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Motivations
• Most of the performed studies e.g. on classical capacity concern 

simple settings (memoryless and vacuum environment)

• No general methods available for evaluating, e.g. classical capacity  

• Rates usually derived in a different way with respect to capacity

• Consider lossy bosonic channel as a paradigm of Gaussian 
channels

• Introduce a generic model for multiple channel uses and devise a 
method to evaluate the Holevo function (turns out to be useful for 
classical capacity as well as for dyne rates)

• Maximization problem can be split it into “inner” one and “outer” 
one

based on Pilyavets, Lupo & Mancini, arXiv0907.1532 (provisionally accepted by IT Trans)
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• Gaussian channels

• Lossy bosonic channel

• Classical capacity and rates

• Single channel use (bosonic mode)

• The “inner” optimization problem

• Solution

• Its properties (critical parameters) 

• Multiple channel uses (bosonic modes)

• The “outer” optimization problem

• Solution

• Its properties (and applications)

• Conclusions and outlook

Outline
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They map Gaussian states into Gaussian states; for single use: 

Gaussian channels

{a, V } !→ {XT a + d, XT V X + Y }

Channel defined by the triad: (d, X, Y )

memory

For n uses channel defined by a triad: 

memoryless(dn, Xn, Yn) =
{

= (⊕nd,⊕nX,⊕nY )
"= (⊕nd,⊕nX,⊕nY )
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The lossy channel

X =
√

ηI, Y = (1− η)Venv

Venv

Vout = ηVin + (1− η)Venv

V out = η(Vin + Vmod) + (1− η)Venv

Vin

Vmod

V in = Vin + Vmod η

The eigenvalues of the various matrices will be denoted by
(
eu, iu, iu,mu, ou, ou

)
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Classical capacity and rates

To the logarithmic approximation of g

Cn :=
1
n

max
Vin,Vmod

χG
n

Rhom
n = C log

n

Rhet
n = C log

n [Venv → V het
env ]

χG
n :=

n∑

k=1

[
g

(
ok −

1
2

)
− g

(
ok −

1
2

)]

g(x) := (x + 1) log(x + 1)− x log x

TrV in

2n
≤ N in +

1
2

C log =
1
n

max
Vin,Vmod

n∑

k=1

log
ok

ok
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Single channel use
Theorem
The max of Holevo function over Gaussian states is achieved for 
Vin, Vmod, Venv simultaneously diagonalizable and the optimal Vin 
corresponds to a pure state 

Corollary
If Vin, Vmod, Venv are simultaneously diagonalizable, the maximum 
of dyne rates is achieved by input pure states 

V =
(
N +

1
2

) (
es 0
0 e−s

)
Covariance matrices parametrized as

TrV
2

≤ N +
1
2
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The “inner” optimization problem

Definition
Solution belongs to the 1st stage if mu, mu*=0 are optimal
Solution belongs to the 2nd stage if only mu =0 (or mu*) is optimal 
Solution belongs to the 3rd stage if mu, mu*>0 are optimal 
Remark
Stages are crossed (from 1st to 3rd) by increasing the input energy 

Maximize

With

χG
1

iu > 0 (iu! = 1/(4iu))
mu, mu! ≥ 0

iu +
1

4iu
+ mu + mu! = 2N in + 1
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1st stage capacity equal to zero

2nd stage solution for iu of the transcendent equation

og′
(

o− 1
2

) (
1
ou
− 1

ou!

)
− og′

(
o− 1

2

) (
1
ou
− 1

4i2uou!

)
= 0

3rd stage
C1 = g

(
ηN in + (1− η)Nenv

)
− g ((1− η)Nenv)

N in(1→ 2) = 0

N in(2→ 3) = 1
2

(√
eu
eu!
− 1

)
− 1−η

η

(
Nenv − eu + 1

2

)
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Properties of the solution

The one-shot capacity for fixed eu, eu*,   can be considered as a 
black-box returning C1 upon inputting       , while preserving 
the concavity 

Corollary:
C1 is additive 
Theorem:
C1 is a monotonic function of all its parameters 
                              except senv

η

Theorem:
C1 is a concave and increasing function of N in

N in

N in −→ C1 = C1

(
N in

)
−→ C1

(
η, N in, senv,Nenv

)
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Regimes 

Critical parameters at boundaries of regimes, e.g.

C1

η!

η
η̃

η0

η! = 1− 1√
3

η!

η
η̃

η0
C1

Testosenv
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Domains

In the domain 1:
In the domain 2:
In the domain 3:

η̃ < η < η0 < η∗
η̃ < η < η∗ < η0

Critical parameters at boundaries of domains, e.g.

Nenv

! η̃, η

N in

N
!
in =

√
3
√

3+5
8
√

3
− 1

2
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Multiple channel uses
E1 EnE2 E

Different single channel uses come from memory unravelling 
Lupo & Mancini, PRA 81, 052314 (2010)

The action of E could be reduced to that of E1, E1,..., En by finding suitable 
Gaussian encoding/decoding unitaries

(0, En, 0), (0, Dn, 0) | DnXnEn = ⊕n
k=1X

(k); DnYnDT
n = ⊕n

k=1Y
(k); ET

n En = In

Always possible for E pure, or thermal squeezed!
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This “outer” optimization problem can be interpreted as the 
search for the optimal distribution of modes across stages

χG
nTo maximize       it now suffices to consider: 

Find the distribution of
∑n

k=1 C(k)
1giving the maximum of

N in,1 −→ C(1)
1 = C(1)

1

(
N in,1

)
−→ C(1)

1

N in,2 −→ C(2)
1 = C(2)

1

(
N in,2

)
−→ C(2)

1

...

N in,n −→ C(n)
1 = C(n)

1

(
N in,n

)
−→ C(n)

1

N in,k

(∑n
k=1 N in,k = nN in

)

The “outer” optimization problem
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Algorithm

Look for 
Convex separable programming guarantees uniqueness and optimality of the 
solution together with convergence of the algorithm 

Due to the properties of C1 it’s possible to def. λmax := max
k

∂C(k)
1

∂N in,k

(
N in,k = 0

)
< +∞

λ1→2(k) = ∂C(k)
1

∂N in,k

(
N in,k(1→ 2)

)
;λ2→3(k) = ∂C(k)

1
∂N in,k

(
N in,k(2→ 3)

)

N in,k

∣∣∣
∑n

k=1 N in,k = nN in

κ

Testo
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If all modes belong to the 3rd stage

Cn = g
(
ηN in + (1− η)Nenv

)
− 1

n

n∑

k=1

g ((1− η)Nenv,k)

N in,k = 1
η

[
1

eλ/η−1
− (1− η)Nenv,k

]

N in,k = 0In the stage 1:

In the stage 3:

In the stage 2: N out,k =
1

eωk/T − 1

N out,k = ok − 1/2, ωk = ok/ou,k, T = η/λ

ok, ou,k can be expressed by means of N in,k

upon solving the “inner” problem
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Quantum water filling

Venv =
(
Nenv +

1
2

) (
eΩsenv 0

0 e−Ωsenv

)

Ωi,j = δi,j+1 + δi,j−1

Test
o

Testo

oκ

κ
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Super-additivity

Memoryless Memory

For a fixed Nenv, sufficient condition to have

N in −→ C1 = C1

(
N in

)
−→ C1

N in −→ C1 = C1

(
N in

)
−→ C1

...

N in −→ C1 = C1

(
N in

)
−→ C1

N in,1 −→ C(1)
1 = C(1)

1

(
N in,1

)
−→ C(1)

1

N in,2 −→ C(2)
1 = C(2)

1

(
N in,2

)
−→ C(2)

1

...

N in,n −→ C(n)
1 = C(n)

1

(
N in,n

)
−→ C(n)

1

n∑

k=1

C(k)
1 < nC1

∣∣∣
n∑

k=1

N in,k = nN in

is η < η! ,
n∑

k=1

N in,k > nN
!
in
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C Testo

TestoNenv

η = 0.1

η = 0.5

η = 0.9

Venv =
(
Nenv +

1
2

) (
eΩsenv 0

0 e−Ωsenv

)

Ωi,j = δi,j+1 + δi,j−1

N in = 1

sabato 19 febbraio 2011



Conclusions and outlook
• Optimization methods for capacity and rates

• Full characterization of the single-mode lossy channel

• Concavity (and then additivity) of the one-shot capacity  

• Full characterization of the multiple use lossy channel

• Superadditivity for memory channel related to critical parameters

• Application to other Gaussian channels [additive noise, J. Schafer et 
al. arXiv1011.4118]

• Application to other capacities

• Open questions: optimality of Gaussian input states; coding 
theorems for generic memory channels
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