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Entropic bounds on coding for noisy quantum channels
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In analogy with its classical counterpart, a noisy quantum channel is characterized by aloss, a quantity that
depends on the channel input and the quantum operation performed by the channel. The loss reflects the
transmission quality: if the loss is zero,quantuminformation can be perfectly transmitted at a rate measured by
the quantum source entropy. By usingblock codingbased on sequences ofn entangled symbols, theaverage
loss~defined as the overall loss of the jointn-symbol channel divided byn, whenn→`) can be made lower
than the loss for asingleuse of the channel. In this context, we examine several upper bounds on the rate at
which quantum information can be transmitted reliably via a noisy channel, that is, with an asymptotically
vanishing average loss while theone-symbolloss of the channel is nonzero. These bounds on the channel
capacity rely on the entropic Singleton bound on quantum error-correcting codes@Phys. Rev. A56, 1721
~1997!#. Finally, we analyze the Singleton bounds when the noisy quantum channel is supplemented with a
classical auxiliary channel.@S1050-2947~98!09404-9#

PACS number~s!: 03.67.Hk, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

Within recent years, the quantum theory of informati
and communication has undergone a dramatic evolution~see,
e.g., @1#!. Major progress has been made toward the ext
sion to the quantum regime of the classical theory of inf
mation pioneered by Shannon@2#. In particular, the use o
quantumcommunication channels in order to transmit n
only classical information but also intact quantum states~or
quantuminformation! has received a considerable amount
attention, following the proof of the quantum analog
Shannon’s fundamental theorem for noiseless coding
Schumacher@3#. It has been shown that the von Neuma
entropy plays the role of a quantum information-theore
entropy in the sense that it characterizes the minim
amount of quantum resources~e.g., number of quantum bits!
that is necessary to code an ensemble of quantum states
an asymptotically vanishing distortion in the absence
noise. This result suggests that a general quantum theo
information, paralleling Shannon theory, can be develo
based on this concept. While such a full theory does not e
as of yet, a great deal of effort has been devoted to this is
over the past few years, and several fundamental results
been obtained, ranging from entanglement-based comm
cation schemes@4# to quantum error-correcting codes@5#. In
particular, a substantial amount of work has been devo
recently to the transmission of arbitrary states~or quantum
information! throughnoisyquantum channels~see, e.g.,@6–
9#!. A quantum state processed by such a channel under
decoherenceby interacting with an external system or env
ronment, which effects an alteration of quantum informati
A natural question that arises in this context concerns
possibility of transmitting quantum informationreliably, in
spite of quantum noise, if it is suitably encoded as sequen
of quantum bits in analogy with the standard construct
used for classical channels. More specifically, a fundame
issue is to understand the quantum analog of Shann
noisy channel coding theorem and to define thecapacityof a
571050-2947/98/57~5!/3330~18!/$15.00
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noisy quantum channel, i.e., an upper limit to the amoun
quantum information that can be processed with an a
trarily high fidelity. While several attempts have been ma
to define a quantum analog of Shannon mutual informat
that would be a natural candidate for such a quantum m
sure of capacity~see the concepts of coherent informati
@7,8# or von Neumann mutual entropy@9,10#!, the problem
of characterizing in general the capacity of a noisy quant
channel is still unsolved.

The purpose of this paper is to further clarify the descr
tion of noisy quantum channels centered on the von N
mann mutual entropy~see@9#!. It has been shown recentl
that a consistent information-theoretic framework th
closely parallels Shannon’s construction can be develop
based on von Neumannconditional and mutual entropies
@10–13#. The central peculiarity of this framework is that
involves negativeconditional entropies in order to accou
for quantum nonlocal correlations between entangled v
ables. This is in contrast with Shannon information theory
which marginal and conditional entropies are all no
negative quantities. Negative quantum conditional entrop
simply reflect the nonmonotonicity of the von Neumann e
tropy @14# ~the entropy of a composite system can be low
than that of its components if the latter are entangled!. The
resulting information-theoretic formalism provides groun
for the quantum extension of the usual algebraic relati
between Shannon entropies in multipartite systems@11–13#.
Surprisingly, many concepts of Shannon theory can
straightforwardly translated to the quantum regime by
tending the range for quantum~conditional and mutual! en-
tropies with respect to the classical one in order to enco
pass entanglement@10#. This is very helpful in analyzing
quantum information processes in aunified framework, par-
alleling Shannon theory. For example, entanglement-ba
quantum communication processes@10#, quantum channels
@9#, and quantum error-correcting codes@15# can be de-
scribed along these lines.

In this paper, we focus on the application of th
3330 © 1998 The American Physical Society
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information-theoretic framework to the issue of finding u
per bounds on the capacity of quantum codes and quan
channels. In Sec. II, we outline the general treatment of no
quantum channels based on quantum entropies@9#, and ex-
tend it to the characterization of consecutive uses of a qu
tum memoryless channel~cf. the notions of one-symbol an
average loss explained in Sec. II D!. This provides a simple
framework to considerblock codingwith quantum channels
Note that, just as in Shannon information theory, quant
entropic considerations alone do not result inconstructive
methods for building codes. Rather, they are useful to de
bounds on what can possibly be achieved or not, from b
principles. Accordingly, we analyze in Sec. III several upp
bounds~based on the Singleton bound on quantum co
@15#! for standard quantum channels such as the quan
erasure or depolarizing channel. This confirms bounds on
quantum capacity that were derived otherwise, but pla
this problem in a unified context. Finally, we examine in S
IV the extension of this quantum entropic treatment of no
quantum channels to the case where an auxiliaryclassical
channel is available. Quantum teleportation appears then
special case of this construction when no block coding
applied.

II. ENTROPIC CHARACTERIZATION
OF NOISY QUANTUM CHANNELS

A. Notations

Let us start by summarizing the basic definitions that w
be useful in the rest of this paper when considering no
quantum channels. The entropy of a quantum systemX ~of
arbitrary dimension! is defined as the von Neumann entro
of the density operatorrX that characterizes the state ofX,
i.e.,

S~X!5S@rX#[2Tr~rXlog2rX!. ~2.1!

It can be viewed as the uncertainty aboutX in the sense tha
it measures~asymptotically! the minimum number of quan
tum bits ~qubits! necessary to specifyX @3#. This definition
can be extended to the notions ofconditionalandmutualvon
Neumann entropies, based on a simple parallel with th
classical counterparts which is motivated in@10–12#. For a
bipartite systemXY characterized byrXY , the conditional
von Neumann entropy is

S~XuY!5S~XY!2S~Y! ~2.2!

while themutualvon Neumann entropy is

S~X:Y!5S~X!2S~XuY!

5S~Y!2S~YuX!

5S~X!1S~Y!2S~XY!, ~2.3!

whereS(XY) is calculated fromrXY while S(X) andS(Y)
are obtained from the reduced density operatorsrX
5TrY(rXY andrY5TrX(rXY). Subadditivity of quantum en
tropies impliesS(X:Y)>0, where the equality holds ifX and
Y are independent~i.e., rXY5rX^ rY). Note that, when
S(XY)50 ~i.e., the joint systemXY is in a pure state!, we
have S(X:Y)52S(X)52S(Y) as a consequence of th
Schmidt decomposition. This property will be useful in t
following. Several quantum entropies can also be defined
m
y

n-

e
ic
r
s
m

he
s
.
y

s a
s

l
y

ir

or

characterizingmultipartite quantum systems. Consider, fo
instance, a tripartite systemXYZ. The von Neumann condi
tional mutual entropy~of X andY, conditionally onZ) can
be defined as

S~X:YuZ!5S~XuZ!2S~XuYZ!

5S~XuZ!1S~YuZ!2S~XYuZ!

5S~XZ!1S~YZ!2S~Z!2S~XYZ! ~2.4!

in perfect analogy with the classical expressions. Note t
the strong subadditivity of quantum entropies impli
S(X:YuZ)>0 @12#. We can also define the von Neuman
ternary mutual entropy as

S~X:Y:Z!5S~X:Y!2S~X:YuZ!. ~2.5!

Note that, ifS(XYZ)50 ~i.e., the ternary system is in a pur
state!, then S(X:Y:Z)50 @12#, or, equivalently, S(X:Y)
5S(X:YuZ), a property which is very useful in the analys
of quantum channels. Also,chain rulesfor quantum entro-
pies can be written, such as

S~X:YZ!5S~X:Y!1S~X:ZuY!, ~2.6!

which parallel the classical relations@12#. The motivation for
building such a quantum entropic framework is that it pr
vides aninformation-theoreticformulation of quantum en-
tanglement in multipartite systems, unified with Shanno
description of classical correlation. It is an extension
Shannon’s formalism beyond its original range, as reflec
for example, by the fact that the quantum mutual entropy
reachtwice the maximum value allowed for classical entr
pies @10#, that is,

0<S~X:Y!<2min@S~X!,S~Y!#. ~2.7!

This factor 2 appears in many quantum information-theore
relations~see below!, and originates from the Araki-Lieb in
equality for quantum entropies@10–12#.

B. Quantum mutual entropy, loss, and noise

Let us now outline the entropic treatment of a noisy qua
tum channel~see also Ref.@9#!. Such a treatment explicitly
displays the correspondence with the standard descriptio
noisy classical channels~see Appendix A!, thereby unifying
classical and quantum channels. Our description invol
three quantum systems of arbitrary dimensions:Q ~the quan-
tum system whose processing by the channel is concern!,
R ~a ‘‘reference’’ system thatQ is initially entangled with!,
andE ~an external system or environment thatQ is interact-
ing with in the noisy channel!. More specifically, we assum
that Q is initially entangled withR, so that the joint state o
Q andR is thepure stateuCRQ&. We may as well regardQ
as a quantum source, being initially in a mixed staterQ
~realized by a given ensemble of quantum states assoc
with some probability distribution!. The ‘‘purification’’ of
rQ into uCRQ& can always be achieved by extending t
Hilbert space HQ to HRQ , so that we have rQ
5TrR(uCRQ&^CRQu). The corresponding reduced von Ne
mann entropies are
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S~R!5S~Q![S, ~2.8!

where S is called thesource entropy. In the dual picture
where anarbitrary pure state ofQ ~rather than entangle
ment! is sent through the channel,S then measures the ‘‘ar
bitrariness’’ ofQ ~it can be viewed as the average number
quantum bits that are to be processed by the channel in o
to transmit the state ofQ). In what follows, we prefer to
consider a quantum inputQ that is entangled withR, so that
the preservation of entanglement—rather than of arbitr
states—will be the central feature of a quantum transmi
channel. The initialmutual entropyto be transmitted is thus

S~R:Q!52S, ~2.9!

that is,twice1 the source entropy.
When it is processed by the channel,Q interacts withE

~assumed to be initially in a pure stateu0&) according to the
unitary transformationUQE , inducingdecoherence. This de-
scribes the most general~trace-preserving! operation of a
quantum channel that is allowed by quantum mechan
Roughly speaking, the resultingnoisy quantum channel is
such that, typically, only a fraction of the initial entangl
ment with R can be recovered after having been proces
by the channel~the rest of the entanglement withR is lost, in
the sense that it is transferred to the environment!. More
specifically, the decohered quantum system after interac
with E, denoted asQ8, is in the state

rQ8 5TrE„UQE~rQ^ u0&^0u!UQE
†

…, ~2.10!

whererQ is the initial state ofQ ~with source entropyS).
The completely positive linear maprQ→rQ8 corresponds to
the ‘‘quantum operation’’ performed by the noisy chann
@7#. After such an environment-induced decoherence,
joint system R8Q8E8 is in the state uCR8Q8E8&5(1R
^ UQE)uCRQ&u0E& whose entropy Venn diagram is repr
sented in Fig. 1~the primes refer to the systemsafter deco-
herence!. Note that, as the reference is not involved in de
herence, we haveR8[R.

The entropy diagram ofR8Q8E8 depends on three param
eters, the von Neumannmutualentropy~or the quantum in-
formation! I , the loss L, and thenoise N, these quantities
being defined in analogy with their classical counterparts

I 5S~R:Q8!, ~2.11!

L5S~R:E8uQ8!5S~R:E8!, ~2.12!

N5S~Q8:E8uR!5S~Q8:E8!. ~2.13!

The classical correspondence can be made fully explicit
including an environment in the description of a classi
channel, as shown in@9#. The second equality in Eqs.~2.12!
and~2.13! has no classical analog, and results from the v
ishing of the ternary mutual entropyS(R:Q8:E8) ~see

1Note that this factortwo reflects a fundamental difference b
tween classical and quantum channels~see Appendix A for com-
parison!. Such a factor is omnipresent in the quantum informatio
theoretic relations between entropies@12#.
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@9,15#!. Physically, the quantum informationI corresponds
to the residual mutual entropy between the decohered q
tum outputQ8 and the reference systemR that purifies the
quantum inputQ. The lossL is the mutual entropy that ha
arisen between the environment after decoherenceE8 and the
reference systemR, while the noiseN is the mutual entropy
between the decohered quantum outputQ8 and the environ-
mentE8. Note thatI , L, andN can be written as a function
of reduced entropies only, without explicitly involving th
environmentE in the discussion, by making use of th
Schmidt decomposition of the state ofR8Q8E8, namely
S(E8)5S(RQ8):

I 5S~Q!1S~Q8!2S~RQ8!, ~2.14!

L5S~Q!1S~RQ8!2S~Q8!, ~2.15!

N5S~Q8!1S~RQ8!2S~Q!. ~2.16!

It can also be shown that these three quantities are in
independent of the choice of the reference systemR when-
ever the latter purifies the quantum inputQ, so that they
provide a most concise entropic characterization of inform
tion flow in the channel. They depend in general on the ch
nel input~i.e., rQ) and on the quantum operation performe
by the channel~i.e., the completely positive trace-preservin
map onQ that is specified byUQE in the joint space ofQ
and E). This exactly parallels the situation for the analo
classical quantities. The informationI , lossL, and noiseN of
a classical channel of inputX and outputY ~see Appendix A!
indeed depend on the input distributionp(x) and on the
channel ‘‘operation’’ characterized byp(yux).

Among these three quantities, onlyI andL are relevant as
far as~forward! information transmission through the cha
nel is concerned~the noiseN plays a role in the description
of the ‘‘reverse’’ channel, just as for classical channels!. In-
deed, information processing is characterized by the bala
between the von Neumann mutual entropy and the loss, th
two quantities always summing totwice the source entropy

-

FIG. 1. Schematic representation of the quantum operation
fected by a noisy quantum channel. The quantum systemQ is ini-
tially entangled with the referenceR, with a mutual entropy of
twice the source entropyS ~this is indicated by a dashed line!. Then
Q decoheres by interacting with an environmentE ~initially in a
pure stateu0&). The entropy Venn diagram summarizes the entro
relations betweenQ8 ~output of the quantum channel!, R8 ~refer-
ence!, andE8 ~environment! after decoherence. The three param
etersI , L, andN denote the von Neumann mutual entropy~quantum
information!, the loss, and the noise, respectively.
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I 1L52S~Q![2S. ~2.17!

The mutual entropyI 5S(R:Q8) represents the amount o
the initial mutual entropy with respect toR ~i.e., 2S) that has
been processed by the channel, while the lossL5S(R:E8)
corresponds to the fraction of it that is unavoidably lost
the environment. If the channel islossless(L50), then I
52S, so that the interaction with the environment can
perfectly ‘‘undone,’’ and the initial entanglement ofQ can
be fully recovered by an appropriate decoding@7,9#.
~Equivalently, this means that an arbitrary initial state ofQ
can be recovered without error.! This can be understood b
noting thatR does not become entangleddirectly with the
environment in a lossless channel, but only via the outputQ8
~see Fig. 1 whenL50). An operation onQ8 only ~namely,
the decoding operation! is enough to transfer the unwante
entanglement withE8 ~measured by the noiseN) to an an-
cilla, while preserving the entanglement 2S with R.

Thus, if L50, a perfect transmission of information~in-
cluding quantum information! can be achieved through th
channel by applying an appropriate decoding. WhenI 50, on
the other hand, no information at all~classicalor quantum!
can be processed by the channel. This is the case, for
ample, of the quantum depolarizing channel withp53/4 ~see
Sec. III D!. In between these limiting cases, classical inf
mation~and, up to somerestrictedextent, quantum informa
tion! can be reliably transmitted at the expense of a decre
in the rate by making use ofblock coding. The analysis of
such a transmission of quantum information immune to no
is the main focus of this paper.

For completeness, let us mention that a channel withN
50 is the quantum analog of adeterministicchannel@16#,
that is, a channel where the input fully determines the ou
~see Appendix A!. The quantum outputQ8 is indeed not
directly entangled withE8 but only viaR, which implies that
its entanglement withR remains intact~see Fig. 1 whenN
50). This does not mean, however, that perfect error cor
tion is achievable, as an operation on the referenceR is
needed to recover the initial entanglement 2S betweenQ and
R. A channel which is both lossless (L50) and deterministic
(N50) is callednoiseless; its action onQ is the identity
operator~or any fixed unitary operator!. For example, the
overall channel including a noisy quantum channel alo
with the encoder and decoder is obviously noiseless if p
fect error correction is achieved.~In other words, the decode
is used to eliminate the quantum noiseNÞ0 by transferring
the entanglement withE to an ancilla, which then makes th
overall channel noiselessprovided that L50.! It is worth
noting here that the noiseN and the lossL play symmetric
roles when considering the ‘‘reverse’’ channel obtained
interchanging the input and output.~This is true for classica
channels as well.! More specifically,N and I always sum to
twice theoutputentropy,

I 1N52S~Q8!, ~2.18!

in analogy with Eq.~2.17!. Roughly speaking,N plays the
role of the loss of the reverse channel, as shown in Sec.
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C. Properties of quantum I , L , and N

The above entropies definitions for a noisy quantum ch
nel can be shown to fulfill several properties, akin to clas
cal ones, which make them reasonable quantum measur
information, loss, or noise~see also Ref.@9#!. First, the quan-
tum mutual entropyI can be shown to beconcavein the
input rQ for a fixed channel, i.e., a fixed quantum operati
rQ→rQ8 or a fixedUQE . Therefore, any local maximum o
I is the absolute maximum, that is, the von Neumann cap
ity of the channel. This parallels the concavity of the Sha
non mutual entropyH(X:Y) in the input probability distri-
bution p(x) for a fixed channel, i.e., fixedp(yux) @17#.
Second,I is convexin the outputrQ8 for a fixed inputrQ .
This property will be used in the next section when cons
ering a ‘‘probabilistic’’ channel~the effective channel result
ing from the probabilistic use of a family of channels!. It is
the quantum analog of the property that the informat
H(X:Y) processed by a classical channel is a convex fu
tion of p(yux) for a fixedp(x) @17#. These two properties ar
simple to prove by reexpressing the von Neumann mu
entropyI as

S~R:Q8!5S~Q8E8!1S~Q8!2S~E8!5S~Q8!1S~Q8uE8!
~2.19!

or as

S~R:Q8!5S~R!1S~Q8!2S~RQ8!5S~R!2S~RuQ8!.
~2.20!

If the inputrQ is a convex combination of density operato
while the channel is fixed, it is easy to see thatrQE and
thereforerQ8E8 are also convex combinations~as the channe
operation is linear!. Since the conditional entropyS(Q8uE8)
is concave in a convex combination ofrQ8E8 while S(Q8) is
concave inrQ8 @14#, Eq. ~2.19! implies theconcavityof the
quantum mutual entropyI in the input for a fixed channel
The second property can be proven the same way by no
that, if we have a ‘‘probabilistic’’ channel—a convex com
bination of quantum channels—acting on a fixed input, th
rRQ8 is a convex combination of density operators whilerR
is constant. Thus, Eq.~2.20! together with the concavity o
the conditional entropyS(RuQ8) in a convex combination of
rRQ8 implies that the quantum mutual entropyI is convexin
the output for a fixed input.

A third important property is that the mutual entropyI
and the quantum lossL aresubadditivewhen considering a
channel made of several independent quantum channels
in parallel. This will be shown when analyzing quantum
block coding~cf. Sec. II D!. Finally, it can be proved thatI
obeys ~forward and reverse! data-processing inequalitie
when considering chained quantum channels. If we ch
two channels by using the output of the first as an input
the second~see Fig. 2!, the total ~112! channelrQ→rQ8
→rQ9 is characterized by

I 125S~R:Q9!, ~2.21!

L125S~R:E8E9!, ~2.22!

N125S~Q9:E8E9!, ~2.23!

since we can regard the two environmentsE8 and E9 as a
global environment for this total channel.
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Using the chain rule for quantum mutual entropi
S(R:E8E9)5S(R:E8)1S(R:E9uE8), and remembering tha
S(R:E9uE8)>0 as a result of strong subadditivity, we obta

0<L1<L12, ~2.24!

whereL15S(R:E8) is the loss of the first channel whileL12
is the loss of the total channel. Thus, the loss can only
crease by further processing of quantum information in
second channel. SinceI 11L152S(Q) and I 121L12
52S(Q), we obtain theforward data-processing inequality

I 12<I 1<2S~Q! ~2.25!

implying that the mutual entropy of the total channel can
exceed the one of the first channel. This is the quantum a
log of H(X:Z)<H(X:Y)<H(X) for chained classical chan
nelsX→Y→Z @17#.

Now, if we use the chain ruleS(Q9:E8E9)5S(Q9:E9)
1S(Q9:E8uE9) together with strong subadditivity, we obta

0<N2<N12, ~2.26!

where N25S(Q9:E9) is the noise of the second chann
while N12 is the noise of the total channel. AsI 21N2
52S(Q9) and I 121N1252S(Q9), we obtain thereverse
data-processing inequality

I 12<I 2<2S~Q9!, ~2.27!

where I 25S(RE8:Q9) is the mutual entropy processed b
the second channel.~Note that the ‘‘reference’’ system tha
purifies the inputQ8 of the second channel isRE8.! This
parallels the classical inequalityH(X:Z)<H(Y:Z)<H(Z)
for chained channels@17#. Equations~2.24! and ~2.26! em-
phasize that the lossL and the noiseN play a symmetric role
in this entropic description if one interchanges the input a
the output of the quantum channel~‘‘time-reversal’’!, just as
for classical channels. This is reflected by the symmetry
tween the forward and the reverse data-processing ineq
ties.

D. One-symbol loss and average loss

The central idea of classical error correction by blo
coding is to introducecorrelations between the bits tha
make a block, in order to have redundancy in the transmi

FIG. 2. Schematic view of the chaining of two noisy quantu
channels. In each of them, the input state decoheres by intera
with a ~separate! environment. The input of the first channel
initially entangled withR, with a source entropy ofS ~see the
dashed line!. The output of this channelQ8 is then used as an inpu
for the second channel. SinceQ8 is purified by RE8 ~not by R
alone!, the ‘‘reference’’ system that must be considered in the
tropic characterization of the second channel isRE8.
-
e

t
a-

d

e-
li-

d

flow of data. This can make the transmission asymptotica
immune to errors, up to some level of noise. In quant
error-correcting codes, the qubits that form a block areen-
tangled in a specific way, so that a partial alteration due
decoherence can be recovered@5#. Even though entangle
ment gives rise to some qualitatively new features~see@15#
for a detailed analysis!, the objective is similar. Namely
when block coding is used, i.e., when sayk ‘‘logical’’ qubits
are encoded into blocks ofn ‘‘physical’’ qubits, it is possible
to achieve a situation where theoverall loss of the joint
(n-bit! channel is arbitrarily small, while the loss for ind
vidual qubits~for each use of the channel! is finite. In anal-
ogy with the classical construction, if blocks ofn qubits that
are initially entangled with respect toR ~with a mutual en-
tropy 2k) can be transmitted through the channel with
asymptotically vanishing overall loss, we say that the ch
nel processes 2k/n bits of entanglementper qubit. Equiva-
lently, the channel is transmitting at arate R5k/n ~on aver-
age,k arbitrary binary quantum states can be transmitted
n transmitted qubits!. The maximum rate at which quantum
information can be reliably sent through the noisy channe
defined as the quantumchannel capacity. ~This maximum
has to be taken over all possible coding schemes, and fn
→`.! Whether a good~and operational! definition of such a
‘‘purely quantum’’ channel capacity exists is currently a
open question. In the following, we restrict ourselves to
issue of finding upper bounds on the rate of perfect quan
information transmission~and therefore on such a ‘‘purel
quantum’’ capacity!.

Let us consider the asymptotic use of a quantum disc
memoryless channel, wheren ~tending to infinity! qubits are
transmitted sequentially.2 Each qubit may decohere due to a
environment~quantum noise!, the exact interaction depend
ing on the considered noise model. The important poin
that the environment for each qubit is initiallyindependentof
the one interacting with every other qubit. Thus the inform
tion process can be viewed asn sequential uses of a quantu
memorylesschannel~the environment being ‘‘reset’’ afte
each use! or, equivalently, asn parallel independent chan
nels processing one qubit each~see Fig. 3!. We assume tha
the set ofn input symbols (Q1 , . . . ,Qn) are initially en-
tangled with R, so that S(R:Q1•••Qn)52S and S(R)
5S(Q1•••Qn)5S. If we consider thesen symbols as the
single input of a jointn-bit channelQ1•••Qn→Q18•••Qn8,
information transmission is described by the mutual entro

I 5S~R:Q18•••Qn8!

5S~Q1•••Qn!1S~Q18•••Qn8!2S~E18•••En8!

5S~Q18•••Qn8uE18•••En8!1S~Q18•••Qn8! ~2.28!

and the loss

2Throughout this paper, we use indistinctly the terms qubit
symbol to denote the quantum state that is sent in a single use o
channel. As a matter of fact, the reasoning is totally general,
applies to quantum states~or symbols! in a Hilbert space of arbi-
trary dimension>2.
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L5S~R:E18•••En8!

5S~Q1•••Qn!1S~E18•••En8!2S~Q18•••Qn8!

5S~E18•••En8uQ18•••Qn8!1S~E18•••En8!, ~2.29!

where we have made use of the conservation of entropy
posed by the unitarity of the global interaction with then
environments E1, . . . ,En . Obviously, we have I 1L
52S(Q1•••Qn)52S(R), which is twice the source entrop
S of the joint channel.

Each individual channelQi→Qi8 can be described in th
same way, noting that eachQi interacts with an environmen
Ei ~initially in a pure stateu0&) which results inQi8 andEi8.
The only difference here is thatR has to be supplemente
with all the inputQ’s except Qi in order to purifyQi . Thus,
the mutual entropy characterizing thei th channel is

I i5S~RQ1•••Qi 21Qi 11•••Qn:Qi8! ~2.30!

while the corresponding loss is

Li5S~RQ1•••Qi 21Qi 11•••Qn:Ei8!. ~2.31!

These quantities can be reexpressed by using the fact tha
environmentsE1, . . . ,En are initially in a product state an
that theQi andEi interact pairwise. We have

I i5S~Qi !1S~Qi8!2S~Ei8!5S~Qi8uEi8!1S~Qi8!
~2.32!

and

Li5S~Qi !1S~Ei8!2S~Qi8!5S~Ei8uQi8!1S~Ei8!.
~2.33!

For each channel, the loss and the mutual entropy sum
twice the source entropy of the channel~tracing over all the
other channels!: I i1Li52S(Qi). The subadditivity of von
Neumann entropies,

FIG. 3. Schematic view of a memoryless quantum channel. T
channel is usedn times, but the environment is ‘‘reset’’ after eac
use. This can be viewed asn parallel~independent! channels, each
one being used for one of the input symbols. Then input symbols
(Q1 ,Q2 , . . . ,Qn) are initially entangled withR ~as indicated by a
dashed line!, with a joint source entropy ofS.
-

the

to

S~E18•••En8!<S~E18!1•••1S~En8!, ~2.34!

and the subadditivity of von Neumann conditional entropi

S~E18•••En8uQ18•••Qn8!<S~E18uQ18!1•••1S~En8uQn8!,
~2.35!

combined with Eqs.~2.29! and ~2.33! imply that the loss is
subadditive:

L<L11•••1Ln . ~2.36!

The same reasoning can be made using Eqs.~2.28! and
~2.32! and interchanging theQi8’s and Ei8’s in Eqs. ~2.34!
and ~2.35!, which results in the equivalent expression f
mutual entropies:

I<I 11•••1I n . ~2.37!

The latter inequality corresponds to thesubadditivityof the
von Neumann mutual entropy for parallel channels. Fina
using the relation between the loss and the mutual entr
for individual channels and for the joint channel, we obta

L11•••1Ln22M<L<L11•••1Ln ~2.38!

with M5S(Q1)1•••1S(Qn)2S(Q1•••Qn)>0. Equiva-
lently, if we define theaverageloss3 of the joint n-bit chan-
nel asl 5L/n for n→`, we see that

l 122m< l< l 1 , ~2.39!

wherem5M /n and l 15(L11•••1Ln)/n is theone-symbol
loss, i.e., the loss for a single use of an individual chan
averaged over all 1-bit channels. Thus, Eqs.~2.38! or ~2.39!
imply that the loss cannot increase by using block cod
~using parallel channels!. It typically decreases by an amoun
which is bounded by 2M ~or 2m), a quantity related to the
entanglement between the input symbols.~Note thatM50 if
the input symbols are independent.! The analog construction
for a classical channel is presented in Appendix A in orde
clarify the straightforward classical to quantum correspo
dence. As an example, let us consider the use of block
two qubits. Assume also that the two 1-bit channels are id
tical, i.e., L15L2[ l 1. The averageloss of the joint 2-bit
channel,l 5L/2, can be bounded by

l 12S~Q1:Q2!< l< l 1 . ~2.40!

This explicitly shows that block coding can decrease the
erage loss only when the symbols are entangled@i.e.,
S(Q1:Q2).0#.

Equations~2.38! or ~2.39! allow us to derive a simple
upper bound on the maximum achievable rate by block c
ing, as a function of the one-symbol loss~or mutual entropy!
for a single use of the channel. Indeed, only if the low
bound onL ~or l ) extends to zero~that is, if 2M>L11•••

1Ln) is it possible that block coding makes the joint chann

3The average lossl reflects the effective lossper qubitprocessed
in the noisy channel, that is, the loss affecting the overall proc
~encoding1 joint channel viewed asn parallel one-bit noisy chan-
nels! divided by the number of physical qubitsn whenn→`.
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perfectly immune to noise while each 1-bit channel ha
nonvanishing loss. Thus, we have the necessary condition
having a vanishing average loss (l 50):

2S~Q1•••Qn!<2S~Q1!1•••12S~Qn!2L12•••2Ln .
~2.41!

As a consequence, the rate of quantum information trans
sion through the joint channel,R5S(Q1•••Qn)/n, is
bounded from above byhalf the averagedone-symbolmutual
entropy for individual channels:

R<
I 11•••1I n

2n
. ~2.42!

Thus, the~averaged! mutual von Neumann entropy chara
terizing each use of the channel provides an upper boun
the achievable rate of transmission by block coding throu
the noisy channel. Except for the factor 1/2, this inequa
parallels the one for a classical channel~see Appendix A!.
Remember that the quantum capacity of a channel is defi
as the maximum rate that can be achieved through the c
nel ~over all possible input and coding schemes! with a fi-
delity arbitrarily close to 1. The classical analogy sugge
then that the~maximum! one-symbol von Neumann mutua
entropy yields the quantum capacity. However, this up
bound appears not to be attainable in general~see, e.g.,@6#!,
in contrast with the equivalent classical bound.~The physical
meaning of the von Neumann mutual entropy is better
derstood in the context of noisy superdense coding, as sh
in @9#.! Therefore, it is necessary to derive more constrain
entropic upper bounds onR, which is the main concern o
the rest of this paper.

In the next section, we build on the entropic derivation
the Singleton bound for quantum codes presented in R
@15#, and extend it to the treatment of noisy quantum ch
nels in order to find better upper bounds on the rate of p
fect quantum information transmission~and therefore on the
‘‘purely quantum’’ capacity!. The bounds that we derive ca
be attained in some cases~e.g., for the quantum erasur
channel!, or not in other cases~e.g., for the quantum depo
larizing channel!. It is unknown whether such a purely en
tropic approach unifying classical and quantum channels
possibly yield the best~asymptotically attainable! upper
bound, just as it is the case for classical channels, but th
not out of the question. This will be further investigated
future work.

III. ENTROPIC BOUNDS ON CODES AND CHANNEL
CAPACITIES

In this section, we derive several bounds, either on qu
tum codes or on quantum channel capacities, using an
tropic approach based on the Singleton bound~see Ref.
@15#!.

A. Quantum channel subject to ap-bounded fraction
of erasures

We say that a quantum channel is subjected to
p-bounded fraction of erasures@18# if, amongn uses of the
a
or
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channel, a fraction ofpn qubits4 ~at most! are erased~or
replaced by a distinguishable third state, e.g.,u2&). When
consideringerasures~rather than errors!, the important point
is that it is possible to perform an incomplete measurem
of each qubit at the output of the channel, to check whet
it is in the u2& ~erasure! state, or in the subspace spanned
u0& and u1&, without destroying superpositions in the latt
subspace@19#. In this error model, transmission through th
channel is considered successful if an arbitrary initial qu
tum state can be perfectly recovered~or the entanglemen
with R can be maintained!, which can obviously be achieve
if one uses a quantume-erasure correcting code withe
5pn, that is, a code that allows any pattern ofe qubits of
each codeword to be erased. Therate ~i.e., the average num
ber of logical qubits transmitted with arbitrarily high fidelit
per physical qubit! of a channel subjected to ap-bounded
fraction of error is thus equivalent to the rate of an„(n,k)…
quantum code correctinge5pn erasures. The rate of a
„(n,k)… code, i.e., a code mappingk logical qubits into code-
words of n qubits, is defined asR5k/n. Consequently, an
upper bound on the rate of quantum codes is simply equ
lent to an upper bound on the rate of a channel with t
particular error model~or an upper bound on the capacit
which is the highest achievable rate through the chann!.
When considering a channel,k is simply the source entropy
S of the joint channel~i.e., the number of arbitrary qubit
that are sent!.

It is known that an upper bound on the Hamming distan
of nondegeneratequantum codes with fixedn andk can be
derived from ‘‘sphere-packing’’ considerations@20#. How-
ever, as a bound on the rate~or capacity! of a quantum chan-
nel involves a maximization over all coding schemes, inclu
ing those based on degenerate codes~which have been
shown to exceed the Hamming bound@21#!, only the bounds
which are valid for all quantum codes are applicable to ch
nels. As proven in a previous paper@15#, an upper bound on
the rate of~nondegenerateand degenerate! quantum codes
can be derived using entropic considerations only. This is
quantum Singleton bound:k<n22e ~see also@22#!. Trans-
lated in the channel language, this implies that an up
bound on the rate~and therefore the capacity! of a lossless
(L50) channel subjected to ap-fraction of erasures is

R<122p. ~3.1!

For completeness, we summarize the proof of the Single
bound given in@15#. The basic idea of the proof will be
useful in the following, when considering other channels.

As pictured in Fig. 4, for each pattern of erased qub
Qe , the entropic conditionS(R:Qe)50 must be fulfilled, so
that the unerased qubitsQu emerge from a lossless channe
This implies that the full entanglement of the codewordQ
~with respect toR) must be ‘‘concentrated’’ in the unerase
qubitsQu :

S~R:Qu!5S~R:Q!52S~R!. ~3.2!

4Whenn→`, the number of erasurespn can be considered as a
integer without loss of generality.
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Using the fact that the joint state ofRQuQe is pure, along
with the subadditivity of quantum entropies, we have

S~R:Qu!5S~R!1S~Qu!2S~RQu!

5S~R!1S~Qe8Q* !2S~Qe!

<S~R!1S~Qe8!1S~Q* !2S~Qe!, ~3.3!

where we have divided the unerased qubitsQu into another
pattern ofe qubits, Qe8, and the remaining piece ofn22e
qubits,Q* . Equations~3.2! and ~3.3! provide the inequality

S~R!2S~Q* !<S~Qe8!2S~Qe!. ~3.4!

Since this reasoning is symmetric inQu vs Qu8, the inequality
corresponding to the division ofQu8 into Qe andQ* ,

S~R!2S~Q* !<S~Qe!2S~Qe8!, ~3.5!

must also be satisfied. Combining these two inequali
yields the condition

S~R!<S~Q* !<n22e, ~3.6!

where the upper bound onS(Q* ) simply results from the
dimension of the Hilbert space ofQ* . Since the encoding o
a k-qubit arbitrary state requires thatS(R)5S(Q)5k, the
above condition implies the quantum Singleton bound

k<n22e. ~3.7!

The physical meaning of the Singleton bound is that, in or
to have Qe independent ofR and, at the same time,Qu8
[QeQ* fully entangled withR, a minimum Hilbert space
for Q* ~minimum number of qubits! is necessary in order to
accommodate the source entropyk.

B. Quantum channel subject to ap-bounded fraction of errors

Another possible error model for a quantum channel is
case where a fraction ofp qubits ~at most! are altered by
interacting with an environment. The difference with the p
vious error model is that the location of the errors is u
known ~by contrast with erasures!, i.e., there is no ‘‘flag’’
indicating which are the qubits that have been altered.

FIG. 4. Schematic representation of two possible partitions oQ
into an erased pieceQe ~or Qe8) and unerased pieceQu ~or Qu8). The
‘‘overlap’’ between the unerased pieces in both partitions is
noted byQ* . The entropic erasure-correction condition for the fi
partition isS(R:Qe)50, while the condition for the second one
S(R:Qe8)50.
s

r

e

-
-

Since a channel where the fraction of errors is bound
can be made lossless (L50) using anerror-correcting code
~just as for erasures in the preceding section!, it is enough to
use the correspondence between error-correcting codes
erasure-correcting codes to derive an upper bound on the
of perfect transmission of quantum information in such
channel. In analogy with the classical situation, one c
show that any code that correctst errors is also able to cor
rect up toe52t erasures@23#. This enables us to reuse th
result of the preceding section simply by replacingp by 2p.
Thus, we obtain the Singleton upper bound on the rate~or
capacity! of a lossless (L50) channel with a fixed fractionp
of errors:

R<124p. ~3.8!

~This bound, or rather the fact that the rate of a code
vanishing atp51/4, is originally due to Knill and Laflamme
@22#.! To our knowledge, the only stronger bounds onR for
quantum codes that have been displayed for some sp
cases are as follows.~i! R<H@1/21A2p(122p)# for addi-
tive ~or stabilizer! codes, whereH stands for the dyadic Sh
annon entropy@18#. This bound is based on an upper bou
on classical linear codes.5 ~ii ! R50 for p>1/6 for all quan-
tum codes@25#. It is worthwhile looking for improvement of
Eq. ~3.8! using an entropic approach as presented above

C. Quantum erasure channel

We now consider a quantum erasure channel with era
probability p ~see, e.g.,@19#!. In such a channel, each tran
mitted qubit has a probabilityp of beingerased~and detect-
able at the output as an ‘‘erased’’ qubit!. We are interested in
the maximum rate of quantum information transmission t
can be achieved by this channel. More precisely, our aim
to derive an upper bound on this rate using an entropic
proach. It will appear that such an entropic bound exac
coincides with the capacity of a quantum erasure chan
recently displayed in Ref.@19#.

The central point of the reasoning is to describe the jo
‘‘probabilistic’’ channel ~with n qubits at input and output!
as a superposition of ‘‘binomial’’n-bit channels~defined
below!. This allows us to make use of the convexity of th
von Neumann mutual entropy in the output of a channel
a fixed input ~see Sec. II C! in order to derive an uppe
bound onR. We consider a family of ‘‘binomial’’ n-bit
channelsC ~labeled by the indexc), each characterized by
pattern ofe erased qubits,Qe(c), and the complementary
pattern of n2e unerased qubits,Qu(c). The probabilistic
channel of interest here corresponds to a probabilistic us
these channels with abinomial distribution. More precisely,
each channelc with e erased qubits is associated with
probability ~or weight! wc5pe(12p)n2e, and there are ob-
viously (e

n) distinct channels withe erased qubits. The supe
position means, physically, that the resulting probabilis
joint channel consists in using one of these 2n distinct ‘‘bi-

5Some slightly stronger bounds have been recently obtaine
Ref. @24#.
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nomial’’ n-bit channels with the appropriate probabilit
Thus, for a givenn-bit input of the channel, sayr, the output
can thus be written as a convex combination

r85(
c

wcrc8 with (
c

wc51, ~3.9!

wherewc is the weight of thecth ~binomial! channel in the
superposition, andrc8 is the output for that channelc. The
convexity of the von Neumann mutual entropy in the outp
~for a given input! for the overall probabilistic channel im
plies that

~3.10!

where I 5S(R:Q8) is the quantum mutual entropy betwee
the referenceR and the outputQ8 of the joint (n-bit! quan-
tum erasure channel, whileI c5S(R:Qc8) stands for the mu-
tual entropy of the output of thecth channel,Qc8 , with re-
spect toR. Note that we haveS(R:Qc8)5S„R:Qu(c)… since
only the unerased qubits of thecth channel contribute to
mutual entanglement withR ~the erased qubits are indepe
dent ofR). As explained in Sec. II C, the mutual von Ne
mann entropyS(R:Q8)5S(R)2S(RuQ8) is convex in the
output ~for a fixed input! because the conditional entrop
S(RuQ8) is concave in a convex combination ofrRQ8 @i.e., a
convex combination of quantum channels acting on a fi
input, as shown in Eq.~3.9!#.

It is convenient to group the channelsC into several
classes, according to the number of erased qubits,e. Using
Eq. ~3.10!, can then write an upper bound on the proces
quantum mutual information in the joint (n-bit! erasure
channel of probabilityp as

I ~p!<(
e50

n

~12p!n2epe(
c

S„R:Qu~c!…, ~3.11!

where the sum overc spans the (e
n) channels wheree qubits

are erased. Before deriving a simpler expression of this up
bound using the Singleton bound, let us show that a sim
relation betweenI (p) andI (12p) can be obtained from Eq
~3.11!. First, note that

S~R:Qc8!5S„R:Qu~c!…5S~R!1S„Qu~c!…2S„Qe~c!…

52S~R!2S„R:Qe~c!…, ~3.12!

where we have used the fact thatRQuQe is in a pure state for
each channelC. Equation~3.11! can then be rewritten as

I ~p!<2S~R!2 (
e50

n

~12p!n2epe(
c

S„R:Qe~c!….

~3.13!

The second term on the right-hand side of Eq.~3.13! can be
interpreted as an upper bound onI (12p), i.e., the informa-
tion processed through a ‘‘dual’’ erasure channel of proba
ity 12p where the erased qubits are replaced by unera
qubits and conversely. As a consequence, remembering
t

d

d

er
le

l-
ed
hat

S(R)5k if an arbitrary k-bit quantum state is sent in th
channel~i.e., the source entropy of then-bit channel isk
bits!, we have

I ~p!1I ~12p!<2k ~3.14!

for all n. Using I (p)1L(p)52k, the corresponding relation
for the quantum losses of the dual~with probability p and
12p) erasure channels is

L~p!1L~12p!>2k. ~3.15!

@Remember that 0<L(p)<2k.# This implies that aneces-
sary condition for having a perfect channel at probabilityp,
i.e.,L(p)[0, is thatL(12p)52k, i.e., that the dual channe
at probability 12p is ‘‘fully erasing’’ ~no information at
all—either classical or quantum—is processed through!.
Another way of expressing this condition is by writing
lower bound on the loss of the erasing channel

L~p!>I ~12p!. ~3.16!

Only if no information is transmitted through the erasu
channel of probability 12p, or if I (12p)50, is it possible
that the loss of the erasing channel of probabilityp vanishes.
This is obviously compatible withL(0)5I (1)50. Equation
~3.15! also implies thatL(1/2)>k, so that the quantum era
sure channel with probability 1/2 cannot be lossless fo
nonzero source entropy.~The fact that it actually has a van
ishing capacity—or a maximum loss—will be shown belo
This result can also be derived from an argument based
the impossibility of cloning, as shown in Ref.@19#.!

Let us now derive a general expression for an up
bound on the mutual entropy of then-bit channel~or, equiva-
lently, a lower bound on the overall loss!. Using Eqs.~3.11!
and ~3.12!, we have

I ~p!<S~R!1 (
e50

n

~12p!n2epe(
c

@S„Qu~c!…2S„Qe~c!…#.

~3.17!

We first rewrite Eq.~3.17! as a summation up ton/2 ~we
assume here thatn is even!, by combining each channelc in
this sum with its dual channel where erased qubits are
erased and conversely:

I ~p!<S~R!1 (
e50

n/2

@~12p!n2epe2~12p!epn2e#

3(
c

@S„Qu~c!…2S„Qe~c!…#. ~3.18!

~Note that the term withe5n/2 is vanishing.! We now fol-
low the reasoning that we used earlier to derive the Single
bound, and group the channels in pairs (c and c8) which
‘‘overlap’’ in n22e qubits denoted byQ* ~see Fig. 4!.
Thus, for a given value ofe, we have to calculate the sum o
terms @S„Qu(c)…2S„Qe(c)…# for channelsc and c8. We
have
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S~Qu!2S~Qe!1S~Qu8!2S~Qe8!

5S~Qe8Q* !2S~Qe!1S~QeQ* !2S~Qe8!

<2S~Q* !<2~n22e!, ~3.19!

where the last inequality reflects the limitation onS(Q* )
imposed by the dimension of the Hilbert space ofQ* . Thus
eachpair of terms in the summation overc can be bounded
from above by 2(n22e), so that a simple calculation yield
an upper bound on the mutual entropy of the joint (n-bit!
channel

I ~p!<S~R!1 (
e50

n S n

eD ~12p!n2epe~n22e!

<k1n~122p! ~3.20!

or a lower bound on the overall loss of the joint channel

L~p!>k1n~2p21!. ~3.21!

This results in a lower bound on theaverageloss~per qubit!
for a quantum erasure channel of probabilityp as a function
of the rateR5k/n,

l ~p!5
L~p!

n
>R12p21. ~3.22!

~Note that this is only a lower bound on the loss, which is,
definition, a non-negative quantity.! This inequality is con-
sistent with l (p)1 l (12p)>2R @cf. Eq. ~3.15!#. It implies
that a vanishing average loss~i.e., the reliable transmissio
of information through then-bit probabilistic channel! is
only possible if the rate

R<122p. ~3.23!

Thus, a quantum erasure channel withp51/2 ~i.e., if the
channel is erasing 50% of the qubits! has a zero capacity
Equation ~3.23! confirms the linear interpolation6 between
the 50%-erasure channel~for which the capacity is zero! and
a noiseless channel~for which the capacity is 1! that was
used in Refs.@6,19#. In addition, since it is shown in Refs
@6,19# that this upper bound coincides with a lower bou
obtained from one-way random hash coding, Eq.~3.23!
therefore describes theexactcapacity of the quantum erasu
channelC5122p @19#.

D. Quantum depolarizing channel

We now consider a quantum depolarizing channel w
error probabilityp. In this channel, each qubit interacts wi
the environment such that it undergoes a bit-flip (sx rota-
tion!, a phase-flip (sz rotation!, or the combination of both
(sy rotation! with probability p/3 each.

6In Ref. @6#, it is shown that the capacity of a composite chan
~which is a convex combination of a perfect and an imperfect qu
tum channel! cannot exceed the appropriately averaged capacit
these two component channels. In other words, the quantum ca
ity cannot be superadditive when ‘‘mixing’’ a perfect channel w
an imperfect one.
y

h

In Secs. III A and III B, we have seen that the simple co
nection between quantum error- and erasure-correcting c
provides a trivial relation between the resulting upper bou
on the rate of channels subjected to a bounded fraction
errors or erasures. Unfortunately, there is no such sim
relationship when comparing the quantum erasure and d
larizing channels. As a matter of fact, the upper bound
error-correcting codes, Eq.~3.8!, is not immediately appli-
cable to the quantum depolarizing channel. Such a situa
results from the fact that the definition of an error-correcti
code requires thatall error patterns~of at mostt5pn errors!
are perfectly corrected, while a rate will be said to be atta
able through a channel~i.e., it is below the quantum channe
capacity! whenever the fraction of uncorrected error patte
is asymptotically vanishing~for n→`). Still, the reasoning
used to calculate the Singleton bound on the quantum era
channel is applicable to the quantum depolarizing channe
well.

Assume that an individual qubit,Q, is initially entangled
with the reference, so thatRQ is in the stateuCRQ& ~for
example the singlet state!. After processing by the channe
the systemRQ8 is in a Werner state@26# of ‘‘entanglement
fidelity’’ F512p, that is, the mixed state:

rRQ85~124p/3!uCRQ&^CRQu14p/3S 1R

2
^

1Q

2 D .

~3.24!

In other words, the qubit emerges at the output of the ch
nel either in a random state~having totally lost the entangle
ment withR) with probability 4p/3, or in its intact original
state ~fully entangled with R) with probability 124p/3.
Whenp53/4, the channel is 100% depolarizing, i.e., its ou
put is random.

In the jointn-bit channel, each qubit undergoes the abo
evolution independently of the other ones. As before,
resulting n-bit probabilistic channel can be described as
superposition of binomial channels, in which each qubit
either kept unchanged or ‘‘randomized.’’ The distribution
the underlying channels is thus a binomial one, just as in
preceding section, the only difference being thatp is re-
placed here by 4p/3. The entire calculation of the precedin
section can then be repeated, because the ‘‘randomizat
or ‘‘erasure’’ of a qubit is equivalent as far as the mutu
entropy with R is concerned. Indeed, for a channelc, we
have

I c5S~R:Qc8!5S„R:Qu~c!…, ~3.25!

whereQu(c) correspond to qubits that are not randomiz
~rather than not erased! in channelc. This is obvious because
the randomized qubits@in state (u0&^0u1u1&^1u)/2# are inde-
pendent ofR, just as the erased qubits~in stateu2&).

First, in analogy with Eq.~3.15!, we have

L~p!1L~3/42p!>2k ~3.26!

implying that L(3/8)>k, so that the quantum depolarizin
channel with probabilityp53/8 cannot be lossless~in fact, it
has a vanishing capacity, as shown below!. Equivalently, we
have L(p)>I (3/42p), showing that thep53/4 channel
cannot transmit classical or quantum information, i.
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I (3/4)5L(0)50. The resulting Singleton lower bound o
the averageloss ~per qubit! is

l ~p!5
L~p!

n
>R18p/321 ~3.27!

in analogy with Eq.~3.22!. Consequently, the quantum d
polarizing channel can have a vanishing average loss~i.e.,
allow an asymptotically reliable transmission of informati
by using blocks ofn qubits! at the condition that

R<128p/3 ~3.28!

as originally shown in Ref.@6#. Thus the quantum depolar
izing channel withp53/8 has a zero capacity for the tran
mission of quantum information.~Note that such a channe
corresponds in fact to a 50%-depolarizing channel, wh
50% of the qubits are replaced by a random qubit. This ch
nel can obviously not have a nonzero capacity, as a co
quence of the no-cloning theorem@6#.! As for the quantum
erasure channel, a linear interpolation between the per
channel and the 50%-depolarizing channel can be used~and
also results independently from our reasoning!. Note that Eq.
~3.28! yields only an upper bound on the capacity of t
quantum depolarizing channel, which is provably not achi
able ~in contrast with the equivalent bound for the quantu
erasure channel!. Indeed, a tighter bound for the depolarizin
channel has been obtained very recently@27#,

R<124p, ~3.29!

which is based on the Buzek-Hillery universal cloning m
chine@28#. While Eq.~3.29! happens to be equivalent to E
~3.8!, there appears to be no direct relation between them
simple intuitive reason why this bound is stronger than E
~3.28! can be understood by realizing that the two quant
channels underlying the universal cloning machine~from the
single input to both outputs! cannot be described classically7

Indeed, when tracing over one of the outputs of the unive
cloning machine, the other output appears to emerge fro
p51/4 ~or F53/4) channel, i.e., a 33%-depolarizing cha
nel. This looks as if the qubit was sent with probability 2/3
each output of the cloning machine, which is obviously n
understandable in classical terms. Only a quantum supe
sition, involving the cloning machine and both outputs, c
account for this situation and results in a stronger up
bound@27#. ~and related entropic bounds! The information-
theoretic analysis of quantum cloning~and related entropic
bounds! will be the subject of further investigation.

To our knowledge, the only stronger upper bound on
capacity~for a restricted range ofp values! of the depolar-

7Remember that a standard no-cloning argument to show tha
rate vanishes atp53/8 is based on a classical machine that is tra
mitting an input qubit to one of two outputs with probability 1/2,
random qubit being sent on the other output, which results in
50%-depolarizing channels@6#. Clearly, this is the most constrain
ing bound onR that can be constructed by use of such a ‘‘classi
cloning.’’
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izing channel isR<12H(p), based on a connection be
tween quantum additive~or stabilizer! codes and classica
linear codes@18#.

IV. QUANTUM CHANNEL WITH AN AUXILIARY
CLASSICAL CHANNEL

In this section, we consider a quantum channel which
supplemented with a classical channel~assumed to be noise
less and of unlimited classical capacity!. We are interested in
calculating the Singleton upper bound on the rate of relia
(L50) transmission ofquantuminformation through a noisy
quantum channel, knowing that a classical side channel
be used simultaneously for forward communication only.
particular, we aim at analyzing how our quantu
information-theoretic formalism accounts for the prope
that such a classical~one-way! communication channel doe
not increase the quantum capacity of the noisy channel@6#.

A. Entropic treatment of the channel

We first consider the problem in the language of quant
codes, following closely Ref.@15#. As explained earlier, the
result will then be immediately applicable to channels w
an error model where the fraction of errors or erasures
bounded. Also, the expression of a ‘‘probabilistic’’ join
channel as a binomial superposition of underlying chann
will then yield the corresponding bounds for the quantu
erasure or depolarizing channel. We start with a ‘‘logica
systemL ~logical words!, which is initially entangled with
the referenceR ~the initial mutual entropy being 2k, so that
k arbitrary qubits are transmitted!. As before, the systemRL
is initially in a pure entangled stateuCRL&. We assume tha
the encoding operation onL includes a partial measuremen
so that the encoder has a quantum and a classical outpu
shown in Fig. 5.

Note that the encoding process can be described in te
of a unitary transformation applied onL ~supplemented with
an ancilla initially in au0& state! without any projection op-
erators, so that the classical output is simply described

he
-

o

l

FIG. 5. Schematic representation of the ‘‘encoder’’ performi
a unitary transformation on the ‘‘logical’’ systemL ~initially en-
tangled withR with a mutual entropy 2k). The outputs are then
‘‘physical’’ qubits Q, the classical bitsC, and the ‘‘precursor’’P
~‘‘microscopic’’ classical bits, before amplification!. Each classical
bit can be thought of as a set of qubits that are classically correl
when tracing overP, appearing then as a collective classical va
able ~see@29#!.
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mixture of orthogonal quantum states. More precisely,
have a quantum outputQ ~consisting ofn ‘‘physical’’ qu-
bits!, P, which is the ‘‘precursor’’ of the classical variable
and C, which represents theamplifiedclassical variable. In
general,C is a discrete variable of arbitrary dimension, b
we often use the term classical bit~two-dimensional vari-
able! in the following. Each classical bitC can be thought of
as a set of qubits that becomeclassically correlated when
tracing over the corresponding ‘‘precursor,’’ and can then
viewed as a collective variable. The resultingamplification
gives toC the appearance of a classical variable~see@29#!. It
is convenient to keep the classical outputC separate from its
precursorP for reasons that will appear later.

To fix the ideas, let us write the intermediate wave fun
tion of RQP before amplification:

uCRQP&5(
i

Api ucRQ
i & ^ ufP

i &. ~4.1!

Here, theufP
i & form a set of orthogonal states forP, and the

ucRQ
i & are orthogonal states ofRQ. Equation~4.1! is simply

the Schmidt decomposition ofuCRQP& divided inRQ versus
P, and impliesS(RQ)5S(P) before amplification. It is im-
portant to note that the orthogonal statesufP

i & for P corre-
spond to theclassicalinformation that will be amplified later
~the amplification ofP will be performed in this basis!, the
classical variable being distributed according topi . Equation
~4.1! is the most general expression of the output of
encoder~before amplification ofP) if we require that its
overall operation is unitary~the joint state ofRQP must be
pure!. We also have obviouslyS(R:QP)5S(R:L)52k as a
result of the conservation of mutual entropy under a lo
unitary operation on both subsystems@12#.

The amplification of the precursor~symbolically repre-
sented by theXOR gates inside the encoder! in the ufP

i & basis
gives rise to a total wave function for the systemRQPC ~at
the output of the encoder! of the form

uCRQPC&5(
i

Api ucRQ
i & ^ ufP

i & ^ ufC
i &, ~4.2!

where theuf i& correspond to an orthogonal set of states
bothP andC. The classical information inP has been ‘‘am-
plified,’’ so that the precursorP and the collective set o
qubits C are fully classically correlated when tracing ove
the remaining variables. The entropy of the classical chan
is S(C)5S(P)5H@pi #. In fact, P and C are interchange-
able, but we need to keep them separate to account fo
fact that amplifying the classical bits, i.e., tracing over t
precursorP, results in a mixed state for the systemsR, Q,
andC. The density matrix for the systemRQC is given by

rRQC5(
i

pi ucRQ
i &^cRQ

i u ^ ufC
i &^fC

i u. ~4.3!

This can be viewed as aclassical mixture of orthogonal
states ofRQ andC. Thus, conditionally on the classical bi
C, the systemRQ is in a pure~generally entangled! state
ucRQ

i &. The question now will be, roughly speaking, to d
termine under which circumstances the quantum outpuQ
~possibly altered by decoherence or partially erased! retains
e

t

e

-

e

l

r
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the full entanglement withR when it is supplementedwith
the classical informationC. In other words, the question wil
be whether decodingusing Callows to perfectly recover the
logical words~and is more effective than in the absence
classical information!.

We define the two parametersk andc as

S~R!5k, ~4.4!

S~C!5S~P!5S~CP!5c, ~4.5!

where the second equation is due to the fact thatC andP are
fully classically correlated, i.e.,S(C:P)5c. The parameter
c5H@pi # simply represents the Shannon entropy proces
by the classical side channel. As before, the parametek
stands for the number of logical qubits~i.e.,k-qubit arbitrary
states are encoded!, or, equivalently, the source entrop
when considering a quantum channel.

A necessary condition for the global~classical1 quan-
tum! channel to be lossless is clearly that the amplification
P is a losslessprocess, that is, does not destroy the quant
coherence of the logical words. More precisely, the co
straint we must express is that the channelL→QC ~consid-
ered as a quantum channel! is lossless, that is,

S~R:P!50, ~4.6!

whereP plays the role of an ‘‘environment’’ for this chan
nel. This means that, when amplifying the classical bitsC
~ignoring the precursorP) no entanglement withR is lost. In
other words, the mutual entropy 2k with R is entirely found
in QC, i.e., S(R:QC)52k, so that no entanglement withR
leaks out inP when tracing overP. @This is so even though
the joint systemQPC is fully entangled with R, i.e.,
S(R:QPC)52k.# The condition~4.6! implies that

S~QC!5S~RP!5S~R!1S~P!2S~R:P!5k1c.
~4.7!

Thus, the parametersk and c fully determine the ternary
entropy diagram8 for R, QC, andP, as shown in Fig. 6. Note
that C and P are interchangeable, so that we have a
S(QP)5k1c.

A fourth parameter is necessary to fully describe the
tropies of the 4-partite system (R, Q, C, andP):

S~Q!5s. ~4.8!

It corresponds to the von Neumann entropy of the quan
input of the noisy channel~or quantum output of the en
coder!. GroupingC and P, we can also display the ternar
entropy diagram forR, Q, and CP, using the fact that the
joint system is in a pure state~cf. Fig. 7!. It shows that
neither the quantum outputQ nor the classical oneCP be-
fore amplification ~i.e., including the precursor! is unen-
tangled with R. In short, the situation is thatP alone is

8The ternary diagram of a tripartite system in a pure state is
termined in general by three parameters, for example the redu
entropy of each of the three components@12#.
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unentangled withR ~it can be traced over without alterin
the entanglement withR), while P and C together are en-
tangled withR. Moreover, even though the classical bits c
be amplified without losing coherence, the classical inform
tion C is in general necessary~together withQ) in order to
recover the initial entanglement ofL with respect toR, as
implied by S(R:QC)52k.

We now want to describe the entropic situationafter am-
plification of the classical bits, i.e., after tracing over t
precursorP. The density matrix for the systemRQC ~or
equivalently for the systemRQP) is given by

rRQC5(
i

pi ucRQ
i &^cRQ

i u ^ ufC
i &^fC

i u. ~4.9!

The systemRQ is thusclassicallycorrelated withC, and we
have

S~RQ:C!5S~RQ!5S~C!5c. ~4.10!

For each valuei of the classical bits~occurring with prob-
ability pi), RQ is in a given pure~generally entangled! state
ucRQ

i &. Now, using S(QP)5S(QC)5k1c, we can show
that R is independentof C:

FIG. 6. Entropy diagram characterizing the referenceR, the sys-
temQC ~quantum and classical output of the encoder!, andP ~pre-
cursor or the classical bits!. The conditionS(R:P)50 means that
the full mutual entropy 2k with R is found inQC and does not leak
out when tracing overP, so that the amplification islossless. The
two parameters areS(R)5k andS(P)5c.

FIG. 7. Entropy diagram characterizing the referenceR, the
quantum systemQ ~output of the encoder!, and PC ~the classical
output and precursorbefore amplification!. The three parameter
areS(R)5k, S(Q)5s, andS(CP)5c.
-

S~R:C!5S~R!1S~C!2S~RC!

5S~R!1S~C!2S~QP!

5k1c2~k1c!50. ~4.11!

This means that, if the amplification of the classical bits
lossless~that is, cannot result in an irrecoverable loss of m
tual entanglement withR), then the ‘‘amplified’’ classical
bits C must be statisticallyindependentof R. In other words,
no information about the encoded logical word is found
the ‘‘amplified’’ classical bitsC even thoughC is in general
necessary to recover the entanglement withR. Using
S(QC)5S(R)1S(C), the mutual entropy betweenQ andC
can be written as

S~Q:C!5S~Q!1S~C!2S~QC!5S~Q!2S~R!5s2k.
~4.12!

Thus, the quantum outputQ is in generalnot independent of
the classical bitsC ~in contrast withR). This simply means
that, in general, the encoder can introduce some extra
tanglement betweenQ and CP, additionally to the initial
entanglement 2k betweenQ andR, giving rise to a nonvan-
ishing mutual entropy. However, this additional entang
ment is useless as far as the transmission of quantum in
mation is concerned, and we will see below that t
interesting situation corresponds tos5k, in which case
S(Q:C)50. Finally, it is easy to see thatRQC is in a mixed
state of entropyS(RQC)5S(P)5c. The latter condition,
together with Eqs.~4.4!, ~4.5!, ~4.8!, ~4.10!, ~4.11!, and
~4.12!, fully describes the entropies of the tripartite syste
RQC after tracing overP ~i.e., after amplification!. The cor-
responding ternary entropy diagram is presented in Fig.

In summary, we haveS(R)5k, S(Q)5s, S(C)5c,
S(RQ)5c, S(RC)5k1c, S(QC)5k1c, andS(RQC)5c,
which implies that

S~R:Q:C!5S~R!1S~Q!1S~C!2S~RQ!2S~RC!

2S~QC!1S~RQC!5s2k2c. ~4.13!

As visible from this diagram, the systemRQ is in a pure
entangled stateconditionallyon the amplified classical vari
able C, i.e., S(RQuC)50, with a characteristic diagram

FIG. 8. Entropy diagram characterizing the referenceR, the
quantum systemQ ~output of the encoder!, and the classical outpu
C afteramplification. The joint system is in amixedstate of entropy
S(RQC)5c. Note thatR is independent ofC ~i.e., C contains no
information about the encoded logical word!, while RQ is ~fully !
classically correlated withC.
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(2k,2k,2k). Also, RQ is classically correlated withC, with
a diagram (0,c,0), so that the simultaneous knowledge ofR
and Q yields C, i.e., S(CuRQ)50. Finally, it is easy to
check that the diagram forR vs C is (k,0,c), i.e., C is inde-
pendent ofR.

Several inequalities relating the parametersk, c, and s
must be satisfied. First, the subadditivity of entropies imp
that

S~R:Q!5k1s2c>0, ~4.14!

S~Q:C!5s2k>0. ~4.15!

Similarly, the strong subadditivity of entropies implies tha

S~R:CuQ!5k1c2s>0. ~4.16!

These inequalities can be summarized as

0<s2k<c<s1k ~4.17!

implying, namely, that 0<c<2s. The two limiting cases are
~i! c50 ands5k, which corresponds to a quantum chann
without a classical side channel; and~ii ! c52s52k, which
corresponds to the situation where the entropy of the cla
cal channel is maximum. In the following, we will focus o
case~ii !, that is, when a maximum amount of classical info
mation is processed, since it is supposedly the case wher
classical side channel might help the transmission of qu
tum information the most.

We display in Figs. 9 and 10 the entropy diagrams cor
sponding to the limiting casec52k52s. Note thatS(R:Q)
50 as shown in Fig. 9, so that the channelL→CP is loss-
less. Thus, the entire entanglement withR is retained in the
unamplifiedclassical variableCP. We will discuss this be-
low. Figure 10 implies thatS(R:C)5S(Q:C)50, i.e.,Q and
R are bothindependentof the classical variableC. This em-
phasizes the fact thatR andQ play exactly the same role in
this limiting case~ii !. The peculiar feature here is thatQ and
R together are fully correlated withC, according to the dia-
gram (0,2k,0), althoughQ or R taken separately is indepen
dent ofC. In other words, the classical variableC contains
the information about which entangled stateRQ is in ~i.e.,
the mutual entropy 2k) while it contains no information
aboutQ or R alone.

FIG. 9. Entropy diagramsbeforeamplification of the classica
bits in the case where the processed classical information is m
mum (c52s52k). As before,S(R:P)50, so that the amplification
of the precursorP does not affect quantum coherence. Note t
S(R:Q)50, so that the quantum outputQ can be erased if no
amplification is performed.
s

l
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The diagram in Fig. 10 plays an important role in th
information-theoretic description of quantum teleportati
and superdense coding, as shown in a further work@30#. In
the special case wherek51 ~no block coding is used!, it
describes quantum teleportation in the following sense:Q is
the particle that is initially sent to Bob~one half of the Bell
state shared with Alice!, andC are the 2 classical bits tha
Alice sends to Bob. If the teleported particle~here L) is
initially entangled withR, so thatRL is in a Bell state, then
Q ends up in an entangled state withR which is one of the
four Bell states,conditionally on C. ~Teleportation is com-
pleted by having Bob applying a unitary transformation onQ
that is specified byC.! Thus, the 2 classical bits code for on
of the four Bell states, and the corresponding diagram
shown in Fig. 10 withk51. The amplification of the classi
cal bits by Alice doesnot destroy coherence, since we ha
S(R:P)50, and bringingQ andC together yields the initial
entanglement with respect toR, i.e.,S(R:QC)52. The non-
classical feature here is that the latter equation can be s
fied even thoughS(R:Q)50 holds at the same time, that is
the particle that Bob received initially is independent ofR
~this must be true as a consequence of causality!. Thus, the
entire entanglement withR is carried byC, as reflected by
S(R:CuQ)52. This will be discussed in more details els
where@30#.

Note finally that the vanishing mutual entropy betweenR
and Q implies that no entanglement withR is found in Q
alone. Therefore, the quantum outputQ can be erased with
out losing the entanglement withR, provided that the classi
cal variable is not amplified~by keeping CP). In other
words, sinceS(R:Q)50, the knowledge of the classical bit
C ~along with the precursorP) is sufficient to recoverL,
even in the absence ofQ. For example, in teleportation, th
unamplifiedclassical bits alone are enough to teleport
arbitrary state, so that the qubitQ that Bob received initially
can be erased.~Of course, this is unrealistic, since one nev
has access to all the microscopic degrees of freedom ma
the classical bits. Tracing over one of them is enough to l
the quantum information ifQ is erased.!

B. Singleton bound on a quantum channel
with a classical side channel

Let us now repeat the reasoning which results in
Singleton bound on a quantum code~Sec. III!, but taking

xi-

t

FIG. 10. Entropy diagramafter amplification of the classica
bits in the case where the processed classical information is m
mum (c52s52k). Here,R andQ play the same role. The classica
variable C contains the information about which entangled st
RQ is in, while R or Q alone is independent ofC. This diagram
with k51 plays a crucial role in the entropic description of sup
dense coding and teleportation, as shown elsewhere@30#.
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into account the classical auxiliary channel. Thus, we ass
again that the quantum outputQ of n qubits is partitioned
into an erased pieceQe ~of e qubits! and an unerased oneQu
~of n2e qubits!. We are seeking for a necessary conditi
for the possibility of recovering the erasure ofQe when the
decoder has access to the classical informationC ~so the
decoding operation can be conditional onC). As before, we
consider two different partitions ofQ ~see Fig. 4!, and ex-
press a lower bound on the entropy of the ‘‘overlap’’Q* .
The basic constraints~which must be satisfied simulta
neously! are

S~R:QeP!50, ~4.18!

S~R:Qe8P!50, ~4.19!

expressing the fact that no entanglement~with respect toR)
is lost when amplifying the classical bitsand erasingQe ~or
Qe8). Equivalently, the full initial entanglement ofL must be
‘‘squeezed’’ intoQu ~or Qu8) andC:

S~R:QuC!5S~R:QC!52S~R!, ~4.20!

S~R:Qu8C!5S~R:QC!52S~R!. ~4.21!

In other words, the knowledge of the unerased partQu ~or
Qu8) is sufficient to reconstruct~using C) the initial logical
word. Since the systemRQuQePC is in a pure state, we
have

S~RQuC!5S~QeP!5S~QeC!, ~4.22!

where we used the fact thatP and C are interchangeable
Now, dividing Qu into Qe8 and Q* , we can write an uppe
bound on the mutual entropy betweenR andQuC,

S~R:QuC!5S~R!1S~QuC!2S~RQuC!

5S~R!1S~Qe8Q* C!2S~QeC!

<S~R!1S~Qe8C!1S~Q* !2S~QeC!,

~4.23!

where we have used the subadditivity of quantum entrop
Eqs. ~4.20!, ~4.21!, ~4.23!, and its counterpart~when Qu is
replaced byQu8) thus give

S~R!2S~Q* !<S~Qe8C!2S~QeC!, ~4.24!

S~R!2S~Q* !<S~QeC!2S~Qe8C!. ~4.25!

Combining these two last inequalities results in the sa
inequality as in the case where no classical auxiliary chan
is used:

S~R!<S~Q* !<n22e. ~4.26!

Therefore, we obtain thesamequantum Singleton bound fo
a quantum code supplemented with a noiseless clas
channel as in the absence of such a channel:

k<n22e. ~4.27!
e

s.

e
el

al

In other words, the classical side channel~transmitting data
with an entropy up to twice the quantum source entropyk)
does not increase the Singleton bound on the maximum
tainable distance for quantum codes.

This result can be immediately applied to a quantu
channel characterized by ap-bounded fraction of erasure
~cf. Sec. III A! and supplemented with an auxiliary classic
channel, since, in that case, the use of a„(n,k)… code pro-
tecting for e5np erasures is enough to guarantee relia
transmission. Therefore, the upper bound on the rate is g
by

R<122p ~4.28!

similar to Eq.~3.1!, confirming the fact that the classical sid
channel does not enhance the quantum information trans
sion through the quantum channel@6#.

In the case of a quantum erasure channel~with erasure
probability p) supplemented with a classical channel, t
entire reasoning of Sec. III C can be repeated, the only
ference being that one has to calculate the sum of@S(QuC)
2S(QeC)# for two overlapping channels (c andc8):

S~QuC!2S~QeC!1S~Qu8C!2S~Qe8C!

<2S~Q* !<2~n22e!. ~4.29!

The resulting bound on the mutual entropy is thus the sa
as Eq.~3.20!, so that we have the same upper bound on
rate of reliable transmission of quantum information:

R<122p. ~4.30!

Finally, the cases of a channel with ap-bounded fraction of
errors and the quantum depolarizing channel can be tre
exactly as in Secs. III B and III D, so that the classical s
channel does not modify the Singleton upper bound on
rate in both cases.

V. CONCLUSION

The search for better bounds on the capacity of quan
channels such as the depolarizing channel is still a m
endeavor in quantum information theory today. Clearly, e
tropic considerations alone do not suffice to prove tha
reliable quantum coding scheme exists that achieves a tr
mission rate arbitrarily close to the capacity. As a matter
fact, a similar situation prevails for classical channels
well. Nevertheless, an entropic approach appears to be h
ful in order to derive bounds on the capacity of classical
quantum channels from similar principles, and to analy
classical and quantum communication in a unified fram
work, as shown in this work. More generally, the leadi
idea underlying the approach to quantum information p
sented in this work and in Refs.@9–13# is to build a theory
that extends Shannon’s concepts to the quantum reg
Rather than attempting to define adistinct ~purely quantum!
information theory that would apply to the transmission
quantum states only, we prefer to consider anextendedSh-
annon theory, which should account for the processing
classical as well as quantum information~arbitrary classical
or quantum states!. After all, any classical information-
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processing system should be describable, in principle
terms of its underlying quantum mechanical degrees of fr
dom. In this sense, Shannon theory should simply be vie
as a special case of a more general theory of informatio
quantum mechanics that remains to be built.

The central characteristics of a quantum extension
Shannon theory happens to be thatnegativevon Neumann
conditional entropies must be used in order to encomp
quantum entanglement in an information-theoretic desc
tion. It is pointed out in Ref.@10# that this apparently inno
cent observation should be viewed as the central novelty
quantum mechanical extension of Shannon theory beyon
original range. Since most of the classical concepts of Sh
non theory have a straightforward quantum analog, it is p
sible to repeat a great part of the classical reasoning
apply it to quantum information processes, as shown in
paper and our previous work. More specifically, we ha
shown here that an information-theoretic description of no
quantum channels following closely Shannon theory p
vides insight into the derivation of entropic bounds on t
quantum capacity~the maximum rate at which quantum in
formation can be reliably processed in spite of the nois!.
Namely, the entropic Singleton bound on quantum err
correcting codes@15# can be used in order to investiga
standard quantum channels such as the quantum era
channel or the quantum depolarizing channel. The same
malism can be extended in order to account for an auxili
classical channel used for forward communication besi
the noisy quantum channel. Entropic Singleton bounds
be derived in the latter case, too, showing that the class
channel does not enhance the quantum capacity~or an upper
bound on it!, in agreement with what was proven in Ref.@6#.

The central part of the reasoning consists in calculatin
lower bound on theaverage lossof the channel~i.e., the loss
of the joint channel made ofn consecutive uses of a memo
ryless channel, divided by the number of processed sym
n→`) which characterizes the ‘‘quality’’ of the transmis
sion. If the use of block coding makes the joint (n-bit! chan-
nel lossless~i.e., the average loss is zero!, then reliable trans-
mission of quantum information is achievable. This is tr
even though theone-symbol loss~for a single use of the
channel! is nonzero, reflecting the alteration due to noise
each use of the channel. Perfect transmission by block c
ing is thus possible provided that this lower bound on
average loss is zero or less, which results in an upper bo
on the attainable rate.

Obviously, there remains much to be done in order
derive better bounds on the rate~or perhaps the exact capa
ity! using such an entropic approach. We have m
progress in this direction, as illustrated by the entro
Singleton bound on the capacity of the quantum eras
channel (C<122p), which happens to be the exact capa
ity calculated in@19#. For the quantum depolarizing channe
however, we obtain a well-known bound on the capac
(C<128p/3, see@6#!, which has been recently shown not
be attainable@27#. Nevertheless, the characterization of t
exact quantum capacity of the depolarizing channel is stil
open problem, and it is possible that the entropic appro
presented here could be further improved. Also, the issu
the attainable capacity of a general noisy quantum cha
might be explored along the same lines. The search for be
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entropic bounds on the capacity of quantum channels wil
the subject of future work.
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APPENDIX A: INFORMATION-THEORETIC
CHARACTERIZATION OF A NOISY

CLASSICAL CHANNEL

In this appendix, we outline the information-theoretic d
scription of noisy classical channels, for the sake of clari
ing the correspondence with the treatment of noisy quan
channels used throughout this paper. At first sight, a class
channel seems very different from a quantum channel as
classical ‘‘reference’’ is used to purify the input. Also, th
classical input-output joint probability distribution has n
quantum equivalent, since there is no joint state for the ini
quantum systemQ and the final systemQ8 ~it is the same
system!. However, a classical channel can be thought of a
device which processes classicalcorrelation ~with respect to
a referenceR). If the inputX is initially fully correlated with
a referenceR, then the residual mutual entropy between t
outputY andR is a measure of the amount of correlation~or
information! transmitted through the channel. For a quantu
channel, we consider the processing ofentanglement~with
respect toR) rather than correlation, so that the residu
mutual entropy between the decohered quantum systemQ8
~the quantum output! andR is the interesting quantity. This
makes the classical-quantum correspondence easier to u
stand.

A noisy classical channel with inputX and outputY is
characterized by

I 5H~X:Y!, ~A1!

L5H~XuY!, ~A2!

N5H~YuX!, ~A3!

whereI , L, andN denote theinformation, the loss, and the
noise, respectively~see, e.g.,@16#!. Information processing
through the channel is measured by the balance betweI
andL, these two quantities summing to the source entro

I 1L5H~X!. ~A4!

The loss measures the inherent uncertainty in the proces
inferring the input of the channel from the altered outp
~decoding!, that is, the entropy of the input conditional o
the output. When the lossL is zero ~losslesschannel!, the
information I is maximum so that classical information
perfectly transmitted through the channel. Conversely, w
I 50 ~and L is maximum!, no classical information is pro
cessed by the channel. The noiseN reflects the uncertainty o
the output symbol for a given input symbol, and is irreleva
as far as the transmission of information is concerned~it
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corresponds to the loss of thereversechannel where the
input and output are interchanged!. A channel withN50 is
called deterministic, and a channel which is both determi
istic and lossless is namednoiseless. We follow the same
nomenclature for quantum channels in this paper.

If n independentchannels are used in parallel wit
X1•••Xn as an input string andY1•••Yn as an output string
it can be shown that the information and the loss aresubad-
ditive:

I<I 11•••1I n , ~A5!

L<L11•••1Ln , ~A6!

whereI (L) is the information~loss! of the joint (n-symbol!
channel, whileI i (Li) is the information~loss! of the i th
individual channelXi→Yi . Property~A5! results from the
subadditivity of Shannon entropies

H~Y1•••Yn!<H~Y1!1•••1H~Yn! ~A7!

and from the fact that the channels are independent~eachYi
depends onXi only! @17#:

I 5H~X1•••Xn:Y1•••Yn!

5H~Y1•••Yn!2H~Y1•••YnuX1•••Xn!

<(
i 51

n

@H~Yi !2H~Yi uY1•••Yi 21 ,X1•••Xn!#

<(
i 51

n

@H~Yi !2H~Yi uXi !#. ~A8!

Property~A6! is an immediate consequence of the subad
tivity of Shannon conditional entropies

H~X1•••XnuY1•••Yn!<H~X1uY1!1•••1H~XnuYn!.
~A9!

Since the information and the loss of each individual~one-
symbol! channel sum to the source entropy of that chann

I i1Li5H~Xi !, ~A10!
-

.

.

.

i-

l

the allowed range for the overall loss of the joint channe

L11•••1Ln2M<L<L11•••1Ln ~A11!

with M5H(X1)1•••1H(Xn)2H(X1•••Xn)>0. Conse-
quently, the loss cannot increase by using block coding~i.e.,
using parallel channels with correlated input symbols!, but it
can decrease by an amount which is bounded byM . Note
that M vanishes when the input symbols are independe
while a positive value ofM reflects the correlation betwee
the input symbols.

It is simple to obtain a necessary condition for perfe
transmission~i.e., with a vanishing overall loss! by block
coding through a noisy channel. Clearly, the condition

H~X1•••Xn!<H~X1!1•••1H~Xn!2L12•••2Ln
~A12!

must be fulfilled for the lower bound onL to extend to zero.
Therefore, the rate of transmission through the joint chan
R5H(X1•••Xn)/n, is bounded from above by the averag
one-symbolinformation of the individual channels:

R<
I 11•••1I n

n
. ~A13!

This is related to the weak converse of Shannon’s noisy c
ing theorem@17#: the transmission cannot be perfect~or loss-
less, i.e.,L50) if the rate of transmission exceeds the~av-
eraged! mutual Shannon entropy characterizing each use
the channel. This is consistent with Shannon’s result that
classical channel capacity is the maximum~over all input
distributions! of the mutual information between channel i
put and output for asingle use of the channel. Note tha
entropy considerations alone do not suffice to prove tha
reliable coding scheme exists that achieves a transmis
rate arbitrarily close to the capacity. A similar situation
found for quantum channels as well, as shown through
this paper. Still, an entropic approach is very helpful in ord
to derive bounds on classical or quantum channels from
sic principles, and to analyze classical and quantum com
nication in a unified manner.
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