit solution
 - An implicit solution given by a transcendent equation
 - Input energy also spent on the non-modulated quadrature
 - Optimal input state is not the minimum output entropy state

$$1 < \frac{i_q}{i_p} < \frac{e_q}{e_p}$$

[Schäfer, et al. PRA 80, 062313 (2009)]

Solution of 2^d type

$$\frac{g'(\bar{v}-1/2)}{\bar{v}}(E+e_p-e_q-2i_q) = \frac{g'(v_{out}-1/2)}{v_{out}}\left(e_p-e_q\frac{i_p}{i_q}\right)$$
$$g'(x) = Log_2(x+1) - Log_2x$$

$$\overline{v} = \sqrt{(i_q + e_q)(E - i_q + e_p)}$$

$$V_{out} = \sqrt{(i_q + e_q)(i_p + e_q)}$$

$$i_a + i_p + m_p = E$$

$$i_q i_p = 1/4$$

$$\frac{g'(\bar{v}-1/2)}{\bar{v}}(i_q+e_q)=\lambda$$

- Lagrange multiplier

Optimal states for multimode channel

Non-trivial energy distribution among the modes

- common Lagrange multiplier - generalized waterfilling

$$\frac{i_q}{i_p} = \frac{e_q}{e_p}$$

$$1 < \frac{l_q}{l_p} < \frac{e_q}{e_p}$$

$$\frac{i_q}{i_p} = 1$$

Application - memory channel

- Correlated noise → correlated optimal input
 - multimode problem
- Parallel channel
- Gauss Markov noise

$$\left\{\mathbf{M}(\boldsymbol{\phi})\right\}_{i,j} = N\boldsymbol{\phi}^{|i-j|}$$

$$C(T) = \lim_{n \to \infty} \frac{1}{n} C_1(T^{(n)})$$

$$Y = \begin{pmatrix} \mathbf{M}_q(\phi) & 0 \\ 0 & \mathbf{M}_p(-\phi) \end{pmatrix}$$

• Symplectic and orthogonal diagonalization is possible as $\mathbf{M}_q(\phi)$ and $\mathbf{M}_q(-\phi)$ commute in the limit $n \to \infty$

Additive Gauss-Markov noise

Diagonalization of infinite noise matrix

continuous spectrum on a finite domain

Optimal multimode input state in the original basis is entangled – preparation?

Conclusion

- Gaussian capacity of additive noise bosonic channels
- Three types of solution for one mode
- Input state that realizes classical capacity is not always the minimum output entropy state
- Challenge 1: Minimum output entropy for Gaussian channels is achieved on a Gaussian state
- Challenge 2: Classical capacity of memoryless Gaussian quantum channels is realized by Gaussian states
- Challenge 3: Classical capacity of memoryless Gaussian quantum channels is additive

Thank you for your attention!

