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CHAPTER 1

LOOPHOLE-FREE TEST OF QUANTUM NONLOCALITY

WITH CONTINUOUS VARIABLES OF LIGHT

R. Garćıa-Patrón and N. J. Cerf

QUIC, Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050
Brussels, Belgium

J. Fiurášek

Department of Optics, Palacký University, 17. listopadu 50, 77200 Olomouc,
Czech Republic

It is shown that a loophole-free Bell test can be achieved using con-
tinuous variables of light. A feasible optical setup is proposed for this
purpose, based on a non-Gaussian state of light and high-efficiency ho-
modyne detectors. The non-Gaussian entangled state can be generated
from a two-mode squeezed vacuum state by subtracting a single photon
from each mode using beam splitters and standard low-efficiency single-
photon detectors. A Bell violation exceeding 1% can be attained with
6 dB squeezed light and an homodyne efficiency around 95%. A detailed
feasibility analysis, including the effect of the detector efficiency, the elec-
tronic noise, the impurity of the non-Gaussian state, and the probability
of false triggers, suggests that this method opens a promising avenue
towards a complete experimental Bell test.

1. Introduction

Over the last century, quantum physics has developed into a powerful tool,

allowing the description of a wide range of phenomena at the microscopic

scale. Technologies such as lasers, NMR, or semi-conductor based systems

would be impossible without quantum physics. Even if quantum theory has

reached a high level of maturity, some of its basic concepts still are very

counterintuitive and have puzzled physicists since the early days of the the-

ory. Feynman’s famous expression “I think I can safely say that nobody

understands quantum mechanics” is a good illustration of this opinion.

1



December 28, 2005 16:11 WSPC/Trim Size: 9in x 6in for Review Volume BellCVchapter
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Since the inception of quantum mechanics, several physicists have consid-

ered this counterintuitive aspect as an evidence of the incompletude of the

theory. There have been repeated suggestions that its probabilistic features

may possibly be described by an underlying deterministic substructure. The

first attempt in this direction originates from the famous paper by Einstein,

Podolsky, and Rosen (EPR) 1 in 1935. There, it was advocated that if “lo-

cal realism” (causality + deterministic substructure) is taken for granted,

then quantum theory is an incomplete description of the physical world.

The EPR argument gained a renewed attention in 1964, when John Bell

derived his famous inequalities, which must be satisfied within the frame-

work of any local realistic theory 2. Bell showed that any such deterministic

substructure model (also called “hidden-variables model”), if local, yields

predictions that significantly differ from those of quantum mechanics. The

merit of Bell inequalities lies in the possibility to test them experimen-

tally, allowing physicists to test whether either quantum mechanics or local

realism is the correct description of Nature.

2. Bell inequalities

In this chapter, we will use the Clauser-Horne-Shimony-Holt inequality

(called Bell-CHSH inequality in the following), originally devised for a two-

qubit system 3. Let us consider the following thought experiment, which

we will analyze from the point of view of local realism. The experiment

involves three distant parties, Sophie, Alice, and Bob. Sophie (the source)

prepares a bipartite state and distribute it to Alice and Bob (the two usual

partners), see Fig. 1. Then, Alice and Bob randomly and independently de-

cide between one of two possible quantum measurements A1 or A2 (B1 or

B2), which should have only two possible outcomes +1 or −1. The timing

of the experiment should be arranged in such a way that Alice and Bob

do their measurements in a causally disconnected manner. Thereby, Alice’s

measurement cannot influence Bob’s, and vice-versa. Local realism implies

two assumptions:

(1) Realism: the physical properties A1, A2, B1, B2 have definite values

a1, a2, b1, b2, which exist independently of their observation. This im-

plies the existence of a probability distribution P (a1, a2, b1, b2), depen-

dent on how Sophie generates the bipartite state.

(2) Locality: Alice’s measurement choice and outcome do not influence the

result of Bob’s measurement, and vice-versa. The measurement events

are separated by a spacelike interval.
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Fig. 1. Sophie prepares a bipartite state and distributes it to Alice and Bob, who
perform each a measurement. Alice measures either A1 or A2, while Bob measures B1

or B2. In a local realistic theory, there must exist an underlying probability distribution
p(a1, a2, b1, b2), generated by Sophie.

If we consider local realism as the correct description of the physical world,

then we obtain the Bell-CHSH inequality

S = |〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉| ≤ 2, (1)

where 〈ajbk〉 denotes the average over the subset of experimental data where

Alice measured aj and, simultaneously, Bob measured bk. Indeed, if there is

an underlying probability distribution p(a1, a2, b1, b2), then each realization

of it contributes by a1(b1 + b2) + a2(b1− b2) = ±2 to the average, implying

Eq. (1).

Now, if we consider that Sophie generates and distributes an entan-

gled pair of qubits, quantum mechanics predicts S = 2
√

2, which is in

contradiction with local realism. Thus, an experimental test of Bell-CHSH

inequalities where a violation of S ≤ 2 is observed disproves any classical

(local realistic) description of Nature.

3. Experimental Bell test and related loopholes

From the beginning of the 80’s, many experimental Bell tests 4,5,6,7,8,9,10

have been performed, observing the violation of Bell inequalities predicted

by quantum mechanics. All these schemes used optical setups because, at

that time, it was the only known way of generating and distributing entan-

gled particles (photons) at a distance in order to make Alice’s and Bob’s

measurements causally disconnected. Unfortunately, the available single-

photon detectors suffer from a low efficiency ηPD, which can be exploited

by a local realistic model to yield a violation. Thus, to reject local realism,
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it is necessary to make the extra assumption that the registered pairs form

a fair sample of the emitted pairs. So, from a logical point of view, these

experiments do not succeed in ruling out a local realistic model; this is the

so-called detector-efficiency loophole 11,12,13. This loophole has been closed

in a recent experiment with trapped ions 14, thanks to the high efficiency of

the measurement of the ion states. However, the ions were held in a single

trap, only several micrometers apart, so that the measurement events were

not spacelike separated, opening in turn the so-called locality loophole 15,16.

So far, no experimental test has succeeded to close both loopholes at the

same time, that is, the measured correlations may be explained in terms of

local realistic theories exploiting the low detector efficiency or the timelike

interval between the two detection events. It was suggested that two distant

trapped ions can be entangled via entanglement swapping by first preparing

an entangled state of an ion and a photon on each side and then project-

ing the two photons on a maximally entangled singlet state 17,18,19,20. Very

recently, the first step toward this goal, namely the entanglement between

a trapped ion and a photon emitted by the ion, has been observed exper-

imentally 21. However, the entanglement swapping would require interfer-

ence of two photons emitted by two different ions, which is experimentally

very challenging. An interesting alternative to the atom-based approaches
17,22,23 consists of all-optical schemes based on continuous variables of light.

Indeed, the balanced homodyne detection used in these schemes can exhibit

a high detection efficiency 24, sufficient to close to detection loophole.

4. Bell test with continuous variables of light

Quantum continuous variables of light have been successful used to realize

some of the standard informational tasks traditionally based on qubits.

Unfortunately, the entangled two-mode squeezed state that can easily be

generated experimentally 25,26,27 cannot be directly employed to test Bell

inequalities with homodyning. Indeed, as noted by Bell himself, this state

is described by a positive-definite Gaussian Wigner function, which thus

provides a local realistic model that can explain all correlations between

quadrature measurements (carried out by balanced homodyne detectors).

Thus, similarly as in the case of the purification of continuous variable

entanglement 28,29,30,31,32, one has to go beyond the class of Gaussian states

or Gaussian operations.

In particular, it is possible to obtain a Bell violation with a Gaussian

two-mode squeezed vacuum state by performing a non-Gaussian measure-
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ment, for example a photon-counting measurement 33. As shown in Fig. 2,

Sophie prepares an entangled state and distributes it to Alice and Bob. The

two possible measurements on Alice’s and Bob’s sides consist in randomly

choosing between applying the displacement D(α) or no displacement, fol-

lowed by a measurement of the parity of the number of photons n impinging

on the single-photon detector. The resulting parity ai = (−1)n gives the

binary result used in the Bell-CHSH inequality. It can be shown33 that

S = |W (0, 0) +W (α, 0) +W (0, α)−W (α, α)| (2)

where W (x, p) is the Wigner function of the entangled state, violates the

Bell-CHSH inequality S ≤ 2 by about 10% for an appropriate choice

of α. Recent proposals using more abstract measurements described in

Refs. 34,35,36 gave similar results. Note, however, that these measurements

are either experimentally infeasible or suffer from a very low detection effi-

ciency, thereby re-opening the detection loophole.

D(  ) D(  )α

| α >| α >

(−1) (−1)
n n

EPR source
(OPA)

α

Fig. 2. Bell test using the parity of the number of photons impinging on each pho-
todetector. Sophie prepares an entangled state (EPR) and distributes it to Alice and
Bob. Each of them either applies a displacement D(α) or not, and uses the parity of the
number of photon measured using a photodetectors with single-photon resolution 33.

Considering the current state of the art in quantum optics technologies,

the scheme based on high-efficiency homodyne detection seems to be the

most promising way of closing the detection loophole. However, since homo-

dyning is a Gaussian measurement, it is then necessary to generate highly

non-classical non-Gaussian entangled states, whose Wigner function is not

positive definite. In addition, one has to develop a method for converting

the continuous result obtained by homodyne measurement into a binary

result (the so-called “binning” method).

Several recent theoretical works have demonstrated that a violation

of Bell inequalities can be observed using balanced homodyning provided

that specific entangled light states such as pair-coherent states, squeezed
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Schrödinger cat-like states, or specifically tailored finite superpositions of

Fock states, are available 37,38,39,40. More specifically, the violation of the

Bell-CHSH inequality was derived in Ref. 39 for a state of the form

|ψin〉AB =

∞∑

n=0

cn|n, n〉AB , (3)

with |n〉 denoting Fock states, and a binning based on the sign of the mea-

sured quadrature. Optimizing over the quadrature angles and probability

amplitudes cn (see Fig. 3), one obtains a maximal Bell-CHSH inequality vi-

olation of S = 2.076. Interestingly, it was shown in Ref. 40 that the highest

possible violation of S = 2
√

2 can be obtained with the bipartite state

|ψin〉AB = |f, f〉+ eiθ|g, g〉, (4)

where f(q) and g(q) are the wave functions of some specific states, and

a more complicated binning based on the roots of f(q) and g(q) is used.

Unfortunately, no feasible experimental scheme is known today that could

generate the states required in Refs. 37,38,39,40.
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With photon subtraction
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Fig. 3. Probabilities |cn|2 in the Fock basis of the two-mode squeezed vacuum state with
λ = 0.57 (black), the non-Gaussian state obtained from the previous state by subtracting
one photon from each mode (grey), and the optimal state of Ref. 39 (white).

Recently, it was shown by us together with J. Wenger, R. Tualle-Brouri

and P. Grangier 41, and independently by Nha and Carmichael 42, that

a very simple non-Gaussian state obtained by subtracting a single photon
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from each mode of a two-mode squeezed vacuum state can exhibit a Bell

violation with homodyning. Note that this non-Gaussian state is close to

the optimal state obtained in Ref. 39, as is visible in Fig. 3, and gives a

violation of S = 2.046.

An essential feature of this proposal is that the photon subtraction

can be successfully performed with low-efficiency single-photon detectors
43,44,45, which renders the setup experimentally feasible. In fact, the basic

building block of the scheme, namely the de-gaussification of a single-mode

squeezed vacuum via single-photon subtraction, has recently been demon-

strated experimentally 46.

5. Loophole-free Bell test using homodyne detectors

The conceptual scheme of the proposed experimental setup is depicted in

Fig. 4. A source generates a two-mode squeezed vacuum state in modes A

and B. This can be accomplished, e.g., by means of non-degenerate optical

parametric amplification in a χ(2) nonlinear medium or by generating two

single-mode squeezed vacuum states and combining them on a balanced

beam splitter. Subsequently, the state is de-gaussified by conditionally sub-

tracting a single photon from each beam. A tiny part of each beam is re-

flected from a beam splitter BSA (BSB) with a high transmittance T. The

reflected portions of the beams impinge on single-photon detectors such as

avalanche photodiodes. A successful photon subtraction is heralded by a

click of each photodetector PDA and PDB
45.

ALO LOB

APD PDB
xθ

A

EPR

φθ

Alice

Source

A B

Bob

Laser

xθ
A

Fig. 4. Proposed experimental setup for performing a Bell test with balanced homo-
dyning. The source emits a two-mode squeezed vacuum state in modes A and B. A small
part of the beams is diverted by two highly unbalanced beam splitters BSA and BSB ,
and sent to the single-photon detectors PDA and PDB . The two remaining beams A and
B, which are conditionally prepared in a non-Gaussian entangled state, are sent to Alice
and Bob, who perform each a balanced homodyne detection using their local oscillator
LOA and LOB .
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In practice, the available photodetectors exhibit a single-photon sensi-

tivity but not a single-photon resolution, that is, they can distinguish the

absence and presence of photons but cannot measure the number of photons

in the mode. Nevertheless, this is not a problem here because in the limit of

high T , the most probable event leading to the click of a photodetector is

precisely that a single photon has been reflected by the beam splitter. The

probability of an event where two or more photons are subtracted from a

single mode is smaller by a factor of ≈ 1−T and becomes totally negligible

in the limit of T → 1. Another important feature of the scheme is that the

detector efficiency ηPD can be quite low because a small ηPD only reduces

the success rate of the conditional single-photon subtraction, but does not

significantly decrease the fidelity of this operation.

After generation of the non-Gaussian state, the beams A and B together

with the appropriate local oscillators LOA and LOB are sent to Alice and

Bob, who then randomly and independently measure one of two quadratures

xAθj , x
B
φk

characterized by the relative phases θ1, θ2 and φ1, φ2 between the

measured beam and the corresponding local oscillator.

To avoid the locality loophole, the whole experiment has to be carried

out in the pulsed regime and a proper timing is necessary. In particular,

the measurement events on Alice’s and Bob’s sides (including the choice of

phases) have to be spacelike separated. A specific feature of the proposed

setup is that the non-Gaussian entangled state is conditionally generated

when both “event-ready” (see 15 p. 29 and 105) detectors PDA and PDB

click. This can be viewed as some preselection of the non-Gaussian state

at the source. However, we would like to stress that this does not open

any causality loophole if proper timing is satisfied. Namely, in each ex-

perimental run, the detection of the clicks (or no-clicks) of photodetectors

PDA and PDB at the source should be spacelike separated from Alice’s and

Bob’s measurements. This guarantees that the choice of the measurement

on Alice’s and Bob’s sides cannot in any way influence the conditioning

“event-ready” measurement 15,17,41.

In the proposed experiment, Alice and Bob measure quadratures which

have a continuous spectrum. These quadratures can be discretized by pos-

tulating that the outcome is +1 when x ≥ 0 and −1 otherwise. The two

different measurements on each side correspond to the choices of two relative

phases θ1, θ2 and φ1, φ2. Thus, the quantum correlation E(θj , φk) ≡ 〈ajbk〉
can be expressed as

E(θj , φk) =

∫ ∞

−∞
sign(xAθjx

B
φk

)P (xAθj , x
B
φk

)dxAθjdx
B
φk
, (5)
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where P (xAθj , x
B
φk

) ≡ 〈xAθj , xBφk |ρout,AB |xAθj , xBφk 〉 is the joint probability dis-

tribution of the two commuting quadratures xAθj and xBφk , and ρout,AB de-

notes the (normalized) conditionally generated non-Gaussian state of modes

A and B. The entire data analysis must be performed on a pulsed basis, with

Sophie sending time-tagged light pulses (local oscillator and squeezed light)

to Alice and Bob. In each experimental run, Sophie records whether her two

photodetectors PDA and PDB clicked, while Alice and Bob carry out space-

like separated measurements of one of two randomly chosen quadratures.

After registering a large number of events, the three partners discard all

events obtained in measurement runs where either PDA or PDB did not

click. The correlation coefficients 〈ajbk〉 are then evaluated from all remain-

ing events, and plugged into the S parameter (1).

6. Simplified model with ideal photodetectors

First, we consider a simplified description of the setup, assuming ideal pho-

todetectors (ηPD = 1) with single-photon resolution and conditioning on

detecting exactly one single photon at each detector 43,44. This idealized

treatment is valuable since it provides an upper bound on the practically

achievable Bell factor S. Moreover, as noted above, in the limit of high

transmittance T → 1, a realistic (inefficient) detector with single-photon

sensitivity is practically equivalent to this idealized detector.

The two-mode squeezed vacuum state is expressed in the Fock basis as

|ψin(λ)〉AB =
√

1− λ2

∞∑

n=0

λn|n, n〉AB , (6)

where λ = tanh(s) and s is the squeezing constant. In the case of ideal

photodetectors, the single-photon subtraction results in the state

|ψout〉AB ∝ âAâB |ψin(Tλ)〉AB , (7)

where âA,B are annihilation operators and the parameter λ is replaced by

Tλ in order to take into account the transmittance of BSA and BSB . A

detailed calculation shows that this non-Gaussian state has the form

|ψout〉AB =

√
(1− T 2λ2)3

1 + T 2λ2

∞∑

n=0

(n+ 1)(Tλ)n|n, n〉AB , (8)

For pure states exhibiting perfect photon-number correlations such as

Eq. (8), the correlation coefficient (5) depends only on the sum of the an-

gles, E(θj , φk) = E(θj + φk). With the help of the general formula derived
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Bell factor in Ref. 39, we obtain for the state (8)

E(ϕ) =
(1− T 2λ2)3

1 + T 2λ2

∑

n>m

8π(2Tλ)n+m

n!m!(n−m)2
(n+ 1)(m+ 1)

×[F(n,m)−F(m,n)]2 cos[(n−m)ϕ], (9)

where F(n,m) = Γ−1((1−n)/2)Γ−1(−m/2) and Γ(x) stands for the Euler

gamma function.
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1.9
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2

2.05

S

Tλ
0.4 0.6 0.8
0

0.005

0.01

0.015

0.02

P

Tλ

a) b) 

Fig. 5. (a) Bell factor S as a function of the effective squeezing parameter Tλ for
θ1 = 0, θ2 = π/2, φ1 = −π/4 and φ2 = π/4. (b) Probability P of successful conditional
generation of the state |ψout〉 as a function of the effective squeezing parameter Tλ,
assuming T = 0.95.

We have numerically optimized the angles θ1,2 and φ1,2 to maximize the

Bell factor S. It turns out that, for any λ, it is optimal to choose θ1 = 0, θ2 =

π/2, φ1 = −π/4 and φ2 = π/4. The Bell factor S for this optimal choice of

angles is plotted as a function of the effective squeezing parameter Tλ in

Fig. 5(a), and the corresponding probability of success of the conditional

preparation of the state |ψout〉 is plotted in Fig. 5(b). We can see that S

is higher than 2 so the Bell-CHSH inequality is violated when Tλ > 0.45.

The maximal violation is achieved for Tλ ≈ 0.57, giving S ≈ 2.048. This

violation is quite close to the maximum Bell factor S = 2.076 that can

be reached with homodyne detection, sign binning, and arbitrary states

exhibiting perfect photon-number correlations |ψ〉 =
∑
n cn|n, n〉 39.

7. Realistic model

Here, we consider a realistic scheme with inefficient (ηPD < 1) photode-

tectors exhibiting single-photon sensitivity but no single-photon resolution,
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and realistic balanced homodyning with efficiency ηBHD < 1. The mathe-

matical description of this realistic model is simplified by working in the

phase-space representation and using the Wigner function formalism. Even

though the state used for the Bell test is intrinsically non-Gaussian, it can

be expressed as a linear combination of Gaussian states, so all the powerful

Gaussian tools may still be used 47.

7.1. Calculation of the Wigner function

As shown in Fig. 6, the modes A and B are initially prepared in a two-mode

squeezed vacuum state associated with the Wigner function

WAB(r) = WG(rAB ; Γin) =

√
det Γin

π2
e−r

T
ABΓinrAB , (10)

where WG means Gaussian Wigner function, rAB = (xA, pA, xB , pB)T , and

Γin is the inverse of the covariance matrix of a two-mode squeezed vacuum

state.

η
BHD

η
PD

η
PD

ALO LOB

APD PDB

η
BHDA B

C D

x

1/2 1/2T T

Alice Bob

EPR

Source

θ φ
Laser

xθ
A

θ
A

Fig. 6. Detailed optical setup of the proposed Bell test taking into account the realistic
single-photon (ηPD < 1) and homodyne (ηBHD < 1) detectors.

The output state ρout,AB is prepared by conditioning on observing clicks

at both photodetectors PDA and PDB . These detectors respond with two

different outcomes, either a click, or no click. Mathematically, an ideal de-

tector with single-photon sensitivity is described by a two-component posi-

tive operator valued measure (POVM) consisting of projectors onto the vac-

uum state and the rest of the Hilbert space, Π0 = |0〉〈0| and Π1 = I−|0〉〈0|.
The resulting conditionally prepared state ρout,AB is thus

ρout,AB = TrCD[M(ρABCD ⊗ |0〉C,D〈0|)(IAB ⊗Π1,C ⊗Π1,D)]. (11)

whereM denotes the Gaussian CP map that describes the mixing of modes

A with C (and B with D) on the unbalanced beam splitters BSA (and BSB),
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Bell factor followed by the “virtual” lossy channels of transmittance ηPD (and ηBHD)

modeling the inefficiency of the single-photon detectors (and homodyne

detectors). As a result, the Wigner function of the state ρout,AB can be

written as a linear combination of 4 Gaussian functions,

Wout,AB(r) =
1

PG

4∑

j=1

CjWG(r; Γj). (12)

where PG is the probability of successful photon subtractions. The correla-

tion matrices Γj and the coefficients Cj can be expressed in terms of Γin,

see 47 for a detailed derivation.

7.2. Resulting Bell violation

The joint probability distribution P (xAθj , x
B
φk

) of the quadratures xAθj and

xBφk appearing in Eq. (5) for the correlation coefficient E(θj , φk) can be

obtained from the Wigner function (12) as a marginal distribution:

P (xAθj , x
B
φk ) =

∞∫

−∞

∞∫

−∞

Wout,AB(STshrθj ,φk) dpAθj dp
B
φk , (13)

where rθj ,φk = [xAθj , p
A
θj
, xBφk , p

B
φk

] and the symplectic matrix Ssh describes

local phase shifts that must be applied to modes A and B in order to

map the measured quadratures xAθj and xBφk onto the quadratures xA and

xB , respectively. As can be seen in Fig. 7(a,b), the joint probability P

exhibits two peaks, both located in a quadrant where Alice’s and Bob’s

measured quadratures have the same sign. This double-peak structure is a

clear signature of the non-Gaussian character of the state. The plots for the

corresponding Gaussian state (before photon subtraction) are also shown

in Fig. 7(c,d) for comparison.

The Bell factor can be expressed as

S = E(θ1, φ1) +E(θ1, φ2) +E(θ2, φ1)−E(θ2, φ2) (14)

where, taking into account the sign binning, the normalization of the

joint probability distribution P (xAθj , x
B
φk

), and its symmetry P (xAθj , x
B
φk

) =

P (−xAθj ,−xBφk), we can express the correlation coefficient as

E(θj , φk) = 4

∫ ∞

0

∫ ∞

0

P (xAθj , x
B
φk ) dxAθj dx

B
φk − 1. (15)

This last integral can be easily evaluated analytically 47.
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Fig. 7. Joint probability distribution P (xAθj
, xBφk

). Panels (a) and (b) show the distri-

bution for the conditionally-prepared non-Gaussian state with T = 0.99. Panels (c) and
(d) correspond to the initial Gaussian two-mode squeezed vacuum state. The curves are
plotted for perfect detectors ηPD = ηBHD = 100%, squeezing λ = 0.6 and θAlice = 0 and
φBob = π/4.
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Fig. 8. Violation of the Bell-CHSH inequality with the conditionally-prepared non-
Gaussian state 47. (a) Bell factor S as a function of the squeezing λ. (b) Probability of
success PG of the generation of the non-Gaussian state as a function of the squeezing λ.
The curves are plotted for perfect detectors (ηPD = ηBHD = 100%) with T = 0.9 (solid
line), T = 0.95 (dashed line), and T = 0.99 (dot-dashed line).
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Figure 8(a) confirms that the Bell-CHSH inequality |S| ≤ 2 can in-

deed be violated with the proposed set-up, and shows that there is an

optimal squeezing λopt which maximizes S. This optimal squeezing is well

predicted by the simplified model assuming ideal detectors with single-

photon resolution, that is, λoptT ≈ 0.57. The maximum achievable Bell

factor is Smax ≈ 2.045, which represents a violation of about 2.2%. To get

close to Smax, one needs sufficiently high (but not too strong) squeezing.

In particular, the value λ ≈ 0.57 corresponds to approximately 5.6 dB of

squeezing. Figure 8(b) illustrates that there is a clear trade-off between S

and the probability of success PG. To maximize S, one should use highly

transmitting beam splitters (T ≈ 1), but this would drastically reduce PG.

The optimal T must be chosen depending on the details of the experimental

implementation.

7.3. Sensitivity to experimental imperfections

Let us now study the sensitivity of this Bell test to the different imperfec-

tions that would necessarily occur in a realistic optical experiment, namely

the non-unity efficiency and non-zero probability of false triggers of the pho-

todetectors, the non-unity efficiency and noise of the homodyne detection,

and the thermal noise in the two-mode squeezed vacuum state.

First, the Bell factor S depends only very weakly on the efficiency ηPD

of the single-photon detectors, so the Bell-CHSH inequality can be violated

even if ηPD ≈ 1%. This is very important from the experimental point of

view because, although the quantum detection efficiencies of the avalanche

photodiodes may be of the order of 50%, the necessary spectral and spatial

filtering which selects the mode that is detected by the photodetector may

reduce the overall detection efficiency to a few percent. In practice, the

minimum necessary ηPD will be determined mainly by the constraints on

the total time of the experiment and by the dark counts of the detectors.

In contrast, the Bell factor S very strongly depends on the efficiency of

the homodyne detectors, and ηBHD must be above≈ 90% in order to observe

a Bell violation. However, this is not an obstacle because such (and even

higher) homodyne efficiencies have already been achieved experimentally

(see e.g. 48). Interestingly, it was found in Ref. 47 that it is possible to

partially compensate for the low homodyning efficiency by increasing the

squeezing of the initial state.

The electronic noise of the homodyne detector is another factor that

may reduce the observed Bell violation. As shown in Ref. 47, the electronic
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false triggersnoise should be 15− 20 dB below the shot noise, which is currently attain-

able with low-noise charge amplifiers. Again, higher squeezing can partially

compensate for an increasing noise. Another source of noise originates from

the state generation. In the analysis, it was assumed that the source emits a

pure two-mode squeezed vacuum state. However, experimentally, it is very

difficult to generate pure squeezed vacuum saturating the Heisenberg in-

equality. It is more realistic to consider a mixed Gaussian state. Here again,

the added noise in the initial Gaussian state should be 15 − 20 dB below

the shot noise for a successful Bell test 47.

Finally, a main source of imperfection that was observed in the exper-

imental demonstration of single-photon subtraction in Ref. 46 comes from

the false triggering of single-photon detectors. Indeed, a single-photon de-

tector may be triggered by a photon coming from another mode than the

one detected in the balanced homodyne detector. The single-mode descrip-

tion of a parametric amplifier is only an approximation, and the amplifier

produces squeezed vacuum in several modes. A balanced homodyne de-

tector very efficiently selects a single mode defined by the spatiotemporal

profile of the local oscillator pulse. However, such a reference is missing in

case of a single-photon detector, where the effective single mode has to be

selected by spatial and spectral filtering, which reduces the overall detection

efficiency ηPD. In practice, this filtering is never perfect, hence the photode-

tector PDA (PDB) can sometimes click although no photon was removed

from mode A (B). This false triggering can be modeled by re-defining the

POVM element Π1,C (and Π1,D) as a convex mixture of the original POVM

element I − |0〉〈0|, which corresponds to a triggering by a photon coming

from the mode A (B), and the identity operator I , which corresponds to

a false triggering. As expected, the achievable Bell factor decreases with

increasing probability of false triggers Pf . For a transmittance T = 0.95,

up to 6% of false triggers can be tolerated 47. In the experiment reported in

Ref. 46, the estimated fraction of false triggers was Pf ≈ 30%, which should

thus be significantly reduced in order to realize a Bell test experiment. Pos-

sible ways of suppressing false triggers include better filtering and/or using

sources that produce squeezed light in well defined spatial modes, such as

nonlinear periodically poled waveguides.

8. Alternative schemes

It is interesting to analyze whether alternative schemes to the one studied

so far may possibly lead to a larger violation of the Bell-CHSH inequalities,
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therefore being more promising. Let us consider alternative schemes which

involve from one to four photon subtractions. Since the probability of suc-

cessful generation of a non-Gaussian state significantly decreases with the

number of photon subtractions (while the complexity of the optical imple-

mentation increases with the number of photon subtractions), it is natural

that the most interesting schemes for a Bell test are those involving only

one photon subtraction. Unfortunately, none of the schemes with a single

photon subtraction that were considered in Ref. 47 leads to a Bell viola-

tion, and it is unknown whether such a scheme can be found. The simplest

schemes are then those involving two photon subtractions. In the preceding

sections, it was shown that it is indeed possible to violate the Bell-CHSH

inequality with the scheme of Fig. 4 involving two photon subtractions,

giving Smax,2ph = 2.048. Several other schemes with two photon subtrac-

tions may also be devised which violate the Bell-CHSH inequality, but the

achievable Bell factor S is smaller, see 47.

By adding one more photon subtraction, one can construct an ensemble

of schemes with three photon subtractions. After numerical optimization,

it was found in Ref. 47 that none of these schemes succeeds in violating

the Bell-CHSH inequality. This striking result together with the fact that

no interesting scheme based on a single photon subtraction has been found

suggests that it may be necessary to subtract an even number of photons

in order to observe S > 2.

Among the various schemes with four photon subtractions that were

studied in Ref. 47, the most interesting one is obtained by applying two pho-

ton subtractions on each mode. Numerical calculations show that the max-

imum Bell violation is achieved for T 2λ = 0.40 and yields Smax,4ph = 2.064,

which is indeed higher than the maximum achievable with two-photon sub-

traction, Smax,2ph = 2.048, and very close to the maximum value S = 2.076

obtained in Ref. 39. Unfortunately, a more realistic description of the four-

photon subtraction scheme that takes into account realistic imperfect de-

tectors shows that, for T < 0.95, the fact that the photodetectors do not

distinguish the number of photons reduces the Bell factor and dramatically

decreases the probability of generating the non-Gaussian state (PG ≈ 10−6).

Therfore, it seems that, from a practical point of view, there is no advan-

tage in using a scheme with four photon subtractions instead of the much

simpler scheme with two photon subtractions shown in Fig. 4.

In a recent paper 49, another scheme has been proposed for generat-

ing a state of the form (3) reaching S = 2.071, which is very close to

the maximum S = 2.076 of Ref. 39. The state generation procedure needs
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three successive photon subtractions interspersed by some Gaussification

operation 31. Unfortunately, a realistic description of the scheme that takes

into account realistic imperfect detectors should necessarily bring the same

conclusions as for the schemes with four photon subtractions.

9. Conclusions

In this Chapter, we have described an experimentally feasible setup allowing

for a loophole-free Bell test with efficient homodyne detection. This scheme

is based on a non-Gaussian entangled state which is conditionally generated

from a two-mode squeezed vacuum state by subtracting a single photon

from each mode. We have discussed the influence on the achievable Bell

violation of the detector inefficiencies, the electronic noise of the homodyne

detector, the impurity of the input state, and the effect of false triggers in

the single-photon detectors. The main advantage of this scheme is that it is

largely insensitive to the detection efficiency of the avalanche photodiodes

that are used for the conditional preparation of the non-Gaussian state, so

that efficiencies of the order of a few per cent are sufficient. We also have

discussed several alternative schemes that involve the subtraction of one,

two, three or four photons. The current conclusion is that there seems to be

no advantage in using these other schemes instead of the above two-photon

subtraction scheme.

This analysis makes it possible to define a set of realistic parameter val-

ues, which should be reached in a loophole-free Bell test : with η = 30%,

T = 95%, and 6 dB of squeezing, a violation of the Bell-CHSH inequal-

ity by about 1% should be observable if the homodyne efficiency ηBHD is

larger than 95% and less than 6% of false triggers impinge on the single-

photon detectors. With a repetition rate of 1 MHz and P ≈ 2.6 × 10−4,

the number of data samples would be several hundreds per second, so that

the required statistics to see a violation in the percent range could be ob-

tained in a reasonable time (a few hours). In addition, the electronic noise

of the homodyne detectors should be 15-20 dB below shot noise, which

is attainable with low-noise charge amplifiers. All these numbers have al-

ready been reached separately in various experiments, but attaining them

simultaneously certainly represents a serious challenge.

The very recent experimental demonstration of a single-photon subtrac-

tion from a single-mode squeezed vacuum state provides a strong incentive

for further theoretical and experimental developments along these lines. In

particular, the issues of more complex binnings, generalized Bell inequalities
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in higher dimension, or multipartite Bell inequalities deserve further inves-

tigations. Any improvement of the amount of violation would certainly help

making such a loophole-free Bell test possible with the present technology.
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