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Abbreviations

Below abbreviations used in the text of thesis are given.

BS — beam-splitter
HUR — Heisenberg uncertainty relation
LBC — lossy bosonic channel
LBMC — lossy bosonic memory channel
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Introduction

Quantum communication is a relatively new area which is a part of quantum information
theory devoted to study information transmission through quantum channels. By quantum
channels are intended all means that convey quantum systems on whose states information
is encoded. Formally they are quantum maps from input to output states [1]. The study
of quantum channels is necessary not only for quantum communications purposes, but
also for quantum computing and quantum cryptography. Quantum channels can be used
to transmit classical information besides quantum information. In fact, classical symbols
can be encoded/decoded into/from quantum states sent through quantum channels.

The main objective of quantum communication is the characterization of the transmis-
sion capabilities of quantum channels. The maximum rate at which information can be
reliably transmitted through a quantum channel defines its capacity. Actually, one can
define several capacities depending on the kind of information transmitted (classical or
quantum) and on the additional resources used in transmission [2]. Evaluation of quan-
tum channels capacities is one of the most important and difficult problems in quantum
information theory.

A memoryless quantum communication channel makes the fundamental assumption
that the noise in consecutive uses of the channel is independent. This assumption is
reasonable for many real-world applications, but for many others the noise may be strongly
correlated among different channel uses. Recently a lot of efforts have been dedicated to the
development of quantum models that encompass memory effects (see [3] for an overview).
One of the main motivations that has led to investigate such effects in quantum channels
has been the possibility to enhance their classical capacity by means of entangled inputs.
Such a possibility has been recently put forward in channels with continuous alphabet [4-7].
However, most of these works were limited to provide a proof of principle of the behavior
of quantum memory channels. Since the notion of capacity is intimately related with the
asymptotic behavior of a channel, there is a persistent wish to move on from small to large
(towards infinite) number of channel uses. Channels with continuous alphabet are realized
in the quantum framework by boson algebra (each input, respectively, output is represented
by a bosonic field mode). Among them, Gaussian channels, which maps input Gaussian
states into output Gaussian states, are the simplest allowing capacities investigation [8, 9]
and are also easy to implement experimentally [10]. The lossy bosonic channel (LBC),
which consists of a collection of bosonic field modes that lose energy en route from the
transmitter to the receiver [10] belongs to the class of Gaussian channels. The effect of
losses is usually modelled by letting each input mode to interact with an environment mode
through a rotation (beam-splitter) transform whose angle (transmissivity) determines the
loss rate [10].
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The classical capacity (including that assisted by entanglement) for LBC was evaluated
in Refs. [11, 12] by assuming each environment mode in the vacuum state. In such a case
Gaussian (coherent separable) states turn out to be the optimal inputs. Then it has been
proved that Gaussian inputs also suffice to determine the quantum capacity [13]. When
more general states of environment are taken into account, even non factorized ones which
give rise to memory effect [4], the evaluation of capacities becomes much more demanding.

To deal with this capacity problem, in this thesis a perturbative approach is developed
by expanding the von Neumann entropy of Gaussian quantum state as a function of the
symplectic eigenvalues of its quadratures covariance matrix (see [9] and [A5]1). The method
turns out to be very useful for characterizing any Gaussian quantum channels, but in this
thesis it is applied only to the classical use of lossy bosonic memory channel (LBMC). Its
application to additive noise memory channel is in progress [A6]. Exact solution which
does not use this approximation is also presented in thesis.

Apart from capacities investigation, achievable transmission rates can be calculated
assuming fixed type of information encoding and decoding. In this thesis classical capac-
ity2 [A5] and rates achievable by conventional decoding procedures [A1] (heterodyne —
joint field quadrature measurements, and homodyne — one quadrature measurements) are
studied analytically for LBMC when the problem becomes spectral for quantum states
covariance matrices. The obtained results generalize those of Refs. [8, 12] for the classical
capacity. In particular, new properties are discovered for this type of LBMC, such as the
existence of critical transmissivity, and both quadratures and mode symmetry violation,
which are intimately related each other and can lead to enhancement as well as decrement
of information transmission. This poses the question of optimal memory model if average
amount of photons per mode allowed in environment is fixed.

If problem is spectral for quantum states covariance matrices, the type of memory
model is unitarily equivalent to another model with all matrices being diagonal, which
has the same capacity but is simpler to investigate. The environment of that model is a
multimode squeezed state which has no correlations among channel uses. This procedure
of reducing a memory channel problem to a memoryless one has been termed memory
unravelling [A4]. In this way the study of memory effects is traced back to the investigation
of the role played by a single mode squeezed environment. In fact all interesting features
of memory arising from a multimode squeezing environment can be found in single mode
squeezed environment as well. The only exception is the mode symmetry violation which
cannot exist for one-mode memoryless channel. Since in the memory setting the multimode
squeezed states are entangled, this method allows in principle to shed light on the usefulness
of correlated (classically or quantumly) input states. However, the question of how to
compare different situations naturally arises.

Taking into account that the increase of squeezing always leads to increase of average
amount of photons, this thesis fixes the last parameter for the set of models to compare.
Then, it is shown that squeezed environment can increase or decrease the capacity de-
pending on values of its squeezing and beam-splitter transmissivity. It is also proved that

1In this work the references to author’s publications are prefixed with symbol A. All references are
listed in chronological order.

2Actually, lower bound on one-shot classical capacity is calculated, as maximization is only performed
over set of all admissable Gaussian states. The maximization over small subset of Gaussian states made
in [A1] before the work [A5] was published has now only hystorical interest.
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squeezing of environment leads to optimal inputs to be also squeezed if the restriction on
average amount of input photons is not very low. Moreover, if this amount is sufficiently
high the optimal input squeezing equals that of environment, i.e. optimal input state is
correlated in the multimode setting.

Most of the results are drawn by using a particular LBMC model with non-Markovian
memory (below it is often refered to as Ω-model), which allows to characterize the asymp-
totic behavior of the channel for classical information transmission. The memory effects in
this model are realized by considering noise correlations among environments acting on dif-
ferent channel uses [4]. These correlations are introduced by contiguous modes interactions
which result in an exponential decay of the correlations over channel uses (modes).

The thesis is organized as follows. In Chapter 1 basics of quantum information theory
with continuous variables are discussed. In Chapter 2 LBMCs are considered and the
relations for homodyne and heterodyne rates are derived as functions of involved covariance
matrices. In Chapter 3 a method to find classical capacity and rates is presented for both
arbitrary one-mode (memoryless) and multimode (memory) types of channels. In Chapter
4 the method is applied to a particular channel memory model (Ω-model), and some
questions on optimal memory model are considered. In the Conclusions and outlook it is
summarized the work done and open questions are discussed.
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Chapter 1

Basics of quantum information with

continuous variables

In this chapter basics of quantum and classical information theory together with quantum
mechanics are discussed. This is to provide some standard definitions which are used in
subsequent chapters. As far as this work concerns only continuous variables systems, the
discrete systems (finite dimensional Hilbert spaces) are not introduced at all.

1.1 Classical probabilities and Shannon differential

entropy

Standrad probability theory operates with random variables which can accept only discret
values. Formal mathematical introduction into probability theory in the case of contin-
uous variables is called stochastic process theory which becomes much more difficult and
was formalized as new branch of mathematics only in the middle of previous century by
A. N. Kolmogorov. However, in this introduction it is assumed that all random variables
have their probability densities, that simplifies the general approach.

Any continuous random vector variable Φ taking real values φ = (φ1, . . . , φm) can be
completely specified by its probability density P (φ). Measure of the uncertainty (thus,
measure of information) associated with the above random variable is named Shannon
differential entropy H [Φ] and reads [14]

H [Φ] = −
∫

suppΦ
P (φ) log2 P (φ) dφ. (1.1)

The joint entropy measures how much entropy is contained in a joint system of two
random variables. If the random variables are Φ and Ψ, the joint entropy is written
H [Φ,Ψ]. Suppose, that each pair of possible outcomes is (φ,ψ) which occurs with prob-
ability P (φ,ψ), then the joint entropy is defined as

H [Φ,Ψ] = −
∫

supp{Φ,Ψ}
P (φ,ψ) log2 P (φ,ψ) dφ dψ.

Given two random variables Φ and Ψ one can define a conditional entropy H [Φ|Ψ]
which quantifies the remaining entropy (i.e. uncertainty) of a random variable Φ given
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that the value of another random variable Ψ is known:

H [Φ|Ψ] = H [Φ,Ψ]−H [Ψ].

That allows to write down mutual information I[Φ : Ψ] measuring information shared
between these variables as

I[Φ : Ψ] = H [Φ]−H [Φ|Ψ]. (1.2)

Units for all entropies originated from Eq. (1.1) are bits.
This work mostly concerns probability densities which arem-variate Gaussian functions

P (φ) =
1√

(2π)m det V
exp

[
−1
2

(
φ− 〈φ〉, V −1 (φ− 〈φ〉)

)]

completely described by their vectors of mean values 〈φ〉 and covariance matrices V . Their
differential entropy is

H [Φ] =
1

2
ln [(2πe)m det V ] . (1.3)

1.2 Basics of quantum mechanics in phase space

Quantum mechanics in continuous variables can be introduced independently from Dirac
approach asWeyl star-product quantization [15, 16] which operates with symbols (functions)
defined on system phase space (q,p). Quadratures q and p are n-dimensional vectors of
canonical variables. Below it will be useful to consider a vector

x := (q,p) = (q1, . . . , qn, p1, . . . , pn). (1.4)

In quantum optics systems variables q and p are fields E and H, correspondingly. Any
quantum state in this approach can be completely specified by its Wigner function W (q,p)
[17] which is a Weyl symbol of density operator and whose relation with density matrix ρ
in position representation for n-partite state reads1

W (q,p) =

∫
ρ
(
q +

u

2
,q− u

2

)
e−ipudu,

ρ(q,q′) =
1

(2π)n

∫
W

(
p,

q + q′

2

)
eip(q−q′)dp. (1.5)

Quantum state ρ is called Gaussian if its Wigner function is Gaussian, therefore it is
completely described by its quadratures covariance matrix V and vector a which represents
quantum state displacement in phase space2:

ρ ←→ W (x) =
1√
det V

exp

[
−1
2

(
x− a, V −1(x− a)

)]
. (1.6)

1Throughout this work it is assumed ~ = 1.
2In what follows each Gaussian state and each (classical) Gaussian distribution are labelled by their

quadratures covariance matrices, e.g. ρ↔ V .
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Throughout the paper the normalization of a n-mode Wigner function reads
∫
W (x) dx =

(2π)n. In particular, V = Id2n /2 and a =
√
2ζ in Eq. (1.6) for n-partite coherent state of

complex amplitude

ζ := (ζR, ζI) = (Re(ζ1), . . . ,Re(ζn), Im(ζ1), . . . , Im(ζn)), (1.7)

whose wave function is

〈q|ζ〉 = 1

πn/4
exp

(
−q

2

2
+
√
2 z q− z2

2
− |z|

2

2

)

with z = (ζ1, . . . , ζn) and ζk = (q′k + ip′k)/
√
2.

Below the relation between Wigner function and Husimi function [18]

P (ζ) =
1

πn
〈ζ|ρ|ζ〉 (1.8)

is used, which can be found as follows. Let us express the Husimi function through density
matrix in position representation using orthogonal decomposition over position eigenstates,
and then express that density matrix through Wigner function according to Eq. (1.5). This
leads to the relation

〈ζ|ρ|ζ〉 = 1

(2π)n

∫
W

(
q+ q′

2
,p

)
eip(q−q′)〈q′|ζ〉〈ζ|q〉 dq dp dq′. (1.9)

By making the change of variables

q+ q′

2
−→ q1,

q− q′

2
−→ q2

in Eq. (1.9) and integrating it over the variable q2 one can get (see also [19]):

P (ζ) =
1

π2n

∫
W (x) exp

[
−(x−

√
2 ζ)2

]
dx. (1.10)

In particular, if W (x) is a Gaussian state of the form (1.6) there is the following relation
between quadratures covariance matrices in Wigner function and Husimi function:

VHusimi = VWigner +
1

2
Id2n . (1.11)

Note, that Heisenberg uncertainty relation (HUR) forbids quadratures to have joint
probability density, but VHusimi can be interpreted as the covariance matrix for a measure-
ment in sense of positive operator valued measure (POVM) [20]. It is a measure whose
values are non-negative self-adjoint operators on a Hilbert space H (in this thesis L2(R) is
considered). In the simplest case, a POVM is a set of m Hermitian positive semidefinite
operators {Li} on H that sum to unity:

m∑

i=1

Li = IH.
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In the case of Husimi function (1.8) this sum is an integral over all complex variables ζj,
with the corresponding POVM operators

L(ζ) =
n⊗

j=1

|ζj〉〈ζj|
π

. (1.12)

Here |ζj〉 is coherent state of jth mode having complex amplitude ζj. The POVM with
operators (1.12) represents joint quadratures measurement and is often called heterodyne
measurement [10, 21]. Analogously, the POVM operators

L(ζ) =
n⊗

j=1

|Re ζj〉〈Re ζj | (1.13)

represent a measurement of the single quadrature q/
√
2 = ζR, and is often called homodyne

measurement [10, 21].
As far as any quantum state must satisfy HUR there is a restriction on its quadratures

covariance matrix V [22]:
V + iΣ > 0, (1.14)

where 2n×2n symplectic form Σ is a commutation matrix for canonical variables (quadra-
tures):

Σ =

(
0n Idn

− Idn 0n

)
.

Quantum mechanics makes phase space geometry symplectic, which allows to rewrite HUR
in terms of symplectic eigenvalues vk(V ) [22].

Definition: Numbers vk = vk(V ), k = 1, . . . , n are symplectic eigenvalues of covariance
matrix

V =

(
Vqq Vqp

V ⊤
qp Vpp

)
, if ±ivk are eigenvalues of Ṽ = Σ−1V =

(
−V ⊤

qp −Vpp

Vqq Vqp

)
.

Then Eq. (1.14) can be rewritten as vk(V ) > 1/2, where equality is achieved only by
pure states.

1.3 Von Neumann entropy of Gaussian state

Von Neumann entropy S(ρ) (for quantum state ρ) extends concepts of classical Shannon
entropy to the field of quantum mechanics [20]. By definition

S(ρ) := −Tr(ρ log2 ρ). (1.15)

It can be used as a measure of mixedness of quantum state as pure state has zero entropy.
Let us calculate the von Neumann entropy for a Gaussian quantum state. Consider a
thermal state with amount of N photons whose density operator ρ can be represented as
a decomposition over Fock projectors:

ρ =
1

N + 1

∞∑

m=0

(
N

N + 1

)m

|m〉〈m|. (1.16)
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Substituting this representation into Eq. (1.15) one can get that

S(ρ) = g(N),

where
g(x) := (x+ 1) log2(x+ 1)− x log2 x.

Properties of g-function are discussed in Appendix C. Operator (1.16) has a maximal
entropy among all operators with restricted amount of photons N:

Tr
(
ρa†a

)
6 N,

where a and a† are ladder operators with commutation relation [a, a†] = 1 and photons
number operator is a†a. Any Gaussian state can be transformed to thermal by applying
symplectic transformation S to its quadratures covariance matrix [22]. This transformation
is a map V → SV S⊤ which does not change symplectic spectrum of V . Taking into account
that symplectic eigenvalues vj are related to amount of photons Nj for multimode state
as [9]

vj = Nj +
1

2
,

and entropy is subadditive [20]:

S(ρ) =

n∑

j=1

S(ρj),

where n-modes thermal state is ρ = ⊗n
j=1ρj , one can obtain von Neumann entropy for

multimode thermal state:

S(ρ) =
n∑

j=1

g

(
vk −

1

2

)
. (1.17)

As symplectic transformation does not change symplectic spectrum, the relation (1.17)
holds for any Gaussian state.

1.4 Gaussian quantum channels

Let us introduce main definitions from quantum channels theory [20]. Positive map is a
linear map which maps input quantum states into output quantum states, i.e. preserves
operator trace and its positivity. Positive map T is called completely positive if any map
of the form T ⊗ Id is also positive. By definition, quantum channel T is that map which
is completely positive. It can be sketched as follows:

-

'
&

$
%

channel
environmentρin ρout = T (ρin)

where ρin and ρout are density operators from input and output Hilbert spaces3, corre-
spondingly. Stinespring’s dilation theorem allows any quantum channel T to be modelled

3In this thesis the dimensions of the input and the output Hilbert spaces coincide.
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as interaction of the (input) system ρin with environment ρenv:

ρout = T (ρin) = Trenv[U(ρin ⊗ ρenv)U
†], (1.18)

where ρout is quantum state of channel output, and unitary U specifies the action of the
channel.

The channel T⊗n which acts independently on each use is calledmemoryless. Otherwise,
it is called memory channel. The environment state ρ

(n)
env used to describe n uses of the

memoryless channel can be represented as

ρ(n)env =

n⊗

k=1

ρ(1)env,

where ρ
(1)
env is the single-mode environment. Thus, the state ρ

(n)
env can be interpreted as the

environment for single use of n-mode channel.
Suppose that there are symbols {x} belonging to a continuous alphabet, say R, which

are encoded into different quantum states {ρx} at channel’s input with some probabil-
ity distribution P (x). Then, at channel’s output one can try to decode information by
performing measurements on quantum states {ρ′x}. This is what classical information
transmission by quantum channels does:

{x∈R}
alphabet

=⇒ {ρx}
input states

continuous−−−−−→
channel

ρ′x
output states

=⇒ {Ly}
measurement

The aim at decoding (measurement of symbols y with the help of POVM operators Ly)
is to distinguish states with different input symbols x. If that states are always perfectly
distinguishable this is the case of ideal (noiseless) channel.

Achievable rate of information transmission is the speed4 at which information can
be reliably transferred through channel for fixed encoding and decoding. Formally it is
the Shannon mutual information between the input X and output Y random variables.
Maximal achievable rate of information transmission over channel (considering all possible
types of encoding and decoding) is called classical capacity.

If electromagnetic fields E and H (“field quadratures”) are taken as the continuous
variables, the channel is called bosonic, as it operates with bosonic field modes. Achievable
rates and capacity for bosonic channel are finite only if there is an energy restriction at
channel input.

Gaussian channels are those bosonic channels which map Gaussian states into Gaussian
states. Below only that quantum channels are considered which are both bosonic and
Gaussian. If the symbols α belonging to continuous complex alphabet are distributed
with probability density P (α) in bosonic Gaussian channel, its average input state equals

ρin =

∫
ρ
(α)
in P (α)dα,

4Amount of information per channel use can be interpreted as “speed”.
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and the average output state will be

ρout =

∫
ρ
(α)
out P (α)dα ≡ T [ρin] , (1.19)

where ρ
(α)
in and ρ

(α)
out are quantum states of channel input and output, correspondingly,

given classical symbol α.
Now suppose, that input state ρin is Gaussian of the form (1.6) with covariance matrix

V = Vin and displacement a = 0. Also, let us assume that variable

α := (αR,αI) = (Re(α1), . . . ,Re(αn), Im(α1), . . . , Im(αn)), αj ∈ C (1.20)

is encoded via random displacement of ρin in phase space, that is

ρ
(α)
in =

[
⊗n

j=1Dj(αj)
]
ρin
[
⊗n

j=1Dj(αj)
]†
, (1.21)

where Dj denotes the displacement operator on the j-th mode [20]. Input state ρ
(α)
in is

given by Eq. (1.6) in this case, where V = Vin and a =
√
2α.

If α is chosen according to a Gaussian distribution

P (α) =
1

πn
√
det Vcl

exp
[
−
(
α, V −1

cl α
)]

, (1.22)

having classical covariance matrix Vcl/2, the covariance matrix of average input state reads

V in = Vin + Vcl. (1.23)

The energy restriction can be represented in this case as

TrV in

2n
6 N +

1

2
, (1.24)

where N is average amount of photons per mode (per channel use). As output state of
Gaussian channel is Gaussian, given Gaussian input state, the states ρout and ρout will be
refered to by their quadratures covariance matrices Vout and V out, correspondingly.

1.5 Classical capacity

To evaluate the classical capacity one should maximize the mutual information overall
possible encoding and decoding schemes, which seems an insurmountable task. Fortunately
enough such evaluation always involves the so called Holevo χ quantity [23, 20].

The Holevo χn for n channel uses in the case of continuous alphabet distributed with
probability density P (α) is defined through von Neumann entropy (1.15) as

χn = S

(∫
ρ
(α)
out P (α)dα

)
−
∫

S
(
ρ
(α)
out

)
P (α)dα, (1.25)

where ρ
(α)
out is a quantum state at the channel output. It represents an upper bound on

the classical information that can be extracted from quantum channel output. Coding
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theorem, suggested by J. P. Gordon [24] and later proved by A. S. Holevo [23, 25] and
independently by B. Schumacher and M. D. Westmoreland [26], states that memoryless
(one-shot) channel capacity is given by

C1 = max
ρin,ρcl

χ1,

where maximum is taken over all possible input states ρin satisfying the energy constraint
and classical alphabet distributions ρcl. The full (regularized) capacity is then obtained as5

C = lim
n→∞

1

n
max
ρin,ρcl

χn.

If consideration is not restricted to memoryless channels, one can define the following
bounds on the regularized classical capacity [A4,A5]:

C := lim
n→∞

Cn; Cn =
1

n
max
ρin,ρcl

χn, (1.26)

and

C := lim
n→∞

Cn; Cn =
1

n
max
Vin,Vcl

χn, (1.27)

where the maximum is taken over set of Gaussian states Vin and Gaussian distributions
Vcl. The bound (1.26) comes directly from the definition of the Holevo-χ quantity as an
upper bound on the accessible information. The bound (1.27) comes from the following
reasoning: for any n, one can look at n uses of the channel as a single channel acting on
n modes. Then by considering the channel memoryless form n uses to another n uses, one
can exploit the lower bound on the classical capacity of memoryless channels computed by
maximizing the one-shot capacity over Gaussian input states and Gaussian distributions
for encoding of classical symbols. In the case of memoryless bosonic Gaussian channels
with vacuum environment it turns out that [11]

C = C = C = C1,

but the above equalities are conjectures in the case of arbitrary bosonic memoryless Gaus-
sian channels.

The Holevo-χ quantity for Gaussian states reads (see Eqs. (1.17) and (1.25)) [8]:

χn =
n∑

k=1

[
g

(
νk −

1

2

)
− g

(
νk −

1

2

)]
, (1.28)

where νk and νk are the symplectic eigenvalues of V out and Vout, respectively. Thus, one
can state the optimization problem of finding the classical capacity as searching matrices
Vin, Vcl satisfying energy constraint (1.24), such as Vcl > 0 and Vin + iΣ > 0, thus giving
the maximum of Eq. (1.27).

5The dimension of quantum states ρin and (classical) distributions ρcl is taken in a way to correspond
to dimension of χn, given n is chosen.
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Chapter 2

Lossy bosonic memory channel

In this chapter the notion of lossy bosonic memory channel (LBMC) is introduced, and
the relations for capacity and rates as functions of covariance matrices are presented (fol-
lowing [A1]).

2.1 Definitions

The single-mode lossy bosonic channel (LBC) is sketched on Fig. 2.1. Input mode (state)
Vin interacts with environment mode (state) Venv through a beam-splitter (BS) with trans-
missivity η. The total state of the system “input+environment” before interaction is taken
in the form V

(in)
tot = Vin ⊕ Venv. BS unitary action (see general relation (1.18)) can be rep-

resented as the transformation of input and environment quadratures:

q(in) → √η q(in) +
√
1− η q(env),

p(in) → √η p(in) +
√

1− η p(env),

q(env) → −
√

1− η q(in) +
√
η q(env),

p(env) → −
√

1− η p(in) +
√
η p(env),

(2.1)

which relate output state of the channel with its input and environment as

Vout = η Vin + (1− η) Venv. (2.2)

In particular, averaged over encoding input state V in (see Eq. (1.23)) gives average output
state1

V out = η (Vin + Vcl) + (1− η) Venv. (2.3)

Let us now consider the classical use of LBC where input quantum states carry the
values of a random classical variable. Channel mapping ρ 7→ T [ρ] then can be seen as
a mapping of phase space points, therefore two real random values (or one complex)

for each mode are carried. An input state is labelled as ρ
(α)
in with classical variable α

distributed according to Eq. (1.22) and encoded via random displacements of a suitable

1One can show that output state averaged over encoding is the same as output state corresponding to
averaged input state, therefore these cases are not distinguished in this thesis.
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channel input channel output

environment

ηencoding of
classical
information

decoding
(measurement)

Figure 2.1: Single use of lossy bosonic channel. Input mode interacts with environment mode through
beam-splitter with transmissivity η.

(Gaussian) seed state ρin (see Eqs. (1.20) and (1.21)). The Wigner function of the sys-
tem “input+environment” is given in this case by Eq. (1.6) after the formal substitution

V → V
(in)
tot , x → xtot and a →

√
2αtot, where

2 xtot := (xin,xenv) and αtot := (α, 0). By
applying BS unitary transformation xtot → Bxtot in this Wigner function with the block
matrix

B =

( √
η Id2n

√
1− η Id2n

−√1− η Id2n
√
η Id2n

)
,

and then integrating over the environment variables xenv, one can arrive at the output
state Wigner function

W
(α)
out (xout) =

1√
det Vout

exp

[
−1
2

(
xout −

√
2ηα, V −1

out

(
xout −

√
2ηα

))]
. (2.4)

Analogously, one can show that the average output state (1.19) will be characterized by
the Wigner function with covariance matrix (2.3).

Let us now introduce memory effects in LBC. This can be done by considering mul-
timode states for input and environment of the channel and allowing correlations among
them. The model of LBMC T is depicted in Fig.2.2. Each use of the channel corresponds
to its own input mode. n of such modes (uses) with corresponding environment modes,
which interact through beam splitters with (the same) transmittivity η, are considered.
The interaction leads to the transformations (2.1) written for each mode. All the above
relations (including Eqs. (2.2) and (2.3)) for multimode case are the same as for a single
mode, but with higher dimension.3

For a (multimode) memoryless channel, the environment modes are initially in an
uncorrelated state, the vacuum state in the simplest case. The classical capacity is achieved
in this case by using ρin = |0〉〈0|⊗n and Vcl = diag(N), where N is the average number

2The indexes “in” and “env” denote quadratures (1.4) related to proper states’ space.
3Their generalization from a single mode to multimode channel is strightforward, therefore it is not

discussed here in detail.
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Figure 2.2: The model for a lossy bosonic channel T . Each input mode (left-right line), representing
one use of the channel, interacts with the corresponding environment mode (top-bottom line) through a
beam-splitter. To introduce memory effects, environment modes are initially considered in a correlated
state.

of input photons per mode [11]. In such a case squeezed (correlated) inputs turn out to
not be useful. More generally, below a Gaussian state characterized by zero displacement
vector and covariance matrix Venv correlated among channel uses will be considered.

2.2 Memory model

It is reasonable to consider a model of channel’s environment which allows analytical
investigation of both capacity and rates. Symplectic eigenvalues of covariance matrix are
not functions of matrix spectrum in general. However, to simplify the problem the case of
symplectic spectrum being function of (usual) spectrum will be considered. In the simplest
case this means to restrict the environment’s covariance matrices to those of the form

Venv =

(
V

(qq)
env 0

0 V
(pp)
env

)
(2.5)

with commuting blocks V
(qq)
env and V

(pp)
env . Such a matrix can be diagonalized by means

of transformation which is orthogonal and symplectic at the same time, i.e. it preserves
matrix trace and symplectic eigenvalues [22].

Note, that symplectic eigenvalue is always a spectrum function for a single mode matrix
Venv, which is equal to

√
det Venv. This will allow us to consider environment mode in the

most general Gaussian form for capacity investigation. It was shown in [27] for a single
use noisy channel4 that matrices Venv, Vin and Vcl maximizing Holevo χ should commute
each with other. This was done by applying Lagrange multipliers method and taking into
account input purity theorem discussed below in page 23. Generalization of this result to
capacity and rates in LBC is strightforward.

As concerns multimode case, this commutation property is taken as a conjecture in this
thesis. It is also conjectured that the maximum of χ-quantity (1.28) and rates is achieved
with matrices Vin and Vcl of the same form as (2.5), i.e. with null off-diagonal blocks.
Furthermore, all diagonal blocks of all matrices are assumed to be mutually commuting.
These conjectures are supported by numerical investigations relying on environment models
of the form (2.5).

4Noisy channel is described by the relations Vout = Vin +Venv and V out = Vin +Vcl +Venv analogous to
Eqs. (2.2) and (2.3).
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Below the eigenvalues of matrices Vin, Venv, Vout, Vcl and V out will be refered to as iuk,
euk, ouk, cuk and auk respectively. Since n ∈ N represents the number of bosonic modes
(channel uses), the dimension of all above matrices is 2n × 2n and k = 1, . . . , n, while u
denotes either quadrature q or p (if u = q, then u⋆ = p, and vice versa). In particular,
taking into account the above conjectures, LBMC gives rise to the following relations
among eigenvalues of matrices:

ouk = η iuk + (1− η)euk,

auk = η(iuk + cuk) + (1− η)euk.
(2.6)

As a consequence, the following expressions take place for symplectic eigenvalues:

νk =
√
oqkopk, νk =

√
aqkapk. (2.7)

Notice, that both energy constraint (1.24) and symplectic spectrum (2.7) are preserved
under orthogonal transformations. Thus, without affecting the final result, below all the
involved matrices are considered to be diagonal (see also the discussion in the appendix
of [A4]).

2.3 Conventional decodings

Let us now consider information transmission rates for LBMC by conventional decoding
procedures like heterodyne (1.12) and homodyne (1.13) measurements.

For the case of heterodyne measurement, the probability (1.8) of the output coherent
amplitudes ζ is related to the probability (2.4) for the corresponding quadratures xout by
means of the relation (1.11). Thus, the conditional probability of getting ζ at the output
given the encoded α at input results

P (ζ|α) = 1

πn
√

det Vζ|α

exp
[
−
(
ζ −√ηα, V −1

ζ|α (ζ −√ηα)
)]

, (2.8)

where

Vζ|α := Vout +
1

2
Id2n

is the relation for quadratures’ covariance matrices. Here, the term 1/2 represents the
quadrature vacuum noise added by heterodyne measurement.

For the case of homodyne measurement one should consider information only encoded
in αR (see Eq. (1.20)). Hence, while keeping the usual energy constraint, the matrix Vcl

in Eq. (1.22) can be written as

Vcl =

[
V

(qq)
cl 0
0 0

]
.

Taking into account that the random variables αR and ζR are independent from αI and
ζI in the output Wigner function (2.4), by integrating it over ζI one can get P (ζR|αR).

Its expression results like (2.8) with the replacements n→ n/2, Vζ|α → V
(qq)
out , ζ → ζR and

α→ αR.
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Similarly to (2.8), Eqs. (1.19) and (2.3) yield the output probability for the heterodyne
case

P (ζ) =
1

πn
√

det Vζ

exp
[
−
(
ζ, V −1

ζ
ζ
)]

, (2.9)

where

Vζ := V out +
1

2
Id2n .

In the same fashion, one can get the output probability for the homodyne case P (ζR) by
integrating over ζI the averaged output Wigner function. Its expression results like (2.9)

with the replacements n→ n/2, Vζ → V
(qq)

out and ζ → ζR.
Applying the definition (1.2) to Eqs. (2.8) and (2.9), and taking into account Eq. (1.3)

one can arrive at the mutual information for heterodyne case [A1]5

I[Z : A] =
1

2
log2 det

[(
V out +

1

2
Id2n

)(
Vout +

1

2
Id2n

)−1
]
. (2.10)

Analogously, for the homodyne case it can be found [A1]

I[ReZ : ReA] =
1

2
log2 det

[(
V

(qq)

out

)(
V

(qq)
out

)−1
]
. (2.11)

Considering average information accessible from single channel use and asymptotic behav-
ior of the channel one can get heterodyne rate

F (het) := lim
n→∞

F (het)
n ; F (het)

n =
1

2n
max
Vin,Vcl

log2 det

[(
V out +

1

2
Id2n

)(
Vout +

1

2
Id2n

)−1
]

(2.12)
and homodyne (measurement of u-quadratures) rate

F (hom) := lim
n→∞

F (hom)
n ; F (hom)

n =
1

2n
max
Vin,Vcl

log2 det

[(
V

(uu)

out

)(
V

(uu)
out

)−1
]
. (2.13)

2.4 Input purity theorem

Let us formulate optimization problems for classical capacity and rates in the case of
memory model (2.5). One can note from Eqs. (1.28), (2.12) and (2.13) that both rates and
capacity are monotonicaly growing functions of cuk. It means that one needs to consider
equality in energy constraint (1.24). That is also evident from physical point of view:
capacity and rates are monotonicaly growing functions of N .

Taking into account all constraints for n channel uses (energy restriction, positivity
and HUR), the main problem implies finding of eigenvalues iuk, cuk, such as

1

2n

n∑

k=1

[iuk + iu⋆k + cuk + cu⋆k] = N +
1

2
, iuk > 0, cuk > 0, iukiu⋆k >

1

4
,

5Recall, that this expression has been obtained by exploiting the commutativity of covariance matrices.
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which give a maximum to functions χn/n, I[Z : A]/n and I[ReZ : ReA]/n. After that
one need to take the limit n → ∞ for the solution found. These maximization problems
can be simplified taking into account the following [27]:

Theorem: Suppose, there is the case of LBMC with all covariance matrices to be dia-
gonal, then the maximum of Holevo bound is always achieved on pure input state:

iukiu⋆k =
1
4
.

Proof: Suppose, that the maximum of the Holevo bound is achieved by iukiu⋆k > 1/4.
This means that some real numbers δk > 0 exist, such that iu⋆k = i′u⋆k

+ δk, where
i′u⋆k

= 1/(4iuk). Let us change variables to make Vin pure (it preserves energy constraint
N):

i′u⋆k = iu⋆k − δk, i′uk = iuk,

c′u⋆k = cu⋆k + δk, c′uk = cuk.

These new variables (denoted with primes) lead to ν ′
k = ν and ν ′

k < νk. As far as g
is monotonically growing function of its argument, the Holevo bound calculated for new
variables will be higher:

Ck(i
′
uk, i

′
u⋆k, c

′
uk, c

′
u⋆k) > Ck(iuk, iu⋆k, cuk, cu⋆k),

where Ck is the contribution of k-th mode to capacity (see Eqs. (1.27) and (1.28)):

Cn =
1

n

n∑

k=1

Ck, Ck = g

(
νk −

1

2

)
− g

(
νk −

1

2

)
. (2.14)

It means, that initial (non pure) eigenvalues iuk did not give the maximum of χn. Hence,
the theorem is proved by contradiction. �

The extension of this theorem to the case of rates is strightforward. Thus, one can
exclude variable iu⋆k from the optimization problem, and positivity of eigenvalues are the
only inequalities to retain among constraints. It will allow us in next chapter to apply
standard Lagrange multipliers method to find the maximums Cn, F

(het)
n and F

(hom)
n .

2.5 Capacity and rates

By applying Eq. (4.24) to (1.28) one can get, at lowest order,

χ(0)
n =

n∑

k=1

log2
νk

νk
, (2.15)

which (after dividing by n) gives the zeroth-order approximation to lower bound6 on clas-
sical capacity C(0)

n . It is interesting to notice that the following relation takes place (see
Eqs. (2.7)):

F (hom)
n = C(0)

n , (2.16)

6Below the words “lower bound” will be often omitted.
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for the case of zero eigenvalues corresponding to q- or p-quadratures7 (cuk = 0, ∀k), i.e.
the homodyne rate coincides with the capacity at zeroth-order approximation.

Analogously, for heterodyne measurement it is

F (het)
n =

1

n

n∑

k=1

log2
ν
(het)
k

ν
(het)
k

,

where ν
(het)
k and ν

(het)
k are symplectic eigenvalues of V out and Vout calculated by using

(heterodyne) modified environment matrix

V (het)
env = Venv +

1

2(1− η)
Id2n .

Thus, the heterodyne rate is equal to the zeroth-order approximation of capacity calculated
with V

(het)
env . In the following it will be useful to introduce the average amount of photons

in environment Menv (M
(het)
env for the modified environment) according to the relations

TrVenv

2n
= Menv +

1

2
,

TrV
(het)
env

2n
= M (het)

env +
1

2
.

Furthermore, the eigenvalues of the matrix V
(het)
env will be denoted by

e
(het)
uk = euk +

1

2(1− η)
, e

(het)
u⋆k

= eu⋆k +
1

2(1− η)
. (2.17)

Similarly, the notations for the other eigenvalues are

a
(het)
uk = auk +

1

2
, o

(het)
uk = ouk +

1

2
,

a
(het)
u⋆k

= au⋆k +
1

2
, o

(het)
u⋆k

= ou⋆k +
1

2
.

(2.18)

For the single-mode environment matrices Venv and V
(het)
env can be represented as

Venv =

(
Nenv +

1

2

)[
es 0
0 e−s

]
, (2.19)

V (het)
env =

(
N (het)

env +
1

2

)[
eshet 0
0 e−shet

]
, (2.20)

where Nenv (N
(het)
env ) is amount of environment thermal photons and s (shet) is the environ-

ment squeezing parameter. They are related as

M (het)
env = Menv +

1

2(1− η)
,

(
N (het)

env +
1

2

)2

=

(
Nenv +

1

2
+

1

2(1− η)

)2

+
Menv −Nenv

1− η
.

(2.21)

7Quadratures u⋆ measured for homodyne rate have to correspond to optimal non-zero quadratures cu⋆k

for χ
(0)
n .
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In this case one can get for a fixed s

lim
Nenv→∞

F (het)
n = C(0)

n . (2.22)

Eqs. (2.16) and (2.22) define the values of parameters s and Nenv for which the rates
approach8 the capacity (see also discussion in [11]).

2.6 Open problems and conjectures

There are open problems directly related with the results obtained in this chapter. Their
solution could extend the meaning and applicability of these results to a wider set of
problems. Here a list of these problems is given.

1. The relations (2.10) and (2.11) were obtained for matrices of the form (2.5) taking into
account mutual commutation of all blocks in matrices Vin, Vcl and Venv. Extension
of these relations to the case of arbitrary covariance matrices is not known.

2. Homodyne rate (2.13) corresponds to the case of measurement of the same quadrature
(q or p) in all modes. It could be extended to the case of measurement of different
quadratures for different modes, at first, and to measurement of quadratures rotated
in phase space, at second. The last one could make useful the methods of optical [28]
and symplectic [29, 30] tomography.

3. The model (2.5) relies on Vin and Vcl of the same form as (2.5), i.e. on matrices
with zero equal off-diagonal blocks, where all diagonal blocks mutually commute.
An optimality of such a choice (for multimode case) for capacity and rates is not
shown.

Conjectures about future possible results:

1. The relation for a heterodyne rate (2.12) is valid for arbitrary matrices Vin, Vcl and
Venv, i.e. not necessarily of the form (2.5).

2. The consideration of quadratures’ rotation in phase space will not give higher ho-
modyne rate than (2.13) for the model (2.5). This is expected because optimal
homodyne measurement should correspond to measurement of quadratures with less
noise. As far as the model (2.5) finally operates with only diagonal matrices, the
above homodyne measurement should be optimal.

These open problems and conjectures could inspire futher investigations in this area.

8Finding the type of encoding and decoding which allow to achieve the capacity is one of the main
difficulties in quantum information theory, but this problem is not discussed in detail in this thesis.
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Chapter 3

Solution for the optimization

problem

The general solution of optimization problem (along with [A5]) which allows to find capac-
ity and rates is given in this chapter. A single channel use for both single-mode (the case
of LBC) and multimode (the case of LBMC) channels is considered for arbitrary model of
the form (2.5).

Note, that despite the relation (1.28) for Holevo χ is valid for the matrices Vin, Vcl

and Venv of general form, the relations for rates (2.12) and (2.13) are known only if these
matrices are diagonal. However, since the matrix Venv for arbitrary single-mode channel
and for multimode channel with environment model (2.5) can always be taken in diago-
nal form, it is conjectured that besides capacity also rates do not depend on orthogonal
transformation. Thus, below all the matrices are assumed to be diagonal without loss of
generality. For the sake of simplicity each function to maximize will be denoted by the
same character as its proper maximum.

3.1 Single-mode use: memoryless case

Let us consider single use of single-mode LBC. Its capacity and rates are the same as for
n uses of the corresponding n-mode memoryless channel. As far as only the single-mode
case is discussed, index k (see Eqs. (2.6) and (2.7)) is omitted for all eigenvalues.

3.1.1 Solution of Lagrange equations

The optimization problem for single-mode channel can be formulated as follows. One needs
to find the maximum over the variables iu, cu, and cu⋆

for the following functions:

C = g

(
ν − 1

2

)
− g

(
ν − 1

2

)
, (3.1)

F (het) = log2 ν
(het) − log2 ν

(het), (3.2)

F (hom) =
1

2
(log2 au⋆

− log2 ou⋆
) (3.3)
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with the constraints1

iu > 0

cu, cu⋆
> 0

iu +
1

4iu
+ cu + cu⋆

= 2N + 1.

(3.4)

Below it will be shown that all solutions of Lagrange equations give positive iu, i.e.
cu, cu⋆

> 0 are the only inequalities to satisfy. One can classify all solutions depending on
the amount of positive c-quadratures. The following terminology is used for this purpose.

Definition: The solution belongs to the first stage if both cu, cu⋆
= 0, to the second

stage if only single c-quadratrure equals zero, and to the third stage if cu, cu⋆
> 0.

As far as F (hom) does not depend on cu, due to the condition (3.4) the maximum is
achieved for cu = 0 which shows the absence of the third stage in homodyne rate. In
other words, energy N should not be wasted in the quadrature not used for information
transmission.

The first stage holds if and only if capacity and rates equal zero, which can be only
if N = 0 (if N 6= 0 one can always get non-zero capacity and rates by taking iu = 1/2,
cu = cu⋆

= N). In particular, Eq. (3.4) applied for the first stage gives iu = 1/2.
Below it is always assumed for non-equal environment eigenvalues that eu > eu⋆

.

Proposition: If eu > eu⋆
, then optimal cu = 0 but never cu⋆

= 0 in the second stage.

Proof: Suppose that cu⋆
= 0. The energy constraint (3.4) is preserved by variables

change c′u = c′u⋆
= cu/2, i′u = iu. New variables do not change the second terms in

Eqs. (3.1) and (3.2) but increase the first terms2. Thus, new variables give higher capacity
and heterodyne rate. The above statement is proved by contradiction. � Analogously, one
can prove that

ou > au⋆
> ou⋆

(3.5)

in the second stage.
The similar consideration gives au = au⋆

in the third stage (by supposing au 6= au⋆
one

can always find such redistribution of energy N among c-quadratures which decreases the
difference |au−au⋆

| thus giving higher capacity and heterodyne rate). Taking into account
Eq. (3.4) in this case

au = au⋆
= η

(
N +

1

2

)
+ (1− η)

(
Menv +

1

2

)
. (3.6)

Below the solutions for the third and the second stages are presented.

1See definitions (2.6) and remember that iu⋆
= 1/(4iu).

2Area of rectangle with fixed perimeter is higher if lenths of sides differs less. In the considered case
a′u + a′u⋆

= au + au⋆
but |a′u − a′u⋆

| < |au − au⋆
|. Then, both g and log2 are monotonic functions.
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The third stage

In the case of the third stage Lagrange multipliers method applied to the function C
with the constraint (3.4) leads to the following system of equations (see definitions of gk
in (4.26)):

∂L

∂iu
=

η

2

[
g1(ν)

(
1

au
− 1

4i2uau⋆

)
− g1(ν)

(
1

ou
− 1

4i2uou⋆

)]
− λ

[
1− 1

4i2u

]
= 0, (3.7)

∂L

∂cu
=

η

2

g1(ν)

au
− λ = 0, (3.8)

∂L

∂cu⋆

=
η

2

g1(ν)

au⋆

− λ = 0, (3.9)

where the Lagrange function is

L = C − λ

(
iu +

1

4iu
+ cu + cu⋆

− 2N − 1

)
.

The heterodyne rate results in the same system of equations (3.7)-(3.9) with the replace-

ments g1 → 1/ ln 2, au → a
(het)
u , au⋆

→ a
(het)
u⋆

, ou → o
(het)
u , ou⋆

→ o
(het)
u⋆

. Eqs. (3.8) and (3.9)
give au = au⋆

which was obtained before from qualitative considerations. By substituting
Eqs. (3.8) and (3.9) into Eq. (3.7) one can find that squeezing in input equals that of
environment and output:

iu⋆

iu
=

eu⋆

eu
=

ou⋆

ou
, (3.10)

which allows to find optimal input eigenvalues

iu =
1

2

√
eu
eu⋆

, iu⋆
=

1

2

√
eu⋆

eu
. (3.11)

For the heterodyne rate one need to replace environment and output eigenvalues in the
relations (3.10) and (3.11) by their “heterodyne analogs” (see Eqs. (2.17) and (2.18)).
Combining Eq. (3.6) with (3.11) one can obtain optimal c-eigenvalues

cu = N +
1

2
− iu +

1− η

η

(
Menv +

1

2
− eu

)
, (3.12)

cu⋆
= N +

1

2
− iu⋆

+
1− η

η

(
Menv +

1

2
− eu⋆

)
, (3.13)

which are the same for both capacity and heterodyne rate except of substitution of different
eigenvalues iu and iu⋆

.
Finally, the explicit relations for capacity and heterodyne rate in the third stage read

C = g [ηN + (1− η)Menv]− g[(1− η)Nenv], (3.14)

F (het) = log2

[
ηN + (1− η)M (het)

env +
1

2

]
− log2

[
(1− η)N (het)

env +
1

2

]
. (3.15)

The relation (3.14) generalizes that obtained for LBC with vacuum environment g(ηN) [11]
and, later, with thermal nonsqueezed environment [8]. In turn, Eq. (3.15) generalizes the
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relation for heterodyne rate log2(1 + ηN) found in [31] for vacuum environment (see also
discussion in [11]). Taking into account Eqs. (2.21), (3.14) and (3.15) one can see that
the limit (2.22) actually holds, but C(0) which is asymptotically logarithmic3 (3.14) equals

Eq. (3.15) after the replacements M
(het)
env →Menv and N

(het)
env → Nenv (the limits of the ratios

M
(het)
env /Menv and N

(het)
env /Nenv for Nenv →∞ are equal to one).

Previously it was proved that cu⋆
6= 0 for the convention chosen (eu > eu⋆

), therefore
the third stage holds if cu > 0. This is the case if the amount N of input photons is higher
than the threshold

N2→3
thr = iu −

1

2
− 1− η

η

(
Menv −

1

2
− eu

)
, (3.16)

where iu value should correspond to capacity or heterodyne rate. The threshold N2→3
thr is

nonnegative number which equals zero only for the vacuum environment. As far as the
third stage holds only if N > N2→3

thr and the first stage holds for only N = 0, the second
stage must correspond to values 0 < N 6 N2→3

thr . Thus, the type of solution increases its
stage in sequence starting from the first stage and ending to the third one if N grows from
zero to infinity. This explains the origin of the adopted term “stage” [A5]. Also, it can
be interpreted as “the third stage is always the most preferable if energy N is sufficient,
otherwise, the second stage should be taken, and the first stage holds if only both the third
and the second stage fail to satisfy the constraint”. This mnemonic rule is trivial for the
single-mode channel, however below its application to multimode channels (memory case)
helps to construct optimization algorithms which are not simple to give proof of.

The second stage

Let us move to the case of the second stage. One can show that the Lagrange equations for
the capacity and heterodyne rate in this case can be obtained from the system (3.7)-(3.9)
by substituting cu = 0 in all equations and removing the derivative with respect to cu.
This is because the variables to find enter in the equations as linear combinations. For the
homodyne case the system of equations is the same as for the heterodyne case except of
replacements of eigenvalues corresponding to heterodyne.

Then, solving the Lagrange equations for the homodyne rate one can find the ratio

iu⋆

iu
=

ou⋆

au⋆

, (3.17)

which also holds for the heterodyne rate after the replacements ou⋆
→ o

(het)
u⋆

, au⋆
→ a

(het)
u⋆

.
For the capacity the Lagrange equations give a mode transcendent equation on iu

g1(ν)

(
1

ou
− 1

au⋆

)
− g1(ν)

(
1

ou
− 1

4i2uou⋆

)
= 0, (3.18)

which results to Eq. (3.17) if g1-function is taken to zeroth-order approximation (i.e.
g1 ≡ 1, see Appendix C for the details). Thus, both zeroth-order approximation for capac-

3Remember, that according to Eq. (4.24) g(v) ≈ log2(v +
1
2 ).
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ity and homodyne rate give the same optimal eigenvalues (see the parallels with Eq. (2.16)):

cu = 0,

cu⋆
= 2N + 1− iu −

1

4iu
,

iu =
1

2

[√
1 + (2N + 1)φ+ φ2/4− φ/2

]
,

iu⋆
=

1

4iu
,

φ =
η

1− η
e−1
u⋆
.

(3.19)

Hence, the classical capacity with this approximation is expressible in an explicit form. In
turn, the condition cu⋆

> 0 restricts the admissible region for iu to the interval

N +
1

2
−
√
N2 +N < iu < N +

1

2
+
√
N2 +N. (3.20)

The result for the heterodyne rate is given by the same relations after the replacement
eu⋆
→ e

(het)
u⋆

in the equation for φ.
The first-order approximation for mode transcendent equation (3.18) can be obtained

by substituting the approximation (4.25) for g-function. Since Eq. (3.18) cannot be exactly
solved within this approximation, it should be solved in the neighbourhood of the zeroth-
order solution i

(0)
u given by Eq. (3.19) as linear perturbation. Thus, substituting i

(0)
u + εu

in Eq. (3.18) to iu and solving for εu one can obtain the first-order approximation i
(1)
u =

i
(0)
u + εu, where

εu =
ηau⋆

oui
(0)
u cu⋆

(au⋆
− ou)

2[η2(o2u + a2u⋆
− au⋆

ou)i
(0)
u cu⋆

− a2u⋆
o2u(12ν

2 + 1)]
(3.21)

and all eigenvalues in Eq. (3.21) are calculated through zeroth-order approximation.
Both zeroth-order and first-order approximate optimal eigenvalues found for capacity

have to be substituted into exact relation (3.1) instead of its corresponding approximations
(e.g. log2(ν/ν) for zeroth-order approximation) used to derive Lagrange equations. Oth-
erwise, the loss in accuracy becomes significant. Although eigenvalues calculated through
exact and approximate approaches essentially differ each other, they give rise to almost
equal capacities. This can be partially explained by the fact that Holevo χ has zero deriva-
tive with respect to eigenvalues in the neighbourhood of solution of Lagrange equations
(as they are equations for an optimization problem).

The homodyne rate log2
√
1 + 4ηN was found in [31] by supposing both environment

and input in vacuum state (see also discussion in [11]). Actually, it can be obtained without
solving the optimization problem, by substituting in Eq. (3.3) iu = iu⋆

= eu = eu⋆
= 1

2
and

cu⋆
= 2N as it follows from the constraint (3.4). However, since optimal input state is never

pure according to Eq. (3.19), that rate holds (approximately) for vacuum environment only
if the value of N is close to zero.

Let us demonstrate the above results on the particular case of noiseless channel (η=1).
Its capacity equals C = g(N). Its optimal input eigenvalues for the homodyne rate can
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be found from Eq. (3.17) by substituting η = 1, which gives iu = N + 1/2. Its eigenvalues
for the heterodyne rate can be obtained from Eqs. (3.11) by taking the limit η → 1, which
results to iu = iu⋆

= 1/2, thus giving cu = cu⋆
= N due to Eq. (3.6) (the second stage

cannot be considered for η = 1 due to threshold N2→3
thr = 0 in this case). Hence, for the

noiseless channel it always is [11]

F (het) < F (hom) < C, (3.22)

where F (hom) = log2(2N + 1) [31] and F (het) = log2(N + 1), i.e. both heterodyne and
homodyne rates never achieve the capacity for finite N even for noiseless channel, which
keeps the question on optimal decoding still open. In particular, for large values of N
inequalities (3.22) read

log2N < log2N + 1 < log2N +
1

ln 2
,

i.e. the difference between the rates and the capacity disappears in the limit N →∞.

3.1.2 Role of channel parameters

In this subsection the dependence of capacity and rates from channel parameters is dis-
cussed. The graphs to illustrate the analytical results are given.

Input and environment squeezing

Writing the input covariance matrix in the same form of (2.19), by the replacements
Nenv → Nin and s → r, one can relate the optimal degree of input squeezing ropt to the
degree of environment squeezing s. It follows from Eqs. (3.10) and (3.19) that ropt = s for
the third stage and

ropt ≈ r
(0)
opt = sign(s) ln

[√
1 + (2N + 1)φ+ φ2/4− φ/2

]
(3.23)

for the second stage for capacity to zeroth-order approximation. Analogously, ropt = shet
(see Eq. (2.20)) for the heterodyne rate in the third stage. In the second stage both the
homodyne and heterodyne rates result to the same relation (3.23), where φ depends on

e
(het)
u⋆

for the heterodyne case. At the transition point between different stages there is a kink
in the function ropt(s) (the example with the capacity is shown on Fig.3.1-right). It reflects
the fact that different stages correspond to solution of different systems of equations.

The capacity C found by the exact and approximate analytical solutions is shown in
Fig.3.1-left for fixed N as function of s and for different values of η. The same graph (the
case of exact solution) together with rates is shown in Fig.3.5. One can see that in the
limit of large s the capacity only depends on the energy constraint N , specifically (see
also [A4])

lim
s→∞

C(s, η, N,Nenv) = log2(2N + 1), (3.24)

explaining why all curves Cη(s) flow together to the same value when s→∞ (see Fig.3.1-
left). This limit also holds for the homodyne rate.

The loci (aq, ap) and (oq, op) are plotted in Fig.3.4-left for different values of N and
fixed values of s, η, Nenv. The resulting curves shows the geometry of the stage transitions
and visualize the “quantum water filling” effect for one channel use [9], [14].
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Figure 3.1: Capacity C (left) and optimal input squeezing ropt (right) vs s, for values of η going from
0.1 (bottom curve) to 0.9 (top curve) with step 0.2. The values of the other parameters are N = Nenv = 1.
On the left, exact and approximate solutions almost coincide. On the right, for each value of η, the
zeroth-order approximation, the first-order approximation and the exact solution are plotted (bottom to
top). Solid and dotted parts of the curves correspond to the third and second stages, respectively.
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Figure 3.2: Capacity C(s⋆Nenv

) (left) and optimal environment squeezing s⋆Nenv

(right) vs η for values of
Nenv going from 0 (left curve) to 2 (right curve) with step 0.5. The value of the other parameter is N = 1.

Transitional behavior

As it is seen from Fig. 3.1-left, Fig. 3.2-right and Fig. 3.3-right optimal degree of squeezing
in the environment s⋆ (which maximizes the capacity) is finite if transmissivity η > η⋆

and infinite otherwise. The value of η⋆ will be called critical transmissivity. Eigenvalue iu
optimal for s = s⋆ can be found from the system of equations ∂C/∂s = 0, ∂C/∂iu = 0
taken for the eigenvalues maximizing C and belonging to the second stage (s⋆ cannot
correspond to the third stage as ∂C/∂s 6= 0 according to Eq. (3.14)). Taking into account
that

dC

ds
=

∂C

∂s
+

∂C

∂iu

∂iu
∂s

,

where ∂C/∂iu = (η/2)F and F = 0 is mode transcendent equation (3.18) one can obtain
that s⋆ corresponds to dC/ds = ∂C/∂s and iu = N + 1/2. The same value of iu holds in
the limit s→∞, namely, its asymptotic form can be found from the approximation (3.19)
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Figure 3.3: Capacity C(s⋆N ) (left) and squeezing parameter s⋆N (right) vs η for values of N going from
0.5 (bottom curve) to 2.5 (top curve) with step 0.5. The value of the other parameter is Nenv = 1.
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Figure 3.4: On the left, the loci (oq , op) and (aq, ap) for different values of N are plotted. The values of
other parameters are Nenv = s = 1, η = 0.6. The second stage is marked by dotted curves. The first stage
is a single point at N = 0. The whole third stage for the locus (oq, op) is mapped into a single point, as
Vin does not depend on N in the third stage. On the right, critical transmissivity η⋆ vs N⋆

env is shown.

and equals (s > 0)

iu = N +
1

2
− 4(1− η)

η
N(N + 1)

(
Nenv +

1

2

)
e−s. (3.25)

Substituting Eq. (3.25) into ∂C/∂s = 0 taken for the limit s→∞ and keeping only linear
terms over e−s one can get

∂C

∂s
=

[
12−1 − (1− η)2

(
Nenv +

1
2

)2]
[(2N + 1)−1 − 2N − 1]

η(1− η)
(
Nenv +

1
2

)
ln 2

e−s.

As ∂C/∂s > 0 and ∂C/∂s < 0 give η < η⋆ and η > η⋆, respectively, the critical parameters
satisfy

(1− η⋆)

(
N⋆

env +
1

2

)
=

1√
12

.

The critical amount of (thermal) photons N⋆
env plays the role similar to critical transmis-

sivity if the family of curves C(s) parametrized by Nenv for fixed η and N is considered
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Figure 3.5: Classical capacity C (solid curves), heterodyne F (hom) (dashed curves) and homodyne F (het)

(dotted curves) rates vs s, for values of η going from 0.1 (bottom curve) to 0.9 (top curve) with step 0.2.
The values of the other parameters are N = Nenv = 1.

instead of the curves from Fig. 3.1-left. In particular, for the vacuum environment

η⋆ = 1− 1√
3
≈ 0.42265.

The value of s⋆ is shown in Fig.3.2-right and Fig.3.3-right as function of η for different
values of Nenv and N respectively. The capacity corresponding to these values of s⋆ is
plotted in Fig.3.2-left and Fig.3.3-left. The critical transmissivity η⋆ is drawn in Fig.3.4-
right as function of Nenv.

3.1.3 Concavity of solution

The property of concavity over N for the capacity and rates will be essential below for
discussing multi-mode channels, therefore the corresponding derivatives are listed in this
subsection.

Let us prove concavity of the function C(N). Formally it is

dC

dN
=

∂C

∂N
+

∂C

∂iu

∂iu
∂N

.

However, as only eigenvalues maximizing C are of interest, ∂C/∂iu = (η/2)F = 0 and

dC

dN
=

∂C

∂N
.

One can show that for all values of N and for both 2nd and 3rd stages

dC

dN
=

η

au⋆

g1(ν) > 0. (3.26)

The threshold thr1→2 is defined as the limit of dC/dN for N → 0. It means that
u is the quadrature for which cu = 0 after perturbation of N (it is equivalent to the
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convention eu > eu⋆
). The eigenvalues for input state in this case (N = 0) should be taken

as corresponding to vacuum state: iu = iu⋆
= 1/2. The general relation (3.26) thus gives

thr1→2 ≡
dC

dN
(N = 0) =

η

ou⋆

g1(ν) = η

√
ou
ou⋆

g′
(
ν − 1

2

)
. (3.27)

Analogously,

thr2→3 ≡
dC

dN
(N2→3

thr ) = η g1(ν) = ηg′
[
η

(
iu −

1

2

)
+ (1− η)

(
eu −

1

2

)]
, (3.28)

where iu is given by Eq. (3.11).
New important comment: it was later found, that for the case of the second stage Eq. (3.29)

gives wrong result, since it is only partial (not total) second derivative with respect to N . A correct

consideration of the second stage case is given in [A5] and refers to a proof given for additive noise

channel in [A6].

The second derivative read

∂2C

∂N2
=

{
η2(g2(ν)− g1(ν))/a

2
u⋆

< 0, for the second stage

η2g2(ν)/ν
2 < 0, for the third stage

(3.29)

giving the following at the point of stages transition:

∂2C

∂N2
(N2→3

thr − 0) =
∂2C

∂N2
(N2→3

thr + 0)− η2

ν2 g1(ν).

Because it always is g2 < 0, g1 > 0, the convexity is preserved on the whole region of
N ∈ [0,∞):

∂2C

∂N2
(N2→3

thr − 0) <
∂2C

∂N2
(N2→3

thr + 0),

while the first derivative is continuous in this point. Notice, that

max
N

∂C

∂N
=

∂C

∂N
(N = 0) 6∞, (3.30)

where equality is achieved only by pure environment state eu = eu⋆
= 1/2.

Thus, single-mode capacity for fixed values of eu, eu⋆
and η can be considered as the

concave function:
N −→ C = C(N) −→ C, (3.31)

i.e. some “blackbox” returning the value of C given N “at input”. The derivatives for the
rates can be obtained by doing the replacement g1 → 1/ ln 2, g2 → −1/ ln 2 in Eqs. (3.26)
and (3.29). Except of this replacement, for the heterodyne rate ν and au⋆

should be taken
in “heterodyne form”. Hence, both heterodyne and homodyne rates are also concave
functions which can be treated in the same “blackbox” form.

3.2 Multi-mode channel: memory case

Let us move to the case of the single use of multi-mode LBC. Its capacity and rates are
the same as for n uses of the corresponding single-mode memory channel.
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3.2.1 Convex separable programming

The optimization problem for multi-mode channel is formulated as follows. One needs to
find the maximum over the variables iuk, cuk, and cu⋆k for the following functions:

Cn =
1

n

n∑

k=1

[
g

(
νk −

1

2

)
− g

(
νk −

1

2

)]
, (3.32)

F (het)
n =

1

n

n∑

k=1

[
log2 ν

(het)
k − log2 ν

(het)
k

]
, (3.33)

F (hom)
n =

1

2n

n∑

k=1

[log2 au⋆k − log2 ou⋆k] (3.34)

with the constraints

iuk > 0,

cuk, cu⋆k > 0,

1

n

n∑

k=1

[
iuk +

1

4iuk
+ cuk + cu⋆k

]
= 2N + 1.

(3.35)

The problem for capacity4 can be reformulated as finding the maximum for sum of concave5

functions (each of them depends on one varibale)

Cn(N) =

n∑

k=1

Xk(Nk) =
1

n

n∑

k=1

Ck (3.36)

over the distribution P (Nk) of positive numbers Nk satisfying the constraint

N =

n∑

k=1

Nk, Nk =
1

2n

[
iuk +

1

4iuk
+ cuk + cu⋆k − 1

]
> 0, (3.37)

where Nk is the amount of energy granted for kth mode, Xk = Ck/n and Ck = Ck(iuk, cuk,
cu⋆k) (see the definition (2.14)) is parametrized by fixed parameters euk, eu⋆k and η, i.e.
Ck depends on the only eigenvalues belonging to kth mode. Thus, the total optimization
problem is splitted in two tasks: the first task is “internal optimization” inside each mode
(see “box” (3.31)) and the second task is “external optimization” which finds the optimal
distribution P (Nk) of the total energy N over “boxes” to get optimal output sum

∑n
k=1Xk:

N1 −→ X1 = X1(N1) −→ X1

. . . . . . . . . . . . . . . . . . . . .

Nn −→ Xn = Xn(Nn) −→ Xn

This “external optimization” problem is known in mathematics as convex separable
programming which was solved in [32], [33]. In particular, the following theorem based on

4The case of rates is completely analogous to capacity, therefore here it is omitted.
5The concavity of single-mode Ck over its energy constraint Nk was proved in previous section.
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concavity of target function was proved [32]:

Theorem: A feasible solution {Nk} is an optimal solution to problem (3.36), (3.37) if
and only if there exists a λ ∈ R such that

Nk = 0, if λ >
∂Xk

∂NK

(Nk = 0)

Nk : λ = ∂Xk

∂NK

(Nk), if λ < ∂Xk

∂NK

(Nk = 0)

Thus, this theorem states that any solution of “external optimization” problem satisfying
its Lagrange equations is optimal because it is unique. Taking into account (3.30) one can
see that λ ∈ (0, λmax) for N > 0, where

λmax = max
k

∂Xk

∂Nk
(Nk = 0).

In the following the notion of stage will be used which is defined for each mode in
complete analogy with the single-mode case. It allows the optimization problem to be
interpreted as the search for the optimal modes distribution over stages. In particular, the
case Nk = 0 holds if and only if kth mode belongs to the first stage, and the case λ = λmax

corresponds to zero capacity, where all modes are in the first stage. Analogously, if it is

λ < min
k

∂Xk

∂Nk
(Nk = 0)

only the second and the third stages exist (by comparing Nk granted for kth mode with
its threshold value N2→3

thr (see Eq. (3.16)) one can obtain its actual stage).
The following algorithm to solve “external optimization” problem can be proposed. Let

us choose any λ⋆ from the interval (0, λmax). Then, the contribution Nk of kth mode can
be found by solving the equation

λ⋆ =
∂Xk

∂Nk
(Nk),

if

λ⋆ <
∂Xk

∂Nk
(Nk = 0).

Otherwise, Nk = 0 has to be chosen. After finding Nk values for all k = 1, . . . n, the
sum

∑n
k=1Nk should be compared with N . If N <

∑n
k=1Nk, the value λ = λ⋆/2 should

be chosen for the next iteration, otherwise λ = (λmax − λ⋆)/2 should be taken (thus,
the Lagrange equations can be considered as giving feasible solution for any λ, the only
difference is that such the solution corresponds to another value of N). The above iteration
should be repeated again for new λ chosen. By repeating such iterations sufficient times the
value λ corresponding approximately to actual N can be found. In other words, Lagrange
equations can be interpreted as the single transcendent equation on λ which can be solved,
e.g. by the above method of bisection.

As far as the solution is unique it is sufficient to prove convergence of the algorithm
suggested to find modes distribution over stages, which can be done as follows. Notice,
that λ and N are related each other by one-to-one correspondence, and the dependence
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λ(N) is monotonic. In particular, the limit λ → 0 corresponds to the limit N → ∞, and
the value λ = λmax corresponds to N = 0. Thus, as far as the only unique λ corresponds
to N given, solving the system of Lagrange equations as the single transcendent equation
on variable λ ∈ (0, λmax] one see that the algorithm always converges to the solution.

3.2.2 Classical capacity and rates

The method to find classical capacity and rates discussed below is completely equivalent
to the general scheme presented in the previous section and results to the same system
of equations to solve. However, it mainly operates with eigenvalues iuk, cuk and cu⋆k as
variables instead of Nk, which allows to develop another “representation” of the solution
and optimization algorithms.

To simplify the calculations here will be applied a technique similar to the simplex
method in optimization theory. Assuming monotonic dependence on N of the eigenvalues
{cuk} maximizing Cn (which is supported by numerical investigation), their sign will not
be specified in Lagrange equations. At first, let us consider the formal solution of Lagrange
equations assuming negative eigenvalues as result, then it will be shown how to eliminate
them.

The Lagrange function for the capacity of n-modes channel reads

L =
χn

n
− λ

(
1

n

n∑

k=1

[iqk + ipk + cqk + cpk]− 2N − 1

)
.

When all modes belong to the third stage, the eigenvalues of V out are all equal and the
solution reads

cuk = N +
1

2
− iuk +

1− η

η

(
Menv +

1

2
− euk

)
, (3.38)

iuk =
1

2

√
euk
eu⋆k

, (3.39)

giving

Cn = g[ηN + (1− η)Menv]−
1

n

n∑

k=1

g
[
(1− η)N (k)

env

]
, (3.40)

where N
(k)
env =

√
eqkepk − 1/2. For the case of heterodyne rate Eq. (3.38) is the same, but

iuk is given by the relation (3.39) after the replacements euk → e
(het)
uk , eu⋆k → e

(het)
u⋆k

. Hence,
the heterodyne rate results to

F (het) = log2

[
ηN + (1− η)M (het)

env +
1

2

]
− 1

n

n∑

k=1

log2

[
(1− η)N (k)(het)

env +
1

2

]
,

where N
(k)(het)
env is N

(het)
env (see Eq. (2.20)) calculated for kth mode.

Let us now move to the general case. At first, it will be assumed that the correct distri-
bution of modes over stages is already found. Then, suppose to know that the eigenvalue
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au⋆h (for the mode h) for capacity belongs to the second stage and cuh = 0, it follows the
transcendent equation for iuh

g1(νh)

(
1

ouh
− 1

au⋆h

)
− g1(νh)

(
1

ouh
− iu⋆h

iuhou⋆h

)
= 0, (3.41)

where

cu⋆h =
au⋆h − (1− η) eu⋆h

η
− 1

4iuh
,

iu⋆h =
1

4iuh
.

This equation has real roots if both νh, νh > 1/2, giving

iuh > max

{
1

η

(
1

4au⋆h
− (1− η)euh

)
, 0

}
. (3.42)

In turn, the requirement νh > νh leads to the inequality

iuh >
η

4(au⋆h − (1− η)eu⋆h)
. (3.43)

Depending on the value of au⋆h, equation (3.41) can admit one root satisfying (3.43) or
none.

Equation (3.41) can be formally written as the dependence au⋆h = fh(iuh). Taking into
account that λ is the only parameter linking the Lagrange-equations of different modes,
and considering zeroth-order approximation for g1-function, one can define a new variable x

x := aqm = apm = aql = apl = aqh = fh(iph) = apt = ft(iqt), (3.44)

getting a chain of equalities relating all modes of the second and third stages. The exact
form of the above chain which does not use approximations reads (see Eq. (3.26))

g1(νm)

aqm
=

g1(νm)

apm
=

g1(νl)

aql
=

g1(ν l)

apl
=

g1(νh)

aqh
=

g1(νt)

apt
.

Here modes m and l belong to the third stage, while modes h and t to the second stage
(cph = cqt = 0). Modes of the first stage are not included in (3.44) and they all give Vin-
eigenvalues equal to 1/2. If some mode belongs to the third stage, its Vin-eigenvalues can be
found from the relation (3.39). Below in this chapter only the case of approximation (3.44)
will be considered, because the general solution does not allow to essentially simplify the
relations.

Taking into account stages discrimination, equation (2.3) can be rewritten as

∑

{2,3|cuk 6=0}

[
ηiuk + (1− η)euk

]
= [2n3 + n2]x, (3.45)

where iuk are eigenvalues of V in := Vin + Vcl. Furthermore, nj is the number of modes
belonging to j-th stage (j = 1, 2, 3; n = n1 + n2 + n3) and

∑
{2,3|cuk 6=0} stands for the
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summation over all eigenvalues of second and third stages, except for the uk-th ones
corresponding to cuk = 0. Also, the energy constraint (1.24) can be rewritten as

∑

{2,3|cuk 6=0}

iuk = 2n

[
N +

1

2

]
− n1 −

∑

k

′′
iuk, (3.46)

where iuk = f−1
k (x) and the double prime sum extends over uk-th eigenvalues of the second

stage, such that cuk = 0. Substituting Eq. (3.46) into Eq. (3.45) one can get a transcendent
equation for the single variable x. Since all unknown eigenvalues can be expressed through
x (see Eqs. (3.44)) one can formally arrive at Cn.

To the zeroth-order approximation (4.24) the relation iuk = f−1
k (x) (see Eq. (3.41))

gives

iuk ≈ i
(0)
uk =

1

8

[√
φ2
k + 16xφk/η − φk

]
, (3.47)

where φk equals φ defined by Eq. (3.19) after the replacement eu⋆
→ eu⋆k. The approxima-

tion (3.47) allows to express Cn as function of solution of only one algebraic equation for
one variable x. By considering the term 1/v2 of the decomposition (4.23) in Eq. (3.41), one
can obtain the first-order approximation for the relation iuk = f−1

k (x). Since Eq. (3.41)
cannot be exactly solved within this approximation, it should be solved in neighbourhood
of the zeroth-order solution as linear perturbation. Thus, substituting i

(0)
uk+εuk in Eq. (3.41)

instead of iuk and solving for εuk one can find the first-order approximation i
(1)
uk = i

(0)
uk +εuk,

where

εuk =
(x− ouk)(x− ou⋆k)ouki

(0)
uk

[2(o2uk + x2 − (ouk + ou⋆k)x) + (12o2uk + 1)ν2
k ]i

(0)
uk η − 2(1 + 12ν2

k)o
2
ukx

(3.48)

and all eigenvalues in Eq. (3.48) are calculated to zeroth-order approximation.
Notice that the first-order approximation considered for the case of single-mode channel

does not coincide with i
(1)
u found. Actually, one needs to jointly solve two equations in the

case of general method applied to one channel use: the transcendent equation (3.41) and
the equation for x (see Eqs. (3.45) and (3.46)), where only Eq. (3.41) is approximated.
However, the equation for x becomes analytically solvable in the case of one channel use,
allowing us to reduce the original two equations to a single one given by (3.18).

For the case of rates the chain (3.44) and the equations (3.45), (3.46) are the exact
relations except of absence of the third stage for the homodyne rate (n3 = 0). Eq. (3.47)

holds also for the rates except of φk which has to be calculated using e
(het)
u⋆k

instead of eu⋆k

for the heterodyne case.
Finally, let us discuss on how to find the correct distribution of modes over the stages.

As far as Lagrange-conditions themselves do not provide effective method to find stages
distribution, one needs to use some a proiri properties to write an effective algorithm. Since
it was conjectured (supported by numerics) that cuk-eigenvalues are monotonic functions
of N , the optimum for each mode has to be the third stage, or the second if the third is
not admissible, or even the first if also the second one is not admissible. The third stage
implies the existence of a solution inside some volume, the second stage — a solution on
the surface of that volume, while the first stage — a solution on the edges of that surface.
If the value of N is large enough, the solution is always inside a volume, so that all modes
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are in the third stage. By decreasing the value of N , the eigenvalues cuk pass from the
volume to the wall, and then to the edges. On the basis of these arguments one can develop
two algorithms: static and dynamic.

The first step for both algorithms is the same: the positivity of all cuk that were found
is checked through the relations (3.38). If all of them are positive, C is given by the explicit
analytical relation (3.40) and the problem is already solved. If this is not the case, one has
to move on to the next steps.

• The static algorithm gives the following continuation on the bases of cuk-signs found
in the first step. One should ascribe the third stage to modes with all positive cuk-
eigenvalues, the second stage to modes with only one negative eigenvalue cuk and the
first stage to modes with both negative cuk. All negative cuk should be marked as
already found and equal to zero. According to this distribution the set of Lagrange-
equations should be formally solved (once again). If some second stage modes do
not have a solution according to Eq. (3.41) they have to be marked as belonging to
the first stage. Here the condition (3.43) is neglected for the second stage modes, as
violation of it implies negative cuk, thus their stage will be changed to the first one
by the algorithm itself. If all found cuk are finally non-negative the problem is solved.
If it is not, the procedure is iterated up until all cuk will become non-negative. This
algorithm can be then considered as a consecutive correction of stages distribution.

• The dynamic algorithm continues after the first step as follows. One should solve
the transcendent equation on x by choosing different stages distributions for different
values of x (during iterations). In particular, each mode at beginning is calculated as
belonging to the third stage for the current value of x. If this leads to negative cuk,
the mode is marked as belonging to the second or the first stage in analogy with the
static algorithm (if some second stage modes violate Eq. (3.43) their stage should
be marked as the first one). Thus, the stages distribution is made admissible, in
quantum sense, for every value of x. The distribution of stages corresponding to a
root of the equation for x is considered to be valid and can be used to calculate the
correct eigenvalues.

Both static and dynamic algorithms always yield the same stages distribution. The
difference between the two algorithms can be clarified as follows. There are two effective
unknown “variables” for Lagrange-equations: stages distribution and x. One of these
variables has to be set as internal and the another one as external during maximization
of χn. The static algorithm uses x as internal variable, while the dynamic algorithm uses
stages distribution for that. Since dynamic algorithm is usually faster, below only it will
be used. Also notice that the eigenvalues iuk are always obtained as positive through these
algorithms, therefore their positivity is not specified in Lagrange equations.

If number of channel uses tends to infinity the discussed procedure can be properly
generalized by changing the transcendent equations to equations on functions (spectral
densities). However, if the considered model has some simple symmetries over stages,
the general solution can be simplified by considering some parameters which mark the
boundaries of stages. In the next chapter an example along this line will be shown.
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Chapter 4

A model for memory effects

In this chapter a particular model of channel environment is considered, which allows to
test the general solution given in the previous chapter. To introduce the memory effect
among different channel uses, the environment modes are supposed to be initially in a
correlated state, actually a multimode squeezed thermal state. Multimode squeezed states
depending on two parameters are considered as introduced in [34], so that the covariance
matrix Venv is chosen as

Venv =

(
Nenv +

1

2

)[
exp(sΩ) 0

0 exp(−sΩ)

]
, (4.1)

where Nenv is the average number of thermal photons per mode in the environment and
s ∈ R represents the memory strength (for s = 0 the memoryless case is recovered). Here,
the n× n matrix Ω is taken to be

Ω =




0 1 . . . . . . . . . . . . 0
1 0 1 . . . . . . . 0
... 1 0 1 . . . 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . 1

0 0 . . . . . . . 1 0




. (4.2)

Notice that the memory effect is symmetric among all modes and decays over the number
of uses. Actually, if the set of Venv matrix elements belonging to a fixed row is considered as
a discrete function, this is well fitted by a Gaussian having width 2

√
|s|. Such exponential

decay of correlations makes the noise in the channel non-Markovian and the channel not
strictly forgetful [35].

4.1 Approximate solution

In this section the approximate solution based on the chain (3.44) is considered, and only
asymptotic behavior of the channel is discussed. That implies to take the limit n → ∞
in the equations of previous chapter. It can be treated for some relations as the limit
of Riemann sums resulting to the integral expressions. Instead of a set of equations on
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Figure 4.1: Schematic representation of the “quantum water filling” for the model Ωij = δi,j+1 + δi,j−1.
The angle ξ parametrizing the spectral density corresponds to polar angle. White, grey and black sectors
correspond to the first, second and third stages, respectively. Arrows show change of stages with increasing
of N . The parameter τ marks the points of stages transition.

eigenvalues one can get a set of equations on functions which are spectral densities for the
involved (infinite-dimensional) matrices. Below the spectral densities will be denoted by
the same symbols as proper eigenvalues, but written in calligraphic with the mode number
h replaced by a continuous parameter ξ, i.e., iuh → Iuξ, oqh → Oqξ, etc.

Suppose that all modes belong to the third stage, which holds true if (see Eq. (3.38))

w :=
1

2|s| ln
η (2N + 1) + (1− η)(2Nenv + 1) I0(2s)

η + (1− η)(2Nenv + 1)
≥ 1, (4.3)

where I0 is the modified Bessel function of the first kind and zero-order. The lower bound
C in this case is given by Eq. (3.14), where Menv should be replaced by

Menv =

(
Nenv +

1

2

)
I0(2s)−

1

2
.

This example explicitly shows the possibility of an enhancment of the lower bound on the
classical capacity with increasing degree of memory s.

It is convenient to use the parameter ξ as arising from the spectrum of Venv-matrix (see
Eq. (4.13))

Euξ =
(
Nenv +

1

2

)
e±2s cos ξ, (4.4)

labeling both modes (if ξ ∈ [0, π]) and eigenvalues (if ξ ∈ [0, 2π]). Plus and minus in
Eq. (4.4) stand for u = q and u = p, respectively. Due to the mirror symmetry of
eigenvalues (4.4) over quadratures, the symplectic spectrum and the stages distribution
have to be symmetric with respect to the point π/2, therefore the spectral densities below
are considered only in the interval [0, π/2].

If w < 1 it is possible to have one of the following stages distributions according to
the properties of the derivative ∂Cξ/∂Nξ(Nξ = 0) studied in zeroth-order approximation1

(accordingly to the procedure of the previous chapter):

1Quite generally, without any approximation this distribution of modes over stages does not hold.
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Figure 4.2: Going from top-left clockwise the spectral densities ν̄ξ, νξ, Cqξ, Iqξ (for Ωij = δi,j+1 + δi,j−1)
are plotted vs the parameter ξ forN = 0, 0.05, 0.67, 1, 2, 3.5, 6, 9, 11 (from bottom to top curve for quantities
ν̄ξ, Cqξ, Iqξ, and from top to bottom curve for quantity νξ). Solid, dotted and dashed parts of curves
correspond to (3,3,3), (2,3,2) and (2,1,2) cases, respectively. Dash-dotted curve corresponds to the case
of all modes belonging to the second stage. The values of other parameters used are Nenv = s = 1, η = 0.5.

i) a mixture of second and third stages (2,3,2);

ii) a mixture of second and first stages (2,1,2);

iii) all modes belonging to the second stage (2,2,2) which happens for a single value N2

of the parameter N , given s, η and Nenv.

If N > N2 or N < N2 the case (2,3,2) or (2,1,2) holds with the center of the interval
[0, π] filled by the third or the first stage, respectively. The point of stages transition will
be labelled by τ ∈ [0, π/2]. The possible stages distributions and dependence of τ from
N are sketched in Fig.4.1. The continuity of the spectral density Cuξ at points of stages
transition τ requires to hold Auτ = Ouτ which can be rewritten as

x = x(τ) = ηIuτ + (1− η)Euτ . (4.5)

Here u = q gives Iqτ = e2s cos τ/2 (see Eq. (3.38)) for (2,3,2) and u = p gives Ipτ = 1/2
for (2,1,2) (different quadratures are used in these cases because of either Cqξ or Cpξ has a
transition point belonging to the interval of τ).

Then, the transcendent equation for x (see Eqs. (3.45) and (3.46)) can be rewritten as
an equation for τ

η

[
N +

τ1
π
− 1

π

∫ τ

0

Iqξ dξ
]
+

1− η

π

∫ τ2

0

Epξdξ =
τ2
π
x, (4.6)
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Figure 4.3: Exact solution, first-order and zeroth-order approximations for spectral density Iqξ vs ξ for
N = 1 (left) and N = 0.01 (right). The values of other parameters are Nenv = 0.5, s = 2.5, η = 0.95. Solid,
dotted and dashed parts of curves correspond to (3,3,3), (2,3,2) and (2,1,2) cases, respectively. Functions
with maximum and minimum variations correspond to exact solution and zeroth-order approximation,
respectively.

where (τ1, τ2) is equal to (τ, τ) for (2,1,2) and to (π/2, π − τ) for (2,3,2). Moreover, x
is given by Eq. (4.5) and Iqξ is the spectral density for the second stage which can be
found as solution of functional equation obtained from Eq. (3.41) or its approximations
(see Eqs. (3.47), (3.48)) after the replacements discussed at the begining of this section.
By substituting τ = π/2 in Eq. (4.6) one can find N2. Comparing it with the actual
energy restriction one can get correct stages distribution. Then, solving Eq. (4.6) with the
found stages distribution one can arrive at τ and x. Finally, C is expressed through these
parameters as follows (see Eqs. (1.27) and (1.28)):

C =

(
1− 2

π
τ3

)[
g

(
x− 1

2

)
− g((1− η)Nenv)

]

+
2

π

∫ τ

0

[
g

(√
xOqξ −

1

2

)
− g

(√
OqξOpξ −

1

2

)]
dξ,

where

Oqξ = ηIqξ + (1− η)Eqξ, (4.7)

Opξ =
η

4
I−1
qξ + (1− η)Epξ, (4.8)

τ3 is equal to π/2 for (2,1,2) and to τ for (2,3,2).
The “quantum water filling” effect for the considered model is shown in Fig.4.2 for

symplectic spectral densities νξ, νξ and spectral densities Cqξ, Iqξ. Graphs of Iqξ calcu-
lated through exact solution2, zeroth-order and first-order approximations are shown in
Fig.4.3. Despite some visible difference between exact and approximate spectral densities
the corresponding symplectic spectral densities are almost equal, thus resulting to a dif-
ference less than 0.05% between C calculated exactly and approximately. The small value
of this difference can be explained analogously to the single-mode case discussed in the
previous chapter.

2In this section the term “exact solution” means that mode transcendent equation is not approximated,
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Figure 4.4: On the left, the quantity C is plotted vs s for values of η going from 0.1 (bottom curve) to
0.9 (top curve) with step 0.1. The values of the other parameters are N = Nenv = 1. Solid parts of curves
correspond to the (3,3,3) and (2,1,2) cases, respectively. Dotted part of curves correspond to (2,3,2) case.
On the right, the maximum of C over Venv is plotted vs Menv for values of η = 0.1, 0.5, 0.9 going from
bottom to top curve. Solid and dotted curves corresponds to Ω = I and Ωij = δi,j+1 + δi,j−1, respectively.
The value of the other parameter is N = 1.

The solution of Lagrange equations can be interpreted as “quantum water filling” in
analogy with usual (classical) “water filling” introduced for classical Gaussian channels
with memory (see e.g. [14]). The dependence of the found spectral densities (also symplec-
tic ones) from N is similar to filling a vessel with water. The form of the vessel is defined
by the model Venv and transmissivity η. The symplectic spectral density νξ goes always
up by increasing N (with respect to νξ(N = 0)), while νξ goes always down (or does not
change). Probably, for environment models showing correlation (memory) among modes,
the presence of the second stage gives rise to capillary effects on the edges of the vessel
resulting to a “water level” with meniscus form.

In Fig.4.4-left the classical capacity for Ω-model is plotted versus s for different values
of η and fixed N , Nenv. The limit of the one shot capacity (3.24) when s→∞ is still valid.
Presumably, as one can see from Fig.4.4-right, this limit is valid in the more general case
of function3 maxVenv(C) when Menv →∞.

4.2 Exact solution

To find the exact solution for Ω-model, one needs to completely characterize analytically
“threshold functions” (3.27) and (3.28) as depending on mode parameter ξ (after taking
the limit n→∞). That would allow to find all possible stages distributions and write the
equations for the bounds between stages.

however the approximated chain (3.44) is used.
3The maximum is taken over arbitrary admissable environments Venv which have the same Menv.
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Figure 4.5: The quantity thr1→2 is plotted vs ξ for Ω-model for values of η = 0.25, 0.32, 0.37, 0.45 going
from bottom to top curve. The value of other parameters are Nenv = 0.01, s = 1. The horizontal line
corresponds to some value of energy constraint N (or, equivalently, λ) and crosses function thr1→2(ξ) in
the points of stages’ transitions. The curve corresponding to the value of η = 0.32 has (approximately) its
saddle-point where two of three roots of equation thr1→2(ξ) = const. coincide.

Let us introduce the notations:

Oqx =
η

2
+ (1− η)

(
Nenv +

1

2

)
x, O′

px = −(1 − η)

(
Nenv +

1

2

)
1

x2
,

Opx =
η

2
+ (1− η)

(
Nenv +

1

2

)
1

x
, O′′

px = 2(1− η)

(
Nenv +

1

2

)
1

x3
,

µ′
x =

η(1− η)

2

(
Nenv +

1

2

)(
1− 1

x2

)
, µ′′

x = η(1− η)

(
Nenv +

1

2

)
1

x3
,

µx =
η2

4
+ (1− η)2

(
Nenv +

1

2

)2

+
η(1− η)

2

(
Nenv +

1

2

)(
x+

1

x

)
,

where x := e2s cos ξ (this eliminates the variable s from the equations) and µx ≡ ν2
x. Then,
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Figure 4.6: The quantities thr1→2 and thr2→3 are plotted vs ξ for Ω-model for values of η =
0.15, 0.35, 0.55, 0.75, 0.85 going from bottom to top curve. The value of other parameters are Nenv = 0.01,
s = 1. The horizontal line corresponds to some value of energy constraint N (or, equivalently, λ) and
crosses these threshold functions in the points of stages’ transitions.

the threshold (3.27) with its derivatives can be written as

thr1→2(x) =
η

Opx
g1, (4.9)

thr′1→2(x) =
η

Opx

[
g1 + g2
2µx

µ′
x −

O′
px

Opx
g1

]
,

thr′′1→2(x) =
η

Opx

[
g2 − g1 + g3

4µ2
x

µ′2
x +

g1 + g2
2µx

(
µ′′
x −

O′
px

Opx
(µ′

x + 1)

)
− g1

(
O′′

px

Opx
−

2O′2
px

O2
px

)]
,

where all gk-functions have the argument
√
µx. In particular, saddle-point (see Fig.4.5)

corresponds to x which is a root of the system of equations

{
thr′1→2(x) = 0,

thr′′1→2(x) = 0.

The quantities thr1→2(ξ) and thr2→3(ξ) (see Eqs. (4.9) and (3.28)) are plotted in Fig.4.6
as functions of ξ for different values of η and fixed s, Nenv.

In explicit form the threshold thr1→2 can be written as

thr1→2(ξ) = η

√
η
2
+ (1− η)(Nenv +

1
2
)e2s cos ξ

η
2
+ (1− η)(Nenv +

1
2
)e−2s cos ξ

g′
(
νξ(N = 0)− 1

2

)
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and should be analyzed as the function of ξ ∈ (0, π/2) depending on parameters s, η and
Nenv. Despite the threshold thr2→3 given by Eq. (3.28) has simple form and monotonic over
ξ for all parameters s, η and Nenv, the threshold thr1→2 is not simple. E.g. the equation
thr1→2(ξ) = const can have three different roots, which does not allow to write simple
stages distribution similar to that in approximate solution discussed in previous section.
This problem is currently under investigation.

4.3 Environment purity theorem

The following theorem related with purity of channel environment can be proved.

Theorem: The maximum of capacity over the set of environment states {Venv} with
fixed average amount of photons Menv can be achieved on pure state Venv, i.e.

eukeu⋆k = 1/4.

Proof: At first, notice that the following Lemma takes place.

Lemma: Suppose, that real numbers a, b, c, d > 0, d > b, a− b > c− d and f(x) is
monotonically growing concave function in interval x ∈ (0,∞), then

f(a)− f(b) > f(c)− f(d).

The environment model for multi-mode channel can be represented as

Venv =
n⊕

k=1

V (k)
env , where V (k)

env =

(
N (k)

env +
1

2

)[
esk 0
0 e−sk

]
,

Menv =
1

n

n∑

k=1

M (k)
env, where M (k)

env =

(
N (k)

env +
1

2

)
cosh(sk)−

1

2
.

If the kth mode belongs to the first stage, then Ck ≡ 0. If the kth mode belongs to the
third state, then (see Eq. (3.40))

max
N

(k)
env

Ck = Ck(N
(k)
env = 0),

i.e. it is optimal to make the kth mode pure. Remember, that is was proved for eqk > epk
and cqk = 0 that oqk > apk > opk (see Eq. (3.5)).

Let us now change variables for kth mode by preserving M
(k)
env and making new N

′(k)
env = 0

(the eigenvalues iuk and cuk remain the same): eqk → e′qk, epk → e′pk. This results to
o′qk > oqk and o′pk < opk, i.e. o′qk − o′pk > oqk − opk, while o′qk + o′pk = oqk + opk. It means
that ν ′

k < νk (see analogous proofs in Subsec. 3.1.1).
One can then write down:

o′qk(o
′
pk + ηcpk)− o′qko

′
pk > oqk(opk + ηcpk)− oqkopk,

which is equivalent to o′qk > oqk. Taking into account the above inequality and applying
the Lemma for f(x) =

√
x one gets

√
o′qk(o

′
pk + ηcpk)−

√
o′qko

′
pk >

√
oqk(opk + ηcpk)−

√
oqkopk ,
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i.e. ν ′
k−ν ′

k > νk−νk. Finally, applying again the Lemma for the function f(x) = g0(x−1/2)
one gets C ′

k > Ck. �
Thus, optimal environment Venv can be always chosen in pure state, where each kth

mode is completely characterized by its squeezing sk. The important and still open question
is the form of function s(k) (or s(ξ) for the case of n→∞) which gives the optimal channel
memory. As it will be shown in the next section, this function is not a constant.

4.4 Violation of quadrature and mode symmetries:

role of memory

Finally, let us discuss the role of squeezing and memory in lossy bosonic channel. Con-
sidering the lower bound (3.14) as a function on the set of environment models with fixed
Menv, one can see that it shows a symmetry breaking over quadratures. In fact despite the
symmetry of all equations over quadratures, the maximum of C is achieved when eq 6= ep.
This also follows from the above environment purity theorem applied to the single-mode
channel.

Now let us analyze the symmetry of the capacity over modes. Suppose, that the average
amount of photons in the environment Menv is fixed and the capacity C for memoryless
and memory channel (for Ω-model) is compared. As far as the Holevo-χ quantity (1.28)
is symmetric over modes one can expect that the capacity for memoryless channel will
always be higher. However, this is not true as results from the symmetry breaking over
modes. Actually, this can be seen in Fig.4.4-right where the capacity C maximized over
parameters s, Nenv (thus, always Nenv = 0) for memory and for memoryless cases is plotted
versus Menv.
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Conclusions and outlook

In conclusion, a powerful and versatile tool for the estimation of Gaussian quantum chan-
nels capacities and transmission rates was developed in this thesis. It is based on the
perturbative expansion of the von Neumann entropy of Gaussian states as function of the
symplectic eigenvalues of the quadratures covariance matrix [9]. This method was ap-
plied to lossy bosonic channels. The found lower bounds on classical capacity are reliable
rates of communication which can be achieved using solely Gaussian states for encoding
classical information. Thus, this thesis generalizes the results of Refs. [31], [11] and [4].
The expansion of the von Neumann entropy can be as well applied for the evaluation and
optimization of other entropic functions.

One can define a wide set of Gaussian channels which have the same capacity. Their en-
vironment covariance matrices are related each other by rotations which are simultaneously
orthogonal and symplectic. The simplest channels from this set are those with diagonal
matrices, thus their symplectic eigenvalues and energy restrictions are functions on the
same matrix spectra. In turn, the approach proposed in this thesis can be extended to
other capacities and Gaussian channels when the problem is spectral (the analysis for the
additive noisy channel is currently ongoing at QuIC group of Universitè Libre de Brux-
elles). Thus, the problems related with finding quantum, private and classical-assisted
capacities (whose properties are still not well known) can be considered as the next ones
for investigation, as tools already developed in this thesis should help essentially with their
solution.

Let us discuss in detail the results obtained. A method to analytically calculate clas-
sical capacities and transmission rates of Gaussian quantum channels is found when the
corresponding optimization problem is spectral. Algorithms suggested for the solution of
this problem use some recent achievments in optimization theory where the problem is
known as “convex separable minimization” [32]. Two algorithms (static and dynamic)
were proposed in this thesis to solve the problem. The static algorithm is equivalent to
the approach suggested in [32], while dynamic algorithm is essentially faster for this task,
and it is simpler to proof.

Beside classical capacity, analytical relations expressing heterodyne and homodyne rates
through quantum states covariance matrices were found for lossy bosonic channel with
memory. It was shown that these rates do not reach the capacity except of some limit cases.
It was found that both heterodyne and homodyne rates are closely related with a zeroth-
order approximation to classical capacity. In particular, the homodyne rate coincides with
this approximation for low energy restriction at channel input, while the heterodyne rate
equals this approximation calculated for modified channel environment. Furthermore, all
quantities related with the heterodyne rate get a simple form after suitably re-expressing
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the involved eigenvalues and matrices.
The classical capacity was shown to depend only on the input energy constraint N

and on the average amount of environment photons Menv, when N is above a threshold
value. In this case the type of memory does not play any role if environment is pure,
and can affect capacity only through modes’ Menvs. By considering the behavior of the
classical capacity as function of Menv, the existence of critical channel parameters was
discovered. It was found that lossy bosonic channel has two of these parameters: critical
beam-splitter transmissivity η⋆ and critical thermal environment photons N⋆

env which are
related according to the equation (1−η⋆)(N⋆

env+1/2) = 1/
√
12. In particular, the value of

critical transmissivity for pure channel environment is equal to 1− 1/
√
3. The parameter

N⋆
env also exists for additive noise channel.
These critical parameters reveal themselves as follows. Suppose, that the capacity is

analyzed as function of Menv for fixed Nenv (it corresponds to variation of environment
squeezing s) or η (if η is fixed, then functions corresponding to different parameters of
Nenv are considered, and vice versa). For such functions the optimal squeezing s⋆ (or,
equivalently, optimal M⋆

env) is finite if transmissivity η > η⋆ (or, for the other set of
functions, Nenv < N⋆

env) and infinite otherwise (the parameter N is always fixed in this
consideration). These critical parameters probably do not depend on any other channel
parameters including the type of memory model which make them fundamental quantities
associated with the classical capacity of any Gaussian channel.

The study of the dependence of capacity fromMenv also revealed violation of quadrature
and mode symmetry in lossy bosonic memory channel. It means that either memory
or memoryless channels may be preferable (depending on the channels parameters) to
achieve higher capacity. This also poses the question on the type of optimal memory model
which is characterized by pure environment. Consequently entanglement becomes useful
for information transmission when higher squeezing is optimal, as far as entanglement is
related to multimode squeezing. It was also shown that if environment state is squeezed,
optimal input state is usually squeezed too. Such the properties can have the same nature
as a quantum phase transition found in [36] for qubit memory channels.

The above results were demonstrated on a particular model to describe memory effects
in a lossy bosonic channel. Memory effects in this model have nontrivial long range cor-
relations (non-Markovian). Notwithstanding, the model has allowed to characterize the
channel over an arbitrary number of uses for classical information transmission. As such
it represents one of the seminal works studying the asymptotic behavior of a Gaussian
memory channel.
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Appendix

A. Eigenvalues for Ω-model

Let us consider the n× n matrix

Ω =




0 1 0 . . . . . . . . . . . . 0
1 0 1 0 . . . . . . . 0
0 1 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 1 0 1 0
0 . . . . . . . 0 1 0 1
0 . . . . . . . . . . . . 0 1 0




.

Its eigenvalues are values λ such that the equation

Ωx = λx (4.10)

has non-zero solution with respect to vector x. One way to obtain the eigenvalues of Ω is
to note that Ω = 2I − T , where I is identity matrix and T is the following n× n matrix:

T :=




2 −1 0 . . . . . . . . . . . . 0
−1 2 −1 0 . . . . . . . . 0
0 −1 2 −1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 2 −1 0
0 . . . . . . . . 0 −1 2 −1
0 . . . . . . . . . . . . 0 −1 2




.

Being a finite-difference counterpart of operator − d2

dx2 , the matrix T is very important
in computational mathematics and its properties are well studied. It can be shown by
straightforward substitution that matrix T has the following eigenvalues [37]:

λ
(T )
j = 2

(
1− cos

πj

n+ 1

)

and j-th normalized eigenvector xj has the components

v
(T )
j,k =

√
2

n + 1
sin

jkπ

n+ 1
, k = 1, . . . , n.
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Thus, the matrix Ω will have the same eigenvectors v
(T )
j and its eigenvalues turn out to be

λ
(Ω)
j = 2− λ

(T )
j = 2 cos

πj

n + 1
. (4.11)

For any matrix such as

A =
1

2

(
eγΩ 0
0 e−γΩ

)
, γ ∈ R, (4.12)

we get the eigenvalues

λ
(A)
±,k =

1

2
e±2γ cos( πk

n+1), (4.13)

as direct consequence of Eq.(4.11).
Another, more constructive way to derive eigenvalues of Ω is to treat the system of

linear equations (4.10) as recurrence equation

x(k−1) + λx(k) + x(k+1) = 0, k = 1, . . . , n (4.14)

with boundary conditions
x(0) = 0, x(n+1) = 0. (4.15)

In order to solve it, we first write characteristic equation

q2 + λq + 1 = 0. (4.16)

Then, if the roots of characteristic equation q1 and q2 are different (non-degenerate case),
general solution of Eq. (4.14) has the form [38]:

x(k) = C1q
k
1 + C2q

k
2 ,

where C1 and C2 are chosen to satisfy boundary conditions (4.15). If the roots are equal
(q1 = q2 = q) we have degenerate case and the general solution is

x(k) = C1q
k + C2kq

k.

It can be seen from Eq. (4.16) that in degenerate case λ = ±2.
Let us impose boundary conditions (4.15). In degenerate case q = ±1, therefore (4.15)

yields C1 = 0 and C2 = 0. Since we are interested in non-zero solutions of (4.10) degenerate
case gives no eigenvalues and we conclude that λ 6= ±2.

In non-degenerate case C2 = −C1 and C1

(
qn+1
1 − qn+1

2

)
= 0. Since solution is non-

trivial one, (
q1
q2

)n+1

= 1. (4.17)

From (4.16) we obtain q1,2 = −λ
2
±
√(

λ
2

)2 − 1. After substituting q1,2 into (4.17) we arrive

at the equation 


λ
2
−
√(

λ
2

)2 − 1

λ
2
+
√(

λ
2

)2 − 1




n+1

= 1
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and finally we obtain the equation for eigenvalues of matrix Ω:

λ
2
−
√(

λ
2

)2 − 1

λ
2
+
√(

λ
2

)2 − 1
= ei

2πk

n+1 , k = 1, . . . , n. (4.18)

k 6= 0 since it corresponds to degenerate case. Let us represent λ/2 as coshχ, then previous
relation can be rewritten as

tanhχ =
1− ei

2πk

n+1

1 + ei
2πk

n+1

or

tanhχ = tanh

(
iπk

n + 1

)

and

χ =
iπk

n+ 1
+ 2πim,

where m is any whole number. Consequantly, we get eigenvalues of Ω-matrix (4.11).
Interesting to note that (Ω−λI)-matrix is a particlulary case of n×n 3-diagonal matrix

known in linear algebra:

Ωgeneral =




α + β αβ . . . . . . . . . . . . . . . 0
1 α + β αβ . . . . . . . 0
... 1 α + β αβ . . . 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . αβ

0 0 . . . . . . . . . . 1 α + β




.

Its has the determinant [39]:

det Ωgeneral =
αn+1 − βn+1

α− β
. (4.19)

If we put

α = −λ
2
+
√(

λ
2

)2 − 1,

β = −λ
2
−
√(

λ
2

)2 − 1
(4.20)

we obtain characteristic equation for Ω-matrix (4.18).

B. Trace properties for Ω-model

We show that dealing with matrices of the form of Eq.(4.12), the average number of photons
per mode remains finite even in the limit n→∞. To this end we consider

lim
n→∞

Tr(A)

2n
= lim

n→∞

Tr(A)

2(n+ 1)
=

1

4

(
lim
n→∞

Tr(eγΩ)

n+ 1
+ lim

n→∞

Tr(e−γΩ)

n+ 1

)
. (4.21)

55



By taking into account Eq.(4.13) we can rewrite the first term at right-hand side of
Eq.(4.21) as

lim
n→∞

Tr(eγΩ)

n+ 1
= lim

n→∞

∑n
k=1 e

2γ cos πk

n+1

n + 1
.

This relation is the limit of Riemann sum becoming an integral for the function f(x) =
e2γ cos πx. This leads to a modified Bessel function of the first kind and zero-order [40]

lim
n→∞

Tr(eγΩ)

n+ 1
=

∫ 1

0

e2γ cos πx dx =
1

π

∫ π

0

e2γ cos ξ dξ = I0(2γ).

Since the Bessel finction I0 is even, the result of Eq.(4.21) is I0(2γ)/2 whose asymptotic
behavior is e2γ/(4

√
πγ) for large γ. The existence of a finite limit in Eq.(4.21) allows us to

conclude that the considered matrices (similar to Eq. (4.12)) give rise to a physical model.

C. Properties of g-function

Von Neumann entropy of Gaussian state involves consideration of g-function [8]:

g

(
v − 1

2

)
:=

(
v +

1

2

)
log2

(
v +

1

2

)
−
(
v − 1

2

)
log2

(
v − 1

2

)
, (4.22)

where v is a symplectic eigenvalue of the covariance matrix characterizing a Gaussian state.
Despite the absence of a small parameter for the expansion of the function g, we proceed
as follows. The function g(v − 1/2) is not analytic in neighbourhood of 1/2 and infinity,
however after subtracting the logarithm part it becomes analytic on the region v > 1/2.
Hence, we may write (see also [9])

g

(
v − 1

2

)
= log2 v +

1

ln 2

[
1− 1

2

∞∑

j=1

(2v)−2j

j(2j + 1)

]
. (4.23)

Thus, to the zeroth-order approximation we have

g

(
v − 1

2

)
≈ log2 v +

1

ln 2
, (4.24)

where we have neglected terms of the order O(1/v2), and in the first-order approximation
it is

g

(
v − 1

2

)
≈ log2 v −

1

(24 ln 2)v2
+

1

ln 2
. (4.25)

Allowing perturbation of logarithm by the first terms in the series (4.23) we can also
construct next-order approximations.

It is convenient to use function

gk(v) = vkg(k)(v − 1/2). (4.26)

Thus, g0(v) = g(v − 1/2), g1(v) = vg′(v − 1/2) and so on. It also has simple rules to take
derivatives, e.g.:

g′1(v) =
g1(v) + g2(v)

v
, g′2(v) =

2g2(v) + g3(v)

v
, g′′1(v) =

2g2(v) + g3(v)

v2
. (4.27)

In zeroth-order approximation g1(v) ≡ 1.
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[27] Schäfer J., Daems D., Karpov E., and Cerf N. J., “Capacity of a bosonic memory
channel with Gauss-Markov noise”, Phys. Rev. A vol. 80, pp. 062313-1–062313-11,
2009.

[28] Bertrand J., and Bertrand P., “A tomographic approach to Wigner’s function”, Found.
Phys. vol. 17, pp. 397–405, 1987.

59



[29] Mancini S., Man’ko V. I., and Tombesi P., “Symplectic Tomography As Classical
Approach To Quantum Systems”, Phys. Lett. A vol. 213, pp. 1–6, 1996.

[30] Mancini S., Man’ko V. I., and Tombesi P., “Classical-Like Description Of Quantum
Dynamics By Means Of Symplectic Tomography”, Found. Phys. vol. 27, pp. 801–824,
1997.

[31] Caves C. M., Drummond P. D., “Quantum limits on bosonic communication rates”,
Rev. Mod. Phys. vol. 66, pp. 481–537, 1994.

[32] Stefanov S. M., “Convex Separable Minimization Subject to Bounded Variables”,
Comp. Opt. Appl. Vol. 18, pp. 27–48, 2001.

[33] Stefanov S. M., “Separable Programming. Theory and Methods”, Kluwer Academic
Publishers: Dordrecht- Boston-London, 2001.

[34] Lo C. F., and Sollie R., “Generalized multimode squeezed states”, Phys. Rev. A vol. 47,
p. 733–735, 1993.

[35] Datta N., and Dorlas T., “The coding theorem for a class of quantum channels with
long-term memory”, J. Phys. A vol. 40, pp. 8147–8164, 2007.

[36] Plenio M, and Virmani S., “Spin Chains and Channels with Memory”, Phys. Rev.
Lett. vol. 99, p. 120504-1–120504-4, 2007.

[37] Demmel J., Applied numerical linear algebra, SIAM, Philadelphia, PA, 1997.

[38] Samarskii A., The theory of difference schemes. Marcel Dekker, New York, 2001.

[39] Proskuryakov, Sbornik zadatch po lineynoy algebre [in russian], Moscow.

[40] Abramowitz M., and Stegun I. A., Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables, Dover, New York, 1964.

60


