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Abstract 

We present a quantum intbrmation theory that allows for a consistent description of entanglement. It parallels classical 
(Shannon) information theory but is based entirely on density matrices rather than probability distributions for the description 
of quantum ensembles. We find that quantum (von Neumann) conditional entropies can be negative for entangled systems, 
which leads to a violation of entropic Bell inequalities. Quantum inseparability can be related, in this theory, to the appearance 
of "unclassical" eigenvalues in the spectrum of a conditional "amplitude" matrix that underlies the quantum conditional 
entropy. Such a unified information-theoretic description of classical correlation and quantum entanglement clarifies the 
link between them: the latter can be viewed as "super-correlation" which can induce classical correlation when considering 
a tripartite or larger system. Furthermore, the characterization of entanglement with negative conditional entropies paves 
the way to a natural information-theoretic description of the measurement process. This model, while unitary and causal, 
implies the well-known probabilistic results of conventional quantum mechanics. It also results in a simple interpretation of 
the Levitin-Kholevo theorem limiting the accessible information in a quantum measurement. © 1998 Published by Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

The recent vigorous activity in the fields of quantum computation (quantum information processing) and quantum 

communication (quantum cryptography, teleportation, and superdense coding) has necessitated a better understand- 
ing of the relationship between classical and quantum variables (see, e.g., [3,11,12,20]). In classical physics, 
information processing and communication is best described by Shannon information theory [26], which succinctly 
associates information with randomness shared by two physical ensembles. Quantum information theory on the 
other hand is concerned with quantum bits (qubits) [24] rather than bits, and the former obey quantum laws that 
are quite different from those of the classical physics of bits that we are used to. Most importantly, qubits can 
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exist in quantum superpositions, a notion essentially foreign to classical mechanics, or even classical thinking. 
To accommodate the relative phases in quantum superpositions, quantum information theory must be based on 
mathematical constructions which reflect these: the quantum mechanical density matrices. The central object of 

information theory, the entropy, has been introduced in quantum mechanics by yon Neumann [27]: 

S(p) = - T r p  logp,  (1) 

where p is a density matrix. Its relationship to the Boltzmann-Gibbs-Shannon entropy, 

H (p) = - Z Pi log Pi, (2) 
i 

becomes obvious when considering the yon Neumann entropy of a mixture of orthogonal states. In this case, the 
density matrix p in (1) contains classical probabilities pi on its diagonal, and S(p) = H(p) .  In general, however, 
quantum mechanical density matrices have off-diagonal terms, which, for pure states, reflect the relative quantum 
phases in superpositions. 

In classical statistical physics, the concept of conditional and mutual probabilities has given rise to the definition 

of conditional and mutual entropies. These can be used to elegantly describe the trade-off between entropy and 
information in measurement, as well as the characteristics of a transmission channel. For example, for two statistical 

ensembles A and B, the measurement of 4 variables of) A by B is expressed by the equation for the entropies: 

H(A) --- H(AiB)  + H(A:B).  (3) 

Here, H (A [ B) is the entropy of A after having measured those pieces that become correlated in B ]thereby apparently 
reducing H(A)  to H(AIB)],  while H(A:B)  is the information gained about A via the measurement of B. As is 
well known, H(A[B) and H(A:B)  compensate each other such that H(A)  is unchanged, ensuring that the second 
law of thermodynamics is not violated in a measurement in spite of the decrease of H(AiB)  [19]. Mathematically, 
H(A[B) is a conditional entropy, and is defined using the conditional probability pi[j and the joint probability Pij 

characterizing the ensembles A and B: 

H (AiB) = - ~ pij log Pilj. (4) 
ij 

The information or mutual entropy (or correlation entropy) H(A:B),  on the other hand, is defined via the mutual 

probability, Pi:j  = Pi Pj / P i j ,  a s  

H (A:B) = - Z Pij log Pi:j. (5) 
ij 

Simple relations such as Pij = Piij Pj imply equations such as (3) and all the other usual relations of classical 
information theory [2]. Curiously, the construction of a quantum information theory paralleling these relations has 
never been attempted. Rather, a "hybrid" procedure is generally used in which quantum probabilities are inserted in 

the classical formulae of Shannon theory, thereby losing the quantum phase crucial to density matrices (see, e.g. ]32]). 
In Section 2, we show that a consistent quantum information theory can be developed that parallels the construction 
outlined above, while based entirely on matrices and von Neumann entropies [6]. It relies on the definition of 
a conditional "amplitude matrix", which generalizes the classical conditional probability while accounting for 
quantum inseparability or non-locality. The appearance of negative conditional entropies [6] and the corresponding 
violation of entropic Bell inequalities [8] results naturally from these considerations. This formalism allows for 
a proper information-theoretic description of quantum entanglement, which extends the standard description of 
classical correlations, as shown in Section 3. As a result, most of the classical concepts involving entropies for 
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composite systems in Shannon theory can be extended to the quantum regime, and this provides a simple intuitive 

framework for dealing with quantum informational processes [1,9]. In Section 4, we analyze quantum measurement 

in this information-theoretic language and point out how this picture leads to a unitary and causal view of  quantum 

measurement devoid of  wave function collapse [7]. In Section 5, we analyze Bell-type measurements in terms of 

information theory as an application of  this model. In Section 6, we conclude by considering a simple quantum 

information-theoretic derivation of the Levitin-Kholevo theorem (which limits the amount of information that can 

be extracted in a measurement) based on this approach [10]. 

2. Quantum information theory 

2.1. Conditional yon Neumann entropy 

Let us consider the information-theoretic description of  a bipartite quantum system AB.  A straightforward 

quantum generalization of  Eq. (4) suggests the definition 

S(AIB)  = --Tr AB[PAB log PAIB] (6) 

for the quantum (or von Neumann) conditional entropy. In order for such an expression to hold, we can define a 
conditional "amplitude matrix", 

1/n 
PAIB = exp[logpaB -- 1og(1a ® PB)] = lim [PAB (1A @ PB)-l/n]n'  (7) 

1l--->00 

which is the quantum analog of the conditional probability Pilj.  Here, 1a is the unit matrix in the Hilbert space for 
A, ® stands for the tensor product in the joint Hilbert space, and 

PB = TrA[PAB] (8) 

denotes the "marginal" or reduced density matrix that characterizes B, analogous to the marginal probability 

PJ = Y~i Pij. Thus, PAIB is a positive semi-definite Hermitian matrix in the joint Hilbert space (just as Pilj > 0 

is a function of i and j).  It is not a density matrix as TrAB[PAIB] 5 & 1, in analogy with Z i , j  P i l j  7& l, but its 
(non-negative) eigenvalues are connected to the separability of  A B  as we shall see. We refer to PAIB as conditional 

amplitude matrix to emphasize the fact that it retains the quantum phases relating A and B, in contrast with a 

conditional probability based on squared amplitudes. The second expression for PAIB in Eq. (7) displays the explicit 

link with the classical conditional probability pilj = Pij p ; l .  It is simply the Trotter decomposition of PAIB, where 
the symmetrized product involving an infinite limit is required since the joint and marginal density matrices do 

not commute in general. In the classical limit, i.e., when PAB is diagonal with Pij as its diagonal elements, the 

conditional amplitude matrix PAIB reduces to a diagonal matrix with Pilj on its diagonal. Note that PAIB is well- 

defined on the support of PAB even though its construction involves the inverse of PB. Indeed, it is simple to prove 
that any eigenvector I~) of (1 a Q PB) with zero eigenvalue is also annihilated by PAB, i.e., IOAB [ l p ) =  0, SO that it 

does not belong to the support of  PAB. This is the analog of  the classical property that Pi]j = P i j / P j  is well defined 
¥i, j such that Pij ~ 0: if j is such that pj = 0, then Pij = O, Vi. This is obvious since pj = Y~i Pij and Pij > O. 

Inserting the conditional density matrix PAIB as defined by Eq. (7) into the definition of  the conditional von 
Neumann entropy, Eq. (6), implies that the standard relation 

S(A]B) = S ( A B )  - S (B)  (9) 

holds for quantum entropies just as for Shannon entropies. Indeed, we find 
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S(AIB)  = --Tr AB[PAB IOgpAB] + Tr AB[PAB log(1A ® PB)], (10) 

where the first term on the right-hand side is obviously S ( A B )  while the second one can be shown to be equal to 

- S ( B )  by using the relation 

TrA[PAB log(1A @ PB)] = TrA[PAB(1A ® lOgpB)] = TrA[PAB] lOgpB = PB lOgpB. (11) 

Eq. (9) also implies that S(AIB)  is invariant under any unitary transformation of the product form UA ® UB since 

such a transformation leaves S ( A B )  and S(B)  unchanged. This parallels the invariance of H ( A I B )  when making 

a permutation of  rows and/or columns in the matrix Pij. However, in spite of the apparent similarity between the 

quantum definition for S(AIB)  and the standard classical one for H (AIB), dealing with matrices (rather than scalars) 

opens up a quantum realm for information theory that exceeds the classical one. The crucial point is that, while 

Pilj is a probability distribution in i (0 <_ Pilj <- 1), its quantum analogue PAIB does not satisfy 0 <_ PAIB <-- 1.2 
It is a Hermitian and positive semi-definite matrix (so its eigenvalues are real and non-negative), but it can have an 

eigenvalue larger than one, and, consequently, the associated conditional entropy S(AIB)  can be negative. Indeed, 

only if PAIB ~ 1 do we have ¢YAB =- -- log PAIB >--- O, SO that S(AIB)  = Tr AB[PABCrAB] >_ O. Thus, the negativity 
of conditional von Neumann entropies necessarily results from PAIB admitting an eigenvalue exceeding unity. Only 

such a matrix-based information-theoretic formalism consistently accounts for the well-known non-monotonicity of 

quantum entropies (see, e.g. [28]). In other words, S(A[B)  < 0 means that it is acceptable, in quantum information 

theory, to have S ( A B )  < S(B) ,  i.e., the entropy of the entire system A B  can be smaller than the entropy of  one of 

its subparts B, a situation which is of course forbidden in classical information theory. This occurs in the case of 

quantum entanglement between A and B, and results in the violation of well-known bounds of  Shannon information 
theory, as will be illustrated below [6]. 

2.2. Conditional amplitude matrix and quantum inseparability 

It is worth noticing that the conditional amplitude matrix PAIB, as defined by Eq. (7), is a positive semi-definite 

Hermitian operator in the joint Hilbert space whose spectrum remains invariant under a UA ® UB isomorphism (i.e., 

a local change of frame). Let us suppose that the joint density matrix is transformed according to 

PAB --+ P~AB = (UA @ UB)PAB(UtA ® UB). (12) 

It is easy to check that the partial trace of PAB over A is equal to the partial trace of PAB over A transformed by UB: 

' = TrA[(UA ® UB)PAB(UtA ® UB)] PB 

= TrA[(1A ® UB)(U A ® 1B)PAB(UtA ® 1B)(1A ® UBt)] 

= UBTrA[(UA ® 1B)PAB(U A ® IB)]U B 

= UBPBU~. (13) 

In other words, the partial trace and a unitary transformation of  the product form can be performed in either order. 

(This results from the basis invariance of the trace.) This implies that the conditional amplitude matrix is transformed 
according to 

PAdB ~ PAIB = (UA ® UB)PAIB(U A ® U?B) (14) 

2 Here, the notation A < 1 means that the matrix I - A is positive semi-definite. 
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SO that its eigenspectrum is conserved under UA ® UB. In view of  Eq. (6), this is compatible with the fact that the 

conditional entropy is also invariant under such a transformation. These results strongly suggest that the spectrum 

of PAIB, and consequently S (AIB),  is related to the separability or inseparability of  the mixed state PA B since such 

a property is also unchanged by a UA ® UB isomorphism. 

Let us first consider the conditional von Neumann entropy. The concavity of  S(A]B)  in a convex combination of 

PAB'S, a property related to strong subadditivity of quantum entropies [28], implies that any separable state (i.e., a 

convex mixture of product states), 

P a B =  w k p a  ® p  with 0 _< wk _< l a n d  wk = 1 , (15) 

k k 

is associated with a non-negative S(AIB) .  (Note that the converse is not true.) Indeed, each product component 

p(a k~ N p(k~ of a separable state is associated with the conditional amplitude matrix 

(k) (k) 
PAIB = PA ® 1B (16) 

SO that the concavity of S(A[B)  results in 

S(AIB)  > EwkS(P~Ak))  > O. (17) 

k 

This implies that the non-negativity of conditional entropies is a necessary, condition for separability [6]. (The same 

result has been shown independently for o~-entropies in [16].) This condition can be shown to be equivalent to the 

non-violation of entropic Bell inequalities [8]. 

Secondly, let us show that a "non-classical" spectrum of the conditional amplitude matrix PAIB is related to the 

quantum inseparability of the mixed state PA B. As mentioned above, it is easy to check from Eq. (6) that, if S(AIB)  

is negative, PAIB must admit at least one "non-classical" eigenvalue (i.e., PAIB f l), while the converse again 

does not hold. This results from the fact that Tr(PABCrAB) >_ 0 if PAB and CrAB are positive semi-definite matrices. 

Let us now prove that PAIB --< 1 results in a stronger necessary condition for separability in a Hilbert space of  

arbitrary dimension. More precisely, if PAB is separable as defined in Eq. (15), it can be checked that the matrix 

~'AB ~ - -  (1a @ PB) -- PAB is positive semi-definite, that is 

k >_0 >0 

since a sum of  positive matrices is a positive matrix. Then, using L6wner 's  theorem 3 we deduce that, if the matrix 

)~AB is positive semi-definite, then the matrix CrAB =~ -- log PAIB = log(1A ® PB) -- log PAB is also positive semi- 

definite. This immediately implies that the condition PAIB = exp(--CrAB) < 1 is always fulfilled for a separable 

state. 

Consequently, we conclude that a necessary condition for separability is that all the eigenvalues of PAIB (and PBIA) 

are "classical" ( 5  1) [6]. When applied to a Werner state (i.e., an impure singlet state), this separability condition 

turns out to be necessary and sufficient, as it reduces exactly to the condition derived in [22] by considering the 

positivity of the partial transpose of  PAB. This opens up the possibility that PAIB --< 1 could be a strong necessary 

condition for separability in a Hilbert space of arbitrary dimensions. 

5 A special case of L6wner's theorem implies that if the matrices X and Y are such that X _> Y > 0, then log X > log Y (see, e.g. [ 15]). 
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2.3. Mutual von Neumann entropy 

67 

Similarly to what we have done for the conditional entropy, the quantum analog of the mutual entropy can be 
constructed by defining a mutual "amplitude matrix" 

PA:B : exp[log(pa ® PB) -- logpaB] = lim [(PA ® pB)I/npAIB/n]n , (19) 
n --e. O G  

in analogy with the mutual probability Pi:j = Pi P j / P i j .  As previously, this definition, along with 

S(A:B)  = --Yr[PaB log PA:B] (20) 

implies the standard relation 

S(A:B)  = S(A)  - s ( a I B )  = S(A)  ÷ S(B)  - S ( A B )  (21) 

between quantum entropies. This definition extends the classical notion of mutual information or correlation entropy 

H (A:B) to the quantum notion of mutual von Neumann entropy S(A:B). Just like in the classical case, the mutual 

entropy can be viewed as the relative entropy between PAB and (PA ® PB), 

S(pAB]IPA ® PB) =- Tr[PaB(lOg PAB -- 1og(pa ® PB))], (22) 

implying a type of "distance" measure between these density matrices. Note that all the above quantum definitions 

reduce to the classical ones for a diagonal PAB, which suggests that Eqs. (7) and (19) are reasonable constructions. 

The proposed matrix-based information theory therefore includes Shannon theory as a special case, while it describes 

quantum entanglement as well. Since the definition of S(A:B)  covers classical correlations also, S(A:B)  must be 

considered as a general measure of correlations and "super-correlations" in information theory, which applies to 

pure as well as mixed states. It is worth noting that this does not mean that the mutual yon Neumann entropy 

characterizes only purely quantum correlation between A and B (that part which can be purified to singlet states); 

rather S(A:B)  does not separate correlation and entanglement - it is a measure of both. In this sense, S(A:B)  

differs from various definitions of the entropy of entanglement which can be found in the literature, aiming at 

discriminating entanglement from classical correlation [4]. Finally, it can be shown that, besides being the proper 

quantum counterpart of correlation entropy, S(A:B)  also turns out to be a basic quantity in the search for a quantum 

analog to Shannon's capacity of a noisy channel [1]. In the same spirit, it is also useful in the analysis of quantum 
error-correcting codes [9]. 

3. Correlation versus entanglement and multipartite systems 

As we shall see below, our quantum matrix-based formalism can be successfully applied to the quantum en- 

tanglement of more than two systems by extending the various classical entropies that are defined in the Shannon 

information-theoretic treatment of a multipartite system. This accounts, for example, for the creation of classical 

correlation through quantum entanglement in a tripartite (or larger) system. Also, the quantum analog of all the 

fundamental relations between classical entropies (such as the chain rules for entropies and mutual entropies) holds 
in quantum information theory, with the same intuitive interpretation, and we make extensive use of it in the rest of 
this paper (see [1,7-10]). 

Let us start this section by suggesting a simple diagrammatic way of representing quantum entropies which 
provides intuitive insight into this information-theoretic description of entanglement. In the case of a bipartite 

system AB,  the relations between S(A) ,  S (B) ,  S ( A B ) ,  S (AIB) ,  S (BIA) ,  and S(A:B)  are conveniently summarized 
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(a) 

S(A) S(B) 

(b) A B 

(t) 

(II) 

~ ~ )  (m) 

Fig. 1. (a) General entropy diagram for a quantum bipartite system AB. (b) Entropy diagrams for three cases of a system of 2 qubits: 
(I) independent, (II) classically correlated, (III) quantum entangled. 

by a Venn-like entropy diagram, as shown in Fig. l(a). The important difference between classical and quantum 

entropy diagrams is that the basic inequalities relating the entropies are "weaker" in the quantum case, allowing for 

negative conditional entropies and "excessive" mutual entropies [6]. For example, the upper bound for the mutual 

entropy (which is directly related to the classical channel capacity) is 

H(A:B)  < min[H(A),  H(B)]  (23) 

in classical information theory, as a consequence of the inequality H ( A B )  >_ max[H(A),  H(B)] ,  while it is 

S(A:B)  <_ 2mintS(A),  S(B)] (24) 

in quantum information theory, as a result of  the Araki-Lieb inequality [28] S ( AB)  >_ IS(A) - S(B)I. This means 

that the mutual entropy in a quantum transmission channel can reach twice the classical upper bound [1,6]; this is 

related to the apparent doubling of  the capacity of the superdense coding scheme [5]. Note also that the subadditivity 

of quantum entropies implies S(A:B)  >_ O, just as for the classical mutual entropy. 

We show in Fig. l(b) the entropy diagram corresponding to three limiting cases of  a bipartite system of two 

dichotomic variables (e.g., 2 qubits): independent variables (case I), classically correlated variables (case II), and 

quantum entangled variables (case III). In all three cases, each subsystem taken separately is in a mixed state of 

maximum entropy S(A) = S(B)  = 1 bit. Cases I and II correspond to classical situations (which can of course 

be described in our matrix-based formalism as well, using diagonal matrices), while case III is a purely quantum 

situation which violates the bounds of  classical information theory [6]. Let us focus on case III, since cases I and II 

are standard. This case corresponds to an EPR pair, 4 characterized by the pure state 

1 
I7:AB} =- ~ ( 1 0 0 ) +  II 1)),  (25) 

and, accordingly, it is associated with a vanishing total entropy S ( AB)  = 0. Using the density matrix of the joint 

system PAB = I7:AB)(q:AB I, we see that subpart A (or B) has the marginal density matrix 

PA = TrB[PAB] = ½(t0)(01 + I1)(1 I), (26) 

and is therefore in a mixed state of  positive entropy. This purely quantum situation corresponds to the unusual 

entropy diagram (-1,2,-1) shown in Fig. 1 (b). That the EPR situation cannot be described classically is immediately 

4 Although we use the term "EPR pair" for the wave function (25), this state is in fact one of the Bell states, which are generalizations 
of the EPR singlet state. 
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apparent when considering the associated density matrices. The joint and the marginal density matrices can be 
written in basis {00, 01, 10, 11} as 

PAB 

1 / 2 0 0 1 ! 2 ] (  ) 
0 0 0 1/2 0 
0 0 0 , P A = P B =  0 1/2 ' 

1/2 0 0 1 / 2 /  

(27) 

so that we obtain for the conditional density matrix 5 

PAIB = PAB(1A ® PB) -1 = 
i 0 0 1 0 0 0 

0 0 0 
0 0 1 

(28) 

Inserting (27) and (28) into definition (6) immediately yields S ( A I B )  = - 1 ,  which results in 

S ( A B )  = S ( A )  + S ( B I A )  = I -- I = 0 (29) 

as expected. This is a direct consequence of the fact that PAIB has one "non-classical" (> 1) eigenvalue, 2. It is 
thus misleading to describe an EPR-pair (or any of the Bell states) as a correlated state within Shannon information 
theory, since negative conditional entropies are crucial to its description. 6 Still, classical corre la t ions  [with entropy 
diagram (0, 1,0)] emerge when observ ing  an entangled EPR pair. Indeed, after measuring A, the outcome of the 
measurement of B is known with 100% certainty. The key to this discrepancy lies in the information-theoretic 

description of the measurement process [7]. Anticipating the next section, let us just mention that the observa t ion  

of quantum entangled states such as an EPR pair gives rise to classical correlations between the two measurement 

devices  while keeping the entanglement between the two parties (panicle + measurement device) unchanged, 
thereby creating the confusion between entanglement and correlation. 

More generally, the concept of negative conditional entropy turns out to be very useful to describe mul t ipar t i t e  

quantum systems, and it gives new insight into the creation of classical correlations from quantum entanglement. 

In the case of  a tripartite system, the quantum entropies involved can be represented by a Venn diagram, as shown 
in Fig. 2. The conditional entropies S ( A I B C ) ,  S ( B I A C ) ,  and S ( C I A B )  are a straightforward generalization of 

conditional entropies in a bipartite system, i.e., S ( A I B C )  = S ( A B C )  - S ( B C ) ,  etc. The entropies S ( A : B I C ) ,  

S ( A : C I B ) ,  and S ( B : C I A )  correspond to conditional mutual entropies. They characterize the mutual entropy between 
two of the subsystems when the third is known. In perfect analogy with the classical definition, one can write, for 

example, 

S ( A : B I C )  = S ( A I C )  - S ( A I B C ) .  (30) 

This is a straightforward generalization of Eq. (21) where all the entropies are conditional on C. A trivial calculation 
gives the expression of the conditional mutual entropy in terms of total entropies: 

S ( A : B I C ) = S ( A C ) + S ( B C )  - S ( C )  - S ( A B C ) .  (31) 

5 Note that for EPR pairs, joint and marginal density matrices commute, simplifying definitions (7) and (19). 
6 In [6], we suggest that EPR pairs are better understood in terms of a qubit-antiqubit pair, where the qubit (antiqubit) carries plus 

(minus) one bit, and where antiqubits are interpreted as qubits traveling backwards in time. 
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A B 

Fig. 2. Ternary entropy Venn diagram for a general tripartite system ABC. The component entropies are defined in the text. 

This last expression illustrates that the conditional mutual entropies are always non-negative as a consequence of 

strong subadditivity of  quantum entropies (see, e.g., [28]), a property that will be useful in the following. The entropy 

in the center of the diagram is a ternary mutual entropy, defined as 

S(A:B:C)  = S(A:B)  - S (A:BIC)  (32) 

(this generalizes Eq. (21), now written for a mutual entropy rather than a total entropy). Using Eq. (31), this can be 

written in a more symmetric way as 

S(A:B:C)  = S(A)  ÷ S(B)  + S(C) - S ( A B )  - S ( A C )  - S ( B C )  + S ( A B C ) .  (33) 

More generally, relations between entropies in a multipartite system can be written, such as the "chain rules" for 

quantum entropies, 

S(AI ".. An) = S(AI)  + S(A2[AI)  + S(A3IAIA2)  + ' " ,  (34) 

or for quantum mutual entropies, 

S(AI . . .  An:B) = S (AI :B)  + S (Az :BIAI )  q- S (A3:BIAIA2)  q- " " .  (35) 

Let us consider as an illustration a tripartite system A B C  in a Greenberger-Horne-Zei l inger  (GHZ) [14] 

state, 7 

1 
[I~ABC ) = ~([000) -[-Ill 1)). (36) 

As it is a pure (entangled) state, the total entropy is S ( A B C )  = 0. The corresponding ternary entropy diagram of 

A B C  is shown in Fig. 3(a). Note that the vanishing ternary mutual entropy 

S(A:B:C)  = 0 (37) 

in the center of  the diagram is generic to any entangled tripartite system in a pure state [7]. 8 Indeed, the Schmidt 

decomposition of  the pure state [~PABC) implies that S ( A B )  = S(C),  S (AC)  = S(B) ,  and S ( B C )  = S(A).  This 

feature will be important in the following section as it implies that no information (in the sense of Shannon theory) 

is extracted in the measurement of a pure state. Fig. 3(a) shows clearly that, grouping say A and B (considering 

7 The GHZ state can also be viewed as an "EPR-triplet", a generalization of an EPR-pair to three parties. 
8 For a multipartite system, the mutual entropy between the n parts is equal to 1 + (-1)n. 
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(a) (b) 
A B A B 

' ,  -1 ,1 

c c 

Fig. 3. (a) Ternary entropy diagram for an "EPR-triplet" or GHZ state. (b) Entropy diagram for subsystem A B unconditional on C. 

them as a single entity) exhibits entanglement [diagram ( - 1 , 2 ,  - 1  )] between A B and C. On the other hand, when 

tracing over the degree of freedom associated with C, say, the resulting marginal density matrix for subsystem 

AB, is 

PAB = Trc [PABC] = 1 ( [00 ) (00 [  + [11) (1 l p), (38) 

corresponding to a classically correlated system [diagram (0,1,0)]. As the density matrix fully characterizes a 

quantum system, subsystem AB (unconditional on C, i.e., ignoring the existence of C) is in this case physically 

indistinguishable from a statistical ensemble prepared with an equal number of  [00) and [11) states. Thus, A and 

B are correlated in the sense of Shannon theory if C is ignored. The "tracing over" operation depicted in Fig. 3(b) 

illustrates this creation of classical correlation from quantum entanglement. In short, the EPR-triplet entails quantum 

entanglement between any part, e.g. C, and the rest of the system A B. The subsystem AB unconditional on C has 

a positive entropy S(AB) of 1 bit, and is indistinguishable from a classical correlated mixture. On the other hand, 

the entropy of C conditional on A B, S(CIA B), is negative and equal to - 1  bit, thereby counterbalancing S(A B) 
to yield a vanishing combined entropy 

S(ABC)  = S(AB)  + S(C[AB) = 1 - 1 = 0, (39) 

as expected in view of  the entanglement between AB and C. The above can be extended in a straightforward manner 

to multipartite systems, and this will be central to the measurement process. 

4. Quantum measurement 

According to von Neumann [27], a consistent description of the measurement process must involve the interaction 

between the observed quantum system and a quantum measurement device. Such a view is in contrast with the 
Copenhagen interpretation of quantum mechanics (see, e.g., [29]) stating that the measurement is the non-causal 

process of projecting the wave function, which results from the interaction with a classical apparatus. A classical 

apparatus is defined as one where the "pointer" variables take on definite values, and which therefore cannot 

reflect quantum superpositions. For 70 years, the Copenhagen interpretation has never failed in predicting a single 
experimental fact, which certainly has helped in cementing its reputation [29]. On the other hand, if the foundations 

of  quantum mechanics are believed to be solid, it cannot be denied that measurement is not an abstract non-causal 
operation acting on wave functions, but rather a genuine interaction between two physical quantum systems: the 

observed system Q and the measurement device, or the ancilla A. This is the essence of  the von Neumann theory 
of  measurement. 
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Assume then that a quantum system is initially in state 

[Q) = ~ e~i [ai), (40) 
i 

expressed in the basis {[ai) } of eigenvectors of an arbitrary observable (the one that we are measuring). Then, the yon 

Neumann measurement is described by the unitar3' transformation that evolves the initial state of  the joint system 

[Q, 0) into the state 

[QA) = Z c ~ i  [ai, i), (41) 
i 

with { [i)} denoting the eigenstates of the ancilla A ([0) is the reference initial state of the ancilla). Such a transfor- 
mation was interpreted by von Neumann as inducing correlations between the system Q and the ancilla A. Indeed, 

if [ Q) is initially in one of the eigenstates lai  ) (i.e., if it is not in a superposition), the "pointer" in A that previously 

pointed to zero now points to the eigenvector [i) which labels outcome i, suggesting that a measurement has been 

performed. 

Now, a basic problem occurs if the initial state of Q is a superposition, as in Eq. (40), that is, if Q is not 
in an eigenstate of  the considered observable. Then, according to Eq. (41), the apparatus apparently points to a 

superposition of i 's, a fact which obviously contradicts our everyday-life experience. In classical physics, a variable 

has, at any time, a definite value that can be recorded. Experiments show that a quantum measurement is probabilistic 

in nature, that is one of the possible outcomes (drawn from a probability distribution) becomes factual. In other 

words, a quantum superposition evolves into a mixed state. This apparent necessity led von Neumann to introduce 

an ad hoc, non-unitary, second stage of  the measurement, called observation. In this stage, the measurement is 

"observed", and a collapse occurs in order to yield a classical result from a quantum superposition. The central point 

in the quantum information-theoretic interpretation of the measurement problem presented below (see also [7]) is 

that, in general, the state described by Eq. (41) is entangled, not just correlated. As emphasized earlier, entangled 
states have an information-theoretic description distinct from correlated states, which provides them with very 

peculiar properties. For example, it has been shown that an arbitrary quantum state cannot be cloned [30] precisely 

because of the entanglement between the system Q and the ancilla A. If  the system is in a state belonging to a set 

of orthogonal states, on the other hand, a faithful copy of  the quantum state can be obtained by applying a yon 

Neumann measurement. As a consequence it appears that an arbitrao, state (one which is not one of the eigenstates 

of the observable considered) cannot be measured without creating entanglement. 

Let us show that unitary evolution [such as the one giving rise to Eq. (41)] can be reconciled with the creation of 

randomness in the measurement process if it is recognized that the creation of  entanglement (rather than correlation) 
is generic to a quantum measurement, and if this entanglement is properly described in quantum information theory 

using the concept of negative entropy (see also [7]). This reconciliation is brought about by a re-description of the 

second stage of measurement, the observation, without involving an irreversible loss of information to a macroscopic 

environment. In that respect, our model is distinct from the environment-induced decoherence model, one of the 

prevalent contemporary views of quantum measurement (see, e.g. [33]). In order to observe the measurement, a 
system generally involving a large number of degrees of  freedom has to interact with Q. In Eq. (41), Q has interacted 

with a single degree of freedom of the ancilla A (first stage of the measurement), which led to an entangled state. 

As emphasized before, the creation of an entangled state does not mean that a measurement has been performed, 
since our (classical) perception of a measurement is intrinsically related to the existence of (classical) correlations. 

In order for classical correlations to emerge, a third degree of freedom (another ancilla A') has to be involved. Now, 
iterating the von Neumann measurement, A' interacts with A Q so that the resulting state of  the combined system is 

IQaa'}  = Z o l i l a i ,  i, i}, (42) 
i 
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where the eigenstates of  A' are also denoted by Ii) for simplicity. The state so created is pure [ S ( Q A A  ~) = 0], akin 

to an "EPR-triplet" since the system has undergone only unitary transformations from a pure initial state I Q, 0, 0). 

The point is that, considering the state of the entire ancilla AA'  unconditionally on system Q yields a mixed state 

I°aa' • Tro['°Qaa'] =- Z I°tilz]i' i)(i, il, (43) 
i 

describing maximal correlation between A and A', that is 

S(A:A' )  = S(A)  = S(A')  = S (AA ' ) .  (44) 

The second stage consists in observing this classical correlation (that extends, in practice, to the 1023 particles which 

constitute the macroscopic measurement device). Note that a macroscopic measurement device is not required here, 

since only two ancillary degrees of freedom A and A ~ are enough to generate correlation in the tripartite entangled 
system QAA' .  The entropy diagram characterizing Q A A '  is of the same kind as the one depicted in Fig. 3, but 

filled in with a constant different from 1, in general. Naturally, it is the physical state of  the ancilla which contains 

the outcome of the measurement, whereas the quantum state Q itself must be ignored to observe correlations. 

This crucial point is easily overlooked, since intuition dictates that performing a measurement means somehow 

"observing the state of Q". Rather, a measurement is constructed such as to infer the state of  Q from that of  the 

ancilla - but ignoring Q itself. The correlations (in A A') which emerge from the fact that a part (Q) of  an entangled 

state ( Q A A ' )  is ignored give rise to the classical idea of  a measurement. This view of  the measurement process 

insists only on the "self-consistency" of the measurement device, while abandoning the 100% correlation between 

the latter and the quantum system Q, a cornerstone of decoherence models. More precisely, no information (in the 

sense of Shannon theory) about Q is obtained from the ancilla. Indeed, using Eqs. (32) and (44), we have 

S(Q:A:A' )  = S(A:A')  - S (A:A ' IQ)  = 0 (45) 

meaning that the mutual entropy between A and A' (the observed correlation) is not shared with Q. This is a 

consequence of  the fact that Q is initially in a pure state. We will see in the next section that information (Shannon 

mutual entropy) can only be acquired in the situation where a mixed state is measured. After measurement, the 

quantum entropy of the ancilla (unconditional on Q) 

S(AA ' )  = H[pi],  with Pi ---- lc~il 2, (46) 

is interpreted as the "physical" entropy of Q. This happens to be the classical entropy associated with the probability 

distribution of  the random outcomes, Pi = Ic~i 12, that is, the probabilities predicted by quantum mechanics. Thus 

the unconditional entropy of the ancilla is equal to the entropy of  Q predicted in "orthodox" quantum mechanics 

(which involves the projection of the wave function). Still, the entropy of Q conditional on AA'  is negative, and 

exactly compensates S(AA ' )  to allow for a vanishing entropy for the joint system, 

S(AA ' )  ÷ S (QIAA ' )  = S ( Q A A ' )  = 0. (47) 

This then emphasizes how measurement can be probabilistic in nature, while at the same time being described by 
a unitary process (which does not permit the evolution of pure into mixed states). 

The appearance of  a wave-function collapse, crucial in the physics of sequential measurements, can also be 

interpreted in this information-theoretic picture. If  a second ancilla B (in general, also a large number of  degrees 
of  freedom) interacts with Q in order to measure the same observable (after a first measurement involving ancilla 

A), the result is an "EPR-nplet" or a "Schr6dinger-cat state" (consisting of all the degrees of freedom of A, B, 
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and the measured quantum state Q). To simplify, let us consider two ancillary variables A and B (and neglect their 

amplification). Then, the final quantum state after the sequential measurement is 

IQAB) = Z oti[ai, i, i), (48) 
i 

illustrating clearly that the states of A and B (unconditional on Q) are classically maximally correlated just as 

described earlier. This is the basic consistency requirement for two consecutive measurements of the same variable: 

we must have S(BfA)  = 0. The standard assertion of orthodox quantum mechanics is that, after the first measure- 

ment, the wave function of Q is projected on l a i  ) ,  the observed eigenstate, so that any following measurement yields 

the same value i without any remaining uncertainty since the state of Q is now lai). As we just showed, such a 

classical correlation between the outcome of two measurements actually involves no collapse; rather, the vanishing 

remaining uncertainty of  the second measurement [reflected by the vanishing conditional entropy S(B IA) = 0] is 

due to the fact that one considers only part of an entangled system. 

More interestingly, in the case where the ancilla B measures another observable, Eq. (48) becomes 

IQAB) = Z otiUij]bj, i, j ) ,  (49) 
i,j 

where {Ibj)} are the eigenvectors of the second observable, Uij -- (bj l ai), and {l J)} denote the eigenstates of the 

second ancilla B. The resulting marginal density matrices PA and P8 can be obtained straightforwardly by tracing 

over QB or QA, giving 

DA : Z I°til21i)(il' (50) 
i 

p8 = ~ Iotil21Uijl21j)(jl • (51) 
i,j 

Just like Pi :-- leli 12 is the probability of measuring the outcome i in the first measurement, Pjli = I U i j  12 can be 

viewed as the probability of measuring j in the second measurement conditionally on having measured i in the first 

one. Thus, measuring A before B appears to have collapsed the wave function: we obtain for B the "decohered" 

probabilities pj = Z i  PiPjli = Y]~i Ic~i [ 2 I Uij 12 instead of  pj = I(bjlQ)12 = l Y-]~i ~i Uij 12 as would be the case if 

there was no first measurement. Nevertheless, the quantum superposition is still present in the wave function I QAB) 
and the collapse appears only due to "partial" observation. 

5. Bel l - type m e a s u r e m e n t s  

In order to illustrate the information-theoretic analysis of measurement described above, let us consider the 

measurement of  an EPR pair. This should also clarify how quantum entanglement can have the appearance of 

classical correlation in such an experiment. Let us prepare a bipartite system Q I Q2 in the EPR-entangled state 

1 
IQIQ2) = ~ ( I  "[']') +1 $~-)) (52) 

and separate the two members at remote locations in space. At each location, the system (QI or Q2) is measured 

by interacting with an ancilla (Al or A2), following the same procedure as before. In brief, each system (Ql or Q2) 
becomes entangled with its corresponding ancilla, resulting in the entangled state 

1 
[QIQ2AIA2) = ~ ( I  71" 11) +1 $$ 00)) (53) 

~/2 
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(a) QIQ2 (b) 

A1 A A I (  

Q,% 

~A 2 
Fig. 4. Ternary entropy diagram for the measurement of an EPR pair: (a) A 1 and A 2 both measure the spin z-component c~.~; (b) AI 
measures cr: while A 2 measures  o~. 

for the entire system. Note that an ancilla in state I1) means that a spin-up has been measured, and conversely. 

(Obviously, this corresponds to the measurement of  the spin-projection along the z-axis; the measurement of 

different spin-components of Q1 and Q2 can be considered along the same lines.) As previously, we describe the 

ancilla with just one internal variable, even though in practice it must be thought of as consisting of a large number 

of correlated ones. The important point here is that, despite the fact that Ql and Q2 were initially in an entangled 

state [characterized by the ( -  1, 2, - 1) entropy diagram], the state of the two ancillae unconditional on Q I and Q2 
is a mixed (classically correlated) state: 

,Oa, a2 : 1 (100> <00l + I 1 1 ) (1 1 I). (54) 

Thus, the ancillae are correlated: the corresponding entropy diagram (0, 1,0) clearly shows that, after observing 

A l, for instance, the state of A2 can be inferred without any uncertainty, i.e., S(A21A1) ---- 0. However, this must 
not be attributed to the existence of  classical correlation between Q1 and Q2; rather it is the act of measuring which 
gives rise to this appearance. 

The entropy relations between Q1, Q2, A1 and A 2 c a n  be summarized by an entropy diagram (Fig. 4(a)). 

This emphasizes that it is the same mechanism which is at the origin of  the coincidence between the observed 

spin-projection for both particles in an EPR experiment and at the core of the consistency between sequential 

measurements on a single quantum system. 9 In the former case, the mechanism is natural, while in the latter case, 

it is more difficult to discern and an ad hoc collapse is therefore wrongly invoked. For completeness, the entropy 

diagram describing the situation where the ancillae A l and A2 measure orthogonal spin projections (e.g., Crx and 

crz) is shown in Fig. 4(b). When tracing over Q I and Q2, it is obvious that the ancillae A l and A2 are statistically 

independent, which accounts for the fact that two apparently independent random variables ( ~  and or:) are measured. 

In reality, the entire system is entangled in a particular way: A l and A2 are entangled separately with Q1 Q2. Note 
finally that the violation of Bell inequalities occurring in the measurement of EPR pairs can also be analyzed from 
an information-theoretic point of view, as shown in [8]. 

6. Measurement of mixed states and accessible information 

An important issue of quantum information theory is the maximum amount of information that one can extract 

about a quantum system by performing a measurement. Let us consider a simple derivation of  this quantity based 
on conditional and mutual quantum entropies and on relations between them [10]. This derivation, relies on our 

9 We thank Zac Walton for pointing out this to us. 
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information-theoretic description of  unitary measurement and does not involve any "environmental" degrees of  

freedom (it does not involve decoherence induced by an environment [33]). As emphasized before, the entropy that 

appears in the ancilla A is "extracted" from the measured quantum system Q, whose conditional quantum entropy 

therefore becomes negative. This means that the quantum system and the ancilla are entangled as a result of the 

measurement, and that the measurement simply becomes the "act" of  ignoring - or tracing over - the quantum 

system Q which is to be measured. This is in contrast with the prevalent view of measurement, where the quantum 

system and the ancilla become classically correlated because one is compelled to ignore the numerous degrees of 

freedom of  an uncontrollable environment (in other words, decoherence leads to the selection of a "preferred basis" 

for the "pointer variable" [33]). As stressed in Section 4, the appearance of  a collapse of  the wave function can be 

fully understood when considering subsequent measurements w i t h o u t  any environment; the statistics of the observed 

ancillae that interact sequentially with the quantum system Q is indistinguishable from the statistics resulting from 

the collapse postulate. 

A striking consequence of this information-theoretic interpretation is that, in any measurement of a pure  state, 

no information at all (in the sense of  Shannon theory) can possibly be extracted from the system. In other words, no 

information is gained about the identity of  the pure state. (This means that the "pointer variable" is no t  classically 

correlated with the quantum system.) Recognizing that a pure state has a vanishing von Neumann entropy, this 

turns out to be an obvious result: there is no uncertainty about it, so nothing can be learned from it. This can also 

be understood as a consequence of the quantum non-cloning theorem [30]: one cannot "clone" (i.e., correlate in 

the Shannon sense) an arbitrary state with an ancilla, as only entanglement results from the measurement. It is 

also straightforward to see, by looking at quantum entropies, that the correlations that appear in a measurement 

do not concern Q vs. A, but rather concern all the pieces of the (generally macroscopic) ancilla: the ancilla is 

"self-consistent". 10 Clearly, as far as information extraction is concerned, a more interesting case to consider is 

the measurement of a quantum system Q initially prepared in a m i x e d  state; only then can information be extracted 

about the p r e p a r a t i o n  of the state. 

A measurement performed on a quantum system that can be prepared in different states yields an amount of 

information about the preparation which is limited by the Levi t in-Kholevo bound [18,21]. More precisely, if a 

system is prepared in a state described by one of the density operators Pi ( i  = 1 . . . . .  n)  with probability Pi,  then 

the information I that can be gathered about the identity of the state always satisfies 

(55) 

This result holds for any measurement one can perform on the system, including positive-operator-valued measures 

(POVM's).  Since the original proof by Kholevo, a lot of effort has been devoted to obtaining a simpler proof of 

the theorem, or to derivations of  stronger upper or lower bounds on I [13,17,23,25,31]. Our aim here is to give 

a simple proof of this upper bound on accessible information which is based on quantum entropies, as opposed 

to deriving Shannon entropies from the quantum probabilities associated with measurements, as is usually done. 

The derivation relies only on the unitarity of the measurement seen as a physical process, along with the strong 

subadditivity property of  quantum entropies (cf. Section 3). This makes the physical content of the Kholevo theorem 

more transparent: in short, it states that the c lass ica l  mutual entropy (i.e., the acquired information I)  is bounded 

from above by a q u a n t u m  mutual entropy. 

]0 If A I and A2 represent two (arbitrarily chosen) halves of the ancilla, the ternary mutual entropy S(AI:A2:Q) vanishes if the quantum 
system Q is initially in a pure state and if the measurement process is unitary. But, the ancilla is "self-consistent" that is S(A2IA 1 ) = 
S ( A 1  IN2) -- O. 
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Let us assume that we have a "preparer", described by a (discrete) internal variable X which is distributed 
according to the probability distribution Pi (i = 1 . . . . .  N). The internal state of the preparer, considered as a 
physical quantum system, is given by the density matrix 11 

fix = E Pi Ixi) (xil, (56) 
i 

with the Ixi) being an orthonormal set of states. The state of the quantum variable X can be copied to another system 

simply by making conditional dynamics (the simplest example being a controlled-NOT quantum gate) and in that 
sense, it behaves like a classical variable (it can be "cloned"). Let us therefore denote by X the collective set of 
correlated internal variables describing the preparer state. Assume now that the preparer has at his disposal a set of 
N mixed states Pi, and that he chooses one of them for Q according to his internal state X. The joint state of the 
preparer and the quantum system Q is then given by 

PXQ = Z pilxi)(xil  ® pi (57) 
i 

and a partial trace over X simply gives the state of Q: 

pQ = TrxPxQ = Z PiPi =~ P. (58) 
i 

The quantum entropy of X, Q and the joint system X Q is given by 

S(X)  = H[pi], S (Q)  = S(p) ,  S (X  Q) = H[pi] + E piS(pi) ,  (59) 
i 

where the last expression results from the fact that PXQ is block-diagonal (it is the quantum analog of the "grouping 

theorem" in Shannon theory [2]). 
Now, the quantum system Q is "measured" by interacting unitarily with an ancilla A, according to 

IOX'Q'A ' = ( I x  @ UQA)(RXQ @ 10)(0l)(lx ® UQA) +, (60) 

where 10) denotes an initial reference state of the ancilla, and X ~, Q', and A' correspond to the respective systems 

after the unitary evolution UQA. For the moment, let us assume that UQA is arbitrary. The interesting question will 
be to determine the mutual quantum entropy S(X ' :A  r) between the physical state of the ancilla A after measurement 
and the physical state of the preparer X (which remains unchanged in the measurement). We will show that, given 
certain assumptions for UQA, S(X':A t) represents simply the Shannon mutual entropy between the preparer and 
the ancilla, or, in other words, the information I extracted by the observer about the preparer state. 

The relations between the entropies of X and Q before measurement can be summarized by the quantum entropy 
diagram in Fig. 5. It is easy to calculate the quantum mutual entropy between X and Q before measurement, 

S(X:Q)  = S (X)  + S (Q)  - S ( X  Q) = S(p)  - Z piS(pi) ,  (61) 
i 

showing that S(X: Q) is simply the Kholevo bound [see Eq. (55)]. Invoking the upper and lower bounds for the 
entropy of a convex combination of density matrices (see e.g. [28]), i.e., 

ZpiS(Ri) ~ S (~ i  P i P i ) i  <~ H[P]-}-ZpiS(Ri)i ( 6 2 )  

11 Of  course,  PX can be seen as resul t ing from the partial  trace of a pure state in an extended Hilber t  space (it can be "purif ied" via  a 

Schmidt decomposition). 
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Fig. 5. Entropy Venn diagram for the correlated system X Q before measurement. 

X'  Q' 

implies that the Kholevo bound cannot exceed the source entropy, 

0 < S (X:Q)  <_ H[pi]. (63) 

This shows that the entropy diagram for X Q (represented in Fig. 5) has only positive entries and therefore looks 

like a classical diagram for correlated variables. 12 

Before measurement, the ancilla A is in a pure state ]0) and the joint  state of the system X QA is a product state 

PXQ Q ]0)(0], so that we have S(X: Q) = S(X: QA).  As the measurement involves unitary evolution of  QA and 

leaves X unchanged, it is straightforward to check that this mutual entropy is conserved: 

S(X ' :Q 'A ' )  = S ( X : Q A )  = S(X:Q) .  (64) 

Next, we may split this entropy according to the quantum analog of the chain rules for mutual entropies [Eq, (35)] 

to obtain 

S(X ' :Q 'A ' )  = S(X ' :A ' )  + S(X':Q']A')  (65) 

where the second term on the right-hand side is a quantum conditional mutual entropy (i.e., the mutual entropy 

between X'  and Q', conditionally on A'). Combining Eqs. (64) and (65) gives the basic relation 

S(X' :A ' )  = S (X:Q)  - S(X':Q']A') .  (66) 

This equation is represented as arithmetic on Venn diagrams in Fig. 6. 

Thus, the quantum mutual entropy between the state of the preparer X'  (we can ignore the prime since X is 

unchanged in the measurement) and the state of the ancilla after measurement A' is given by S(X: Q), the Kholevo 

12 As explained earlier, this property is related to the fact that Px Q is a separable state and therefore is associated with positive conditional 
entropies. 

Fig. 6. Diagrammatic representation of the Levitin-Kholevo theorem. The area enclosed by the double solid lines represents the mutual 
entropy that is conserved in the measurement S(XI: QIA ~) = S(X: Q). 
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bound, reduced by an amount which represents the mutual entropy still existing between the preparer's internal 

variable X and the quantum state after measurement Q', conditional on the observed state of the ancilla A'. Since 

S(X':  Q'IA') is in general difficult to calculate, we can make use of strong subadditivity 13 in order to obtain an 

inequality. In particular, we have S(X':  Q'IA') > O, which yields the simple upper bound: 

S(X' :A ' )  <_ S (X:Q)  = S(p) - Z p i S ( p i ) .  (67) 
i 

It remains to show that, for a particular UQA which describes a measurement, the quantum mutual entropy S(Q':A')  
reduces to a Shannon mutual entropy (the mutual information I between the state of the preparer and the outcome 

of the measurement). 

Let us consider only the case of a von Neumann measurement, 

UQA = Z P~ @ g~, 
Ol 

14 using the explicit form 

(68) 

where the index ot refers to the outcome of the measurement and the P,~'s denote the projectors in the Q space 

associated with the measurement ()--~,~ P~ = 1). The unitary operators V,~ act in the A space, and move the ancilla 

from the initial state 10) to a state lot) = V~ 10) that points to the outcome of the measurement. Let us assume that 

the lot) are orthogonal so that the outcomes are perfectly distinguishable. The joint density matrix after unitary 

evolution is thus given by 

PX'Q'A' = Z pi]xi)(Xil @ PaPiP~' ® Iot)(ot'l. (69) 
i,cl.ed 

As before, we now have to trace over the quantum system Q' in order to induce correlations between X' and A'. 

The corresponding density matrix is 

Z Pi Yr(Papi ) ]xi ) (xi I @ I Or) (ot I. (70) PX'A' 
i,ot 

As it is a diagonal matrix, the relations between the entropies of X'  and A' can be described within Shannon theory 

(the quantum definitions of conditional and mutual entropies reduce to the classical ones in this case). A simple 

calculation shows that one has indeed 

S(X' :A ' )  = H[Tr(Pc~p)] - ~ . ,  piH[Tr(Pc~pi)] = H(A )  - H(A]X)  = H ( A : X ) ,  (71) 
i 

where Yr(Pc~pi) is the conditional probability pc~li of measuring outcome ot on states Pi, so that it is justified to 

identify S(X':A' )  with the information I.  Note that the information gained in the measurement is not described as 

a difference between initial and final uncertainty of the observer (involving a calculation of probabilities as it is 

usually done), but rather as a quantum mutual entropy. As a result of Eq. (71), we see that Eq. (67) provides an 

upper bound on the accessible information, completes our derivation of the Levitin-Kholevo theorem. As shown 

elsewhere [10], the same reasoning can be extended to the case of sequential measurements of a quantum system, 

using chain rules for quantum entropies, providing a generalization of the Levitin-Kholevo theorem. 

13 Expressed in our quantum information-theoretic language, strong subadditivity implies that the conditional mutual entropy S(X: Y IZ) 
between any three quantum variables X, Y, and Z is non-negative. This expresses the intuitive idea that the mutual entropy between 
X and YZ is larger or equal to the mutual entropy between X and Z only (just as for mutual informations in Shannon theory), so that 
entanglement can never decrease when extending a system. 
14 It can be shown that the same reasoning applies also to measurements based on a positive-operator-valued measure (POVM). 
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As a final remark, let us mention that inequality (67) can be shown to be a special case of a more general relation. 
For an arbitrary density matrix Px Y describing a bipartite quantum system whose components interact with ancillae 
A and B that define bases Ix) and ]y) respectively, we have clearly S(A' :B ' )  = H ( X : Y ) ,  where H ( X : Y )  is the 

Shannon mutual entropy of the joint probability Pxy = (x, YlPxY Ix, y). Using 

S(X:Y)  = S (X '  A':Y'  B') = S(A' :B ' )  + S(A' :Y ' IB ' )  + S (X ' :Y '  B'IA')  (72) 

and the non-negativity of conditional mutual entropies yields the general inequality 

H ( X : Y )  < S (X:Y)  (73) 

between classical and quantum mutual entropies. Eq. (73) relates the von Neumann mutual entropy of a quantum 

bipartite system (based on PxY) and the Shannon mutual entropy based on the joint probability distribution formed 
by the diagonal elements of PxY in an arbitrary product basis. This complements the well-known relation between 

the von Neumann (unconditional) entropy of a density matrix Px and the Shannon entropy based on its diagonal 
elements in any basis 

H ( X )  >_ S(X) ,  (74) 

where this inequality is saturated when considering the eigenbasis of Px. Finally, using Eqs. (73) and (74), one can 
write the corresponding relation between classical and quantum conditional entropies, that is, 

H ( X I Y )  > S(XIY) .  (75) 

7. Conclusions 

We have shown that quantum entanglement can be consistently described using the notion of negative conditional 
entropy, an essential feature of a unified (classical and quantum) information theory built entirely on density matrices. 
Negative quantum entropy can be traced back to a conditional "amplitude matrix" which admits an eigenvalue 
larger than unity. A straightforward definition of quantum mutual entropy can also be obtained using a mutual 
"amplitude matrix". This quantum matrix-based formalism gives rise to the violation of well-known bounds in 

classical information theory. It treats quantum entanglement and classical correlation on the same footing, while 
clarifying in which sense entanglement can induce correlation. This feature allows for a consistent information- 

theoretic description of unitary quantum measurement, devoid of any assumption of wave-function collapse, which, 
at the same time, accounts for the creation of entropy (random numbers) in measurement outcomes. This sheds 
new light for example on information-theoretic aspects of Bell-type experiments [8] or on the issue of how much 

information can be accessed in a quantum measurement [10]. Also, as quantum entanglement is a central feature 
of quantum information theory, the present formalism sheds new light on decoherence (entanglement with an 
environment) in noisy quantum channels [1] as well as the error-correcting codes being devised to counteract it [9]. 
From a more fundamental point of view, the fact that quantum conditional entropies can be negative reveals that 
quantum statistical mechanics is qualitatively very different from classical statistical mechanics, even though most 
of the formulae are similar. 
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