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Classical capacity of quantum channel

Quantum channel — completely positive map 0" = T[p’”]

Information encoding into quantum states — modulation

{PI.,,O;”} — input ensemble

out

Average input: " = EP”OZ” , average output 0 = EP,-,O,-

Information content — Von Neumann entropy S(p) = —Tr[p . Logzp]

Information capacity [Holevo-Schumacher-Westmoreland]

c.[7- {m%}[s(ﬁ) - EP,-S(P,%)}
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Additivity problem

 When using entangled inputs
is classical capacity superadditive?

C (T ®T,)>C(T)+C(T,)
— sometimes yes [Hastings]

. .1 "
* Capacity : C(T) =lim—C, (T® )
1—>00 n
 Memory channels / correlated channel uses :
— Parallel n-mode channel 1

C(T)=1im—C,(T")

Nn—00 n



Bosonic channels — continuous variables

* Quadratures of electromagnetic field mode 7=w=1

a.a']=1 @=é(a+a*) p= ZI(A Q')

are fully determined by Ps — (E,KH)

—

— displacement vector d = (q,p)T — first moments
— covariance matrix (CM) V' —second moments
transform first and second moments
dow = Xdin +d , X - Real matrix
V. =XV X+Y, y-oMm
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Additive noise channel

Classical noise X =1 vV

out

=V, +Y
— “displacement” with a Gaussian probability distribution
Input energy constraint

p gy Tr|V,+V, |<E
Non-trivial optimization problem

Challenge 1: Classical capacity of Gaussian channels is
additive

— True for “entanglement breaking” channels [Holevo 2008]

Restriction to Gaussian states: Gaussian modulation

— “displacement” with a Gaussian probability distribution

Modulated outputCM  VV —V 4V 4V
in m



(Gaussian capacity

— Von Neumann entropy is a function of CM
Cl [TG] B {Tr(\I/ilf\l/i()sE}I:S(V) - qu dpP(q,p)S(VOW)]

— All signal states at the output have the same
entropy

G [TG] - {Tr(%l+%§)sE}[S(V) - S(VOW )]

— Challenge 2: Gaussian capacity is the capacity

* Proven for lossy channel with vacuum noise
[V. Giovannetti et al., Phys. Rev. Lett. 92, 027902 (2004)]



One mode problem

2x2 CM: Symplectic eigenvalue V — diag(v,v)
Entropy: S(V) = g(v—1/2)

g(x) = (x + l)Log2 (x + 1) — ()C)Log2 (x)
Optimization in terms of CM
C\[T;]= max [S(V,+V, +Y)=S(V,+Y)]

{Tr(V,,+V,)<E}
If noise CM is diagonalized by a passive symplectic

transformation then optimal input and modulation
are diagonal In the eigenbasis of the CM of noise

V—=v =\/(lq+mq+eq)(zp+mp+ep)



Waterfilling solution

— Uniform distribution of the output energy is optimal

— Optimal input is a minimum output entropy Gaussian state

C1[T]=g((E+eq+ep_1)/2)_g(\/%) 7.7,

— Challenge 3: minimum output entropy
is achieved on a Gaussian state .
(vacuum state) ! €,
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[Holevo, et al. PRA 59, 1820 (1999)]




Optimal states for multimode channel

Non-trivial input energy distribution between the modes
— common Lagrange multiplier — waterfilling

eq
E>E = [—+e —e,




1<E<E
Solution of 29 type M

* Only one quadrature modulated

e Lagrange multipliers —
no explicit solution

— An implicit solution given by
a transcendent equation

— Input energy also spent on the
non-modulated quadrature

— Optimal input state is not
the minimum output entropy state

[Schafer, et al. PRA 80, 062313 (2009)]



Solution of 2¢ type
g'(vom—l/Z)( ip)

g'(v-1/2 .
( = )(E+ep_eq—21q)= >

out

ep—eqi—
q

g'(x) = Log, (x + 1) —Log,x

‘7=\/(iq+eq)(E_iq+ep) Vout=\/(iq+eq)(ip+eq)
i +i +m =E ii =1/4
g'(v-1/2),.
( )(lq + eq) = A - Lagrange multiplier

v



Optimal states for multimode channel

Non-trivial energy distribution among the modes
— common Lagrange multiplier — generalized waterfilling

1<E<E, E=11
E>Em : | ST
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Application - memory channel

Correlated noise — correlated optimal input

— multimode problem |
Parallel channel C(T) = }LIE—Q (T(”))
Gauss — Markov noise / &
i1 Y = Y (¢) 0
{M(¢)}” =N¢ \ 0 M, (_¢) /
Symplectic and orthogonal diagonalization is

possible as M_(¢) and M, (-¢) commute in the
limit n—



Additive Gauss-Markov noise

Diagonalization of infinite noise matrix
— continuous spectrum on a finite domain
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Optimal multimode input state in the original basis is
entangled — preparation?



Conclusion

Gaussian capacity of additive noise bosonic channels
Three types of solution for one mode

Input state that realizes classical capacity is not always the
minimum output entropy state

Challenge 1: Minimum output entropy for Gaussian channels
is achieved on a Gaussian state

Challenge 2: Classical capacity of memoryless Gaussian
guantum channels is realized by Gaussian states

Challenge 3: Classical capacity of memoryless Gaussian
guantum channels is additive
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