A Lossy Bosonic Quantum Channel with Non-Markovian Memory

O. V. Pilyavets, V. G. Zborovskii and S. Mancini

Università di Camerino (Italy) \& P. N. Lebedev Physical Institute (Russia)

August 30, 2008

Introduction

- Quantum channels
- Gaussian channels
- Lossy bosonic Gaussian channels
- Characteristics of quantum channel
- Quantum capacity
- Classical capacity
- Rates
- Homodyne rate
- Heterodyne rate

General definitions

- Any state can be labeled as ρ or V as all states are Gaussian.
- $V_{\text {in }}$ - covariance matrix for input state
- $V_{\text {env }}$ - covariance matrix for environment state
- V_{cl} - covariance matrix for classical distribution of coherent amplitude α.
- $V_{\text {out }}$ - covariance matrix for output state of the channel
- $\bar{V}_{\text {out }}$ - covariance matrix for output state of the channel avaraged over classical distribution (encoding of information) V_{cl}
- Capacities and rates
- $C_{n}=$ max $_{\text {states }} \frac{1}{n} \chi_{n}$ - classical capacity for n uses of channel
- $C=\max _{n \rightarrow \infty} C_{n}$ - classical capacity on infinite amount of channel uses
- Conjectures
- Capacity for lossy bosonic channel can be achieved on Gaussian states
- Maximizing of Holevo χ leads to capacity for memory channel too

Scheme for 1 use of lossy bosonic channel

1 use capacity: notations and known results

- It is sufficient to consider only diagonal matrices (!).
- Abitrary covariance matrices in diagonal form for 1 use:

$$
V_{\mathrm{env}}=\left(N_{\mathrm{env}}+1 / 2\right)\left(\begin{array}{cc}
e^{s} & 0 \\
0 & e^{-s}
\end{array}\right) \quad V_{\mathrm{in}}=\left(N_{\mathrm{in}}+1 / 2\right)\left(\begin{array}{cc}
e^{r} & 0 \\
0 & e^{-r}
\end{array}\right)
$$

- Already known capacities:
- If environment is in ground (vacuum) state:

$$
C=g[\eta N]
$$

- If environment is in termal state:

$$
C=g\left[\eta N+(1-\eta) N_{\mathrm{env}}\right]-g\left[(1-\eta) N_{\mathrm{env}}\right]
$$

- Environment in termal and squeezed state:

$$
\begin{gathered}
C=g\left[\eta N+(1-\eta)\left(\left(N_{\mathrm{env}}+1 / 2\right) \cosh (s)-1 / 2\right)\right]-g\left[(1-\eta) N_{\mathrm{env}}\right] \\
g(x)=(x+1) \log _{2}(x+1)-x \log _{2} x
\end{gathered}
$$

1 use capacity: classical capacity

1 use capacity: classical capacity

1 use capacity: classical capacity

1 use capacity: classical capacity

1 use capacity: classical capacity

1 use capacity: classical capacity

Classical capacity $\mathrm{C}(\mathrm{s})$ [parameters: $\mathrm{N}_{\mathrm{env}}=0.005, \mathrm{~N}=0.001$]

1 use capacity: classical capacity

Optimal value $r_{\text {opt }}$ [parameters: $\mathrm{N}_{\mathrm{env}}=2, \mathrm{~N}=3, \eta=0.7$]

Classical capacity $\mathrm{C}(\mathrm{s})$ [parameters: $\mathrm{N}_{\mathrm{env}}=2, \mathrm{~N}=3$]

1 use capacity: classical capacity

Optimal value $r_{\text {opt }}$ [parameters: $\mathrm{N}_{\mathrm{env}}=2, \mathrm{~N}=3, \eta=0.7$]

Classical capacity $\mathrm{C}(\mathrm{s})$ [parameters: $\mathrm{N}_{\mathrm{env}}=2, \mathrm{~N}=3$]

1 use capacity: complete analytical solution

- Suppose that eigenvalues of $V_{\text {env }}$ matrix are e_{1}, e_{2}. Then, eigenvalues of matrix $V_{\text {cl }}$ (which are c_{1}, c_{2}) and $V_{\text {in }}$ (which are i_{1}, i_{2}) can be found from the following relations if both c_{1} and c_{2} are positive:

$$
\begin{array}{r}
c_{1}=N+\frac{1}{2}-\frac{1}{2} \sqrt{\frac{e_{1}}{e_{2}}}+\frac{1}{2}\left(1-\frac{1}{\eta}\right)\left(e_{1}-e_{2}\right) \\
c_{2}=N+\frac{1}{2}-\frac{1}{2} \sqrt{\frac{e_{2}}{e_{1}}}+\frac{1}{2}\left(1-\frac{1}{\eta}\right)\left(e_{2}-e_{1}\right) \\
i_{1}=\frac{1}{2} \sqrt{\frac{e_{1}}{e_{2}}}, \quad i_{2}=\frac{1}{2} \sqrt{\frac{e_{2}}{e_{1}}}
\end{array}
$$

In this case capacity can be expressed in explicit form and is equal to

$$
C=g\left[\eta N+(1-\eta)\left(\left(N_{\mathrm{env}}+1 / 2\right) \cosh (s)-1 / 2\right)\right]-g\left[(1-\eta) N_{\mathrm{env}}\right]
$$

1 use capacity: complete analytical solution

- If c_{k} (according to previous relations) is negative, then $c_{k}=0$, $c_{m}=2 N+1-i_{k}-1 /\left(4 i_{k}\right), i_{m}=1 /\left(4 i_{k}\right)$, and i_{k} is a solution of the following transcedental equation $(\{k, m\}=\{1,2\}$ or $\{k, m\}=\{2,1\})$:

$$
\frac{a_{m}-a_{k}}{\sqrt{a_{m} a_{k}}} \log _{2} \frac{\sqrt{a_{m} a_{k}}+1 / 2}{\sqrt{a_{m} a_{k}}-1 / 2}=\frac{o_{m} i_{k}-o_{k} i_{m}}{i_{k} \sqrt{o_{m} O_{k}}} \log _{2} \frac{\sqrt{o_{m} O_{k}}+1 / 2}{\sqrt{o_{m} O_{k}}-1 / 2}
$$

where

$$
\begin{array}{ll}
o_{1}=\eta i_{1}+(1-\eta) e_{1} & a_{1}=\eta\left(i_{1}+c_{1}\right)+(1-\eta) e_{1} \\
o_{2}=\eta i_{2}+(1-\eta) e_{2} & a_{2}=\eta\left(i_{2}+c_{2}\right)+(1-\eta) e_{2}
\end{array}
$$

No explicit relation for capacity.

- Is there something new for n uses of the channel?
- Is there new "physics" there?
- Can we say that entanglemet is useful for information transmission for many uses of the channel?

Let us see...

Scheme for n uses of lossy bosonic channel

n uses capacity: analytics

- In the case of our type of memory it is sufficient to consider only commuting matrices (!).
- Suppose that eigenvalues of $V_{\text {env }}$ matrix are $e_{q k}, e_{p k}, k=1, \ldots, n$. Then, eigenvalues of matrix V_{cl} (which are $c_{q k}, c_{p k}$) and $V_{i n}$ (which are $i_{q k}, i_{p k}$) can be found from the following relations if for all k both $c_{q k}$ and $c_{p k}$ are positive:

$$
\begin{array}{r}
c_{q k}=N+\frac{1}{2}-\frac{1}{2} \sqrt{\frac{e_{q k}}{e_{p k}}}+\frac{1-\eta}{\eta}\left(\frac{\operatorname{Tr} V_{\mathrm{env}}}{2 n}-e_{q k}\right) \\
c_{p k}=N+\frac{1}{2}-\frac{1}{2} \sqrt{\frac{e_{p k}}{e_{q k}}}+\frac{1-\eta}{\eta}\left(\frac{\operatorname{Tr} V_{\mathrm{env}}}{2 n}-e_{p k}\right) \\
i_{q k}=\frac{1}{2} \sqrt{\frac{e_{q k}}{e_{p k}}}, \quad i_{p k}=\frac{1}{2} \sqrt{\frac{e_{p k}}{e_{q k}}}
\end{array}
$$

n uses capacity: analytics

- In this case the capacity can be expressed in explicit form. It is equal to

$$
\begin{aligned}
C_{n} & =g\left[\eta N+(1-\eta)\left(\frac{\operatorname{Tr} V_{\text {env }}}{2 n}-\frac{1}{2}\right)\right]-\frac{1}{n} \sum_{k=1}^{n}\left[(1-\eta)\left(\sqrt{e_{q k} e_{\rho k}}-1 / 2\right)\right] \\
C & =g\left[\eta N+(1-\eta)\left(\lim _{n \rightarrow \infty} \frac{\operatorname{Tr} V_{\text {env }}}{2 n}-\frac{1}{2}\right)\right]-\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left[(1-\eta)\left(\sqrt{e_{q k} e_{p k}}-1 / 2\right)\right]
\end{aligned}
$$

- If $c_{q k}$ or $c_{p k}$ is negative we don't have explicit relation for the capacity
- Capacity is always achieved on states $V_{\text {in }}$ minimizing uncertainty relation (!)

n uses capacity: Ω-model of channel memory

- Environment matrix:

$$
V_{\text {env }}=\frac{1}{2}\left[\begin{array}{cc}
\exp (s \Omega) & 0 \\
0 & \exp (-s \Omega)
\end{array}\right]
$$

where

$$
\Omega=\left(\begin{array}{cccccc}
0 & 1 & \ldots & \ldots & \ldots & 0 \\
1 & 0 & 1 & \ldots & \ldots & 0 \\
\vdots & 1 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \\
\vdots & \vdots & & \ddots & \ddots & 1 \\
0 & 0 & \ldots & \ldots & 1 & 0
\end{array}\right)
$$

n uses capacity: Ω-model of channel memory

- Correlations decay exponentially over channel uses, it is quite "realistic" (correlations are non-Markovian)
- Energy constraint:

$$
\frac{\operatorname{Tr}\left(V_{\mathrm{in}}+V_{\mathrm{cl}}\right)}{2 n}=N+\frac{1}{2}
$$

- Ω-model allows us to test entanglement
- Capacity for Ω-model:

$$
C=g\left[\eta N+\frac{1}{2}(1-\eta)\left(I_{0}(2 s)-1\right)\right]
$$

n uses capacity: Ω-model, maximization over set

- Input state:

$$
V_{\text {in }}=\frac{1}{2}\left[\begin{array}{cc}
\exp (r \Omega) & 0 \\
0 & \exp (-r \Omega)
\end{array}\right]
$$

- Covariance matrix for classical distribution used to encode an information:

$$
V_{\mathrm{cl}}:=\frac{2 n N\left(1-\theta_{n}\right)}{\operatorname{Tr}(Y)} Y
$$

where

$$
\begin{gathered}
Y=\frac{1}{2}\left[\begin{array}{cc}
\exp (y \Omega) & 0 \\
0 & \exp (-y \Omega)
\end{array}\right] \\
\theta_{n}:=\frac{\operatorname{Tr}\left(V_{\mathrm{in}}\right)-n}{2 n N}
\end{gathered}
$$

- Region of possible values of r is restricted by input energy constraint (by roots of equation $\theta_{n}=1$)

Rates

- Heterodyne rate:

$$
\begin{aligned}
I[\mathbf{Z}: \mathbf{A}] & =H[\mathbf{Z}]-H[\mathbf{Z} \mid \mathbf{A}] \\
& =\frac{1}{2} \log _{2} \operatorname{det}\left[\left(\bar{V}_{\text {out }}+\frac{1}{2}\right)\left(V_{\text {out }}+\frac{1}{2}\right)^{-1}\right]
\end{aligned}
$$

- Homodyne rate (measurement of quadratures q in all modes):

$$
\begin{aligned}
I[\Re \mathbf{Z}: \Re \mathbf{A}] & =H[\Re \mathbf{Z}]-H[\Re \mathbf{Z} \mid \Re \mathbf{A}] \\
& =\frac{1}{2} \log _{2} \operatorname{det}\left[\left(\bar{V}_{\text {out }}^{(11)}\right)\left(V_{\text {out }}^{(11)}\right)^{-1}\right]
\end{aligned}
$$

Capacities and rates: maximization over set

Figure: On the left, the optimal value of r for the quantities C (solid line with circles), F (heterodyne rate, line with circles only) and F (homodyne rate, pure solid line) is shown versus s. The values of the other parameters are $N=8, \eta=0.7$. On the right, the quantities C (solid lines with circles), F (heterodyne rate, lines with circles only) and F (homodyne rate, pure solid lines) are plotted versus s for values of η going from 0.1 (bottom curve) to 1 (top curve) with step 0.1. The value of the other parameter is $N=8$.

Heterodyne rates for 1 use of the channel

Conclusions

- Squeezing can enhance the capacity in some cases
- Optimal input squeezing is related to the environment squeezing
- Entanglemet is useful for information transmission as it always comes with squeezing
- Almost all interesting "physics" (behavior) can be found in already 1 use of the channel

Conclusions

THANK YOU!

