A Lossy Bosonic Quantum Channel with Non-Markovian Memory

O. V. Pilyavets, V. G. Zborovskii and S. Mancini

Università di Camerino (Italy) & P. N. Lebedev Physical Institute (Russia)

August 30, 2008

- Quantum channels
 - Gaussian channels
 - Lossy bosonic Gaussian channels
- Characteristics of quantum channel
 - Quantum capacity
 - Classical capacity
 - Rates
 - Homodyne rate
 - Heterodyne rate

General definitions

- Any state can be labeled as ρ or V as all states are Gaussian.
 - $V_{\rm in}$ covariance matrix for input state
 - V_{env} covariance matrix for environment state
 - $V_{\rm cl}$ covariance matrix for classical distribution of coherent amplitude α .
 - $\bullet~V_{\rm out}$ covariance matrix for output state of the channel
 - $\overline{V}_{\rm out}$ covariance matrix for output state of the channel avaraged over classical distribution (encoding of information) $V_{\rm cl}$
- Capacities and rates
 - $C_n = \max_{\text{states}} \frac{1}{n} \chi_n$ classical capacity for *n* uses of channel
 - $C = \max_{n \to \infty} \ddot{C_n}$ classical capacity on infinite amount of channel uses
- Conjectures
 - Capacity for lossy bosonic channel can be achieved on Gaussian states
 - Maximizing of Holevo χ leads to capacity for memory channel too

Scheme for 1 use of lossy bosonic channel

1 use capacity: notations and known results

- It is sufficient to consider only diagonal matrices (!).
- Abitrary covariance matrices in diagonal form for 1 use:

$$V_{\mathrm{env}} = (N_{\mathrm{env}} + 1/2) egin{pmatrix} e^s & 0 \ 0 & e^{-s} \end{pmatrix}$$
 $V_{\mathrm{in}} = (N_{\mathrm{in}} + 1/2) egin{pmatrix} e^r & 0 \ 0 & e^{-r} \end{pmatrix}$

- Already known capacities:
 - If environment is in ground (vacuum) state:

$$C = g[\eta N]$$

• If environment is in termal state:

$$C = g[\eta N + (1 - \eta)N_{env}] - g[(1 - \eta)N_{env}]$$

• Environment in termal and squeezed state:

$$C = g \left[\eta \mathsf{N} + (1 - \eta) \left((\mathsf{N}_{\text{env}} + 1/2) \cosh(s) - 1/2 \right) \right] - g \left[(1 - \eta) \mathsf{N}_{\text{env}} \right]$$

$$g(x) = (x+1) \log_2 (x+1) - x \log_2 x$$

Classical capacity C(s) [parameters: N_{env}=2, N=3]

Classical capacity C(s) [parameters: N_{env}=2, N=3]

Classical capacity C(s) [parameters: N_{env}=2, N=3]

1 use capacity: complete analytical solution

• Suppose that eigenvalues of V_{env} matrix are e_1, e_2 . Then, eigenvalues of matrix V_{cl} (which are c_1, c_2) and V_{in} (which are i_1, i_2) can be found from the following relations if <u>both</u> c_1 and c_2 are positive:

$$c_{1} = N + \frac{1}{2} - \frac{1}{2}\sqrt{\frac{e_{1}}{e_{2}}} + \frac{1}{2}\left(1 - \frac{1}{\eta}\right)(e_{1} - e_{2})$$

$$c_{2} = N + \frac{1}{2} - \frac{1}{2}\sqrt{\frac{e_{2}}{e_{1}}} + \frac{1}{2}\left(1 - \frac{1}{\eta}\right)(e_{2} - e_{1})$$

$$i_{1} = \frac{1}{2}\sqrt{\frac{e_{1}}{e_{2}}}, \quad i_{2} = \frac{1}{2}\sqrt{\frac{e_{2}}{e_{1}}}$$

In this case capacity can be expressed in explicit form and is equal to

$$C = g \left[\eta N + (1 - \eta) \left((N_{\text{env}} + 1/2) \cosh(s) - 1/2 \right) \right] - g \left[(1 - \eta) N_{\text{env}} \right]$$

1 use capacity: complete analytical solution

• If c_k (according to previous relations) is negative, then $c_k = 0$, $c_m = 2N + 1 - i_k - 1/(4i_k)$, $i_m = 1/(4i_k)$, and i_k is a solution of the following transcedental equation ($\{k, m\} = \{1, 2\}$ or $\{k, m\} = \{2, 1\}$):

$$\frac{a_m - a_k}{\sqrt{a_m a_k}} \log_2 \frac{\sqrt{a_m a_k} + 1/2}{\sqrt{a_m a_k} - 1/2} = \frac{o_m i_k - o_k i_m}{i_k \sqrt{o_m o_k}} \log_2 \frac{\sqrt{o_m o_k} + 1/2}{\sqrt{o_m o_k} - 1/2}$$

where

 $o_1 = \eta i_1 + (1 - \eta) e_1$ $a_1 = \eta (i_1 + c_1) + (1 - \eta) e_1$

$$o_2 = \eta i_2 + (1 - \eta) e_2$$
 $a_2 = \eta (i_2 + c_2) + (1 - \eta) e_2$

No explicit relation for capacity.

- Is there something new for *n* uses of the channel?
- Is there new "physics" there?
- Can we say that entanglemet is useful for information transmission for many uses of the channel?

Let us see...

Scheme for *n* uses of lossy bosonic channel

- In the case of our type of memory it is sufficient to consider only commuting matrices (!).
- Suppose that eigenvalues of V_{env} matrix are e_{qk} , e_{pk} , k = 1, ..., n. Then, eigenvalues of matrix V_{cl} (which are c_{qk} , c_{pk}) and V_{in} (which are i_{qk} , i_{pk}) can be found from the following relations if for all k both c_{qk} and c_{pk} are positive:

$$c_{qk} = N + \frac{1}{2} - \frac{1}{2}\sqrt{\frac{e_{qk}}{e_{pk}}} + \frac{1 - \eta}{\eta} \left(\frac{\operatorname{Tr} V_{env}}{2n} - e_{qk}\right)$$
$$c_{pk} = N + \frac{1}{2} - \frac{1}{2}\sqrt{\frac{e_{pk}}{e_{qk}}} + \frac{1 - \eta}{\eta} \left(\frac{\operatorname{Tr} V_{env}}{2n} - e_{pk}\right)$$
$$i_{qk} = \frac{1}{2}\sqrt{\frac{e_{qk}}{e_{pk}}}, \quad i_{pk} = \frac{1}{2}\sqrt{\frac{e_{pk}}{e_{qk}}}$$

n uses capacity: analytics

 In this case the capacity can be expressed in explicit form. It is equal to

$$C_{n} = g \left[\eta N + (1 - \eta) \left(\frac{\operatorname{Tr} V_{env}}{2n} - \frac{1}{2} \right) \right] - \frac{1}{n} \sum_{k=1}^{n} [(1 - \eta)(\sqrt{e_{qk} e_{pk}} - 1/2)]$$
$$C = g \left[\eta N + (1 - \eta) \left(\lim_{n \to \infty} \frac{\operatorname{Tr} V_{env}}{2n} - \frac{1}{2} \right) \right] - \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} [(1 - \eta)(\sqrt{e_{qk} e_{pk}} - 1/2)]$$

- If c_{qk} or c_{pk} is negative we don't have explicit relation for the capacity
- Capacity is always achieved on states V_{in} minimizing uncertainty relation (!)

n uses capacity: Ω -model of channel memory

• Environment matrix:

where

$$V_{\text{env}} = \frac{1}{2} \begin{bmatrix} \exp(s\Omega) & 0 \\ 0 & \exp(-s\Omega) \end{bmatrix}$$
$$\Omega = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \vdots & 1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

n uses capacity: Ω -model of channel memory

- Correlations decay exponentially over channel uses, it is quite "realistic" (correlations are non-Markovian)
- Energy constraint:

$$\frac{\mathrm{Tr}(V_{\mathrm{in}}+V_{\mathrm{cl}})}{2n}=N+\frac{1}{2}$$

- Ω-model allows us to test entanglement
- Capacity for Ω-model:

$$C = g\left[\eta N + \frac{1}{2}(1-\eta)(I_0(2s)-1)\right]$$

n uses capacity: Ω -model, maximization over set

• Input state:

$$V_{\rm in} = rac{1}{2} \left[egin{array}{cc} \exp(r\Omega) & 0 \ 0 & \exp(-r\Omega) \end{array}
ight]$$

• Covariance matrix for classical distribution used to encode an information:

$$V_{\mathrm{cl}} := rac{2nN(1- heta_n)}{\mathrm{Tr}(Y)} Y$$

where

$$Y = \frac{1}{2} \begin{bmatrix} \exp(y\Omega) & 0\\ 0 & \exp(-y\Omega) \end{bmatrix}$$
$$\theta_n := \frac{\operatorname{Tr}(V_{\text{in}}) - n}{2nN}$$

• Region of possible values of r is restricted by input energy constraint (by roots of equation $\theta_n = 1$)

• Heterodyne rate:

$$\begin{split} \mathcal{I}[\mathbf{Z}:\mathbf{A}] &= \mathcal{H}[\mathbf{Z}] - \mathcal{H}[\mathbf{Z}|\mathbf{A}] \\ &= \frac{1}{2}\log_2 \det\left[\left(\overline{V}_{\mathrm{out}} + \frac{1}{2}\right)\left(V_{\mathrm{out}} + \frac{1}{2}\right)^{-1}\right] \end{split}$$

• Homodyne rate (measurement of quadratures q in all modes):

$$I[\Re \mathbf{Z} : \Re \mathbf{A}] = H[\Re \mathbf{Z}] - H[\Re \mathbf{Z}] \Re \mathbf{A}]$$

= $\frac{1}{2} \log_2 \det \left[\left(\overline{V}_{\text{out}}^{(11)} \right) \left(V_{\text{out}}^{(11)} \right)^{-1} \right]$

Capacities and rates: maximization over set

Figure: On the left, the optimal value of r for the quantities C (solid line with circles), F (heterodyne rate, line with circles only) and F (homodyne rate, pure solid line) is shown versus s. The values of the other parameters are N = 8, $\eta = 0.7$. On the right, the quantities C (solid lines with circles), F (heterodyne rate, lines with circles only) and F (homodyne rate, pure solid lines) are plotted versus s for values of η going from 0.1 (bottom curve) to 1 (top curve) with step 0.1. The value of the other parameter is N = 8.

Heterodyne rates for 1 use of the channel

- Squeezing can enhance the capacity in some cases
- Optimal input squeezing is related to the environment squeezing
- Entanglemet is useful for information transmission as it always comes with squeezing
- Almost all interesting "physics" (behavior) can be found in already 1 use of the channel

THANK YOU!