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In analogy with its classical counterpart, a noisy quantum channel is characterizdddsyaquantity that
depends on the channel input and the quantum operation performed by the channel. The loss reflects the
transmission quality: if the loss is zemuantuminformation can be perfectly transmitted at a rate measured by
the quantum source entropy. By usiblipck codingbased on sequences mfentangled symbols, theverage
loss (defined as the overall loss of the joimsymbol channel divided by, whenn—«) can be made lower
than the loss for aingleuse of the channel. In this context, we examine several upper bounds on the rate at
which quantum information can be transmitted reliably via a noisy channel, that is, with an asymptotically
vanishing average loss while tlmme-symboloss of the channel is nonzero. These bounds on the channel
capacity rely on the entropic Singleton bound on quantum error-correcting ¢Btgs. Rev. A56, 1721
(1997]. Finally, we analyze the Singleton bounds when the noisy quantum channel is supplemented with a
classical auxiliary channelS1050-294®8)09404-9

PACS numbsgfs): 03.67.Hk, 03.65.Bz, 89.78.c

[. INTRODUCTION noisy quantum channel, i.e., an upper limit to the amount of
- : . _quantum information that can be processed with an arbi-
Within recent years, the quantum theory of information " & . . . .
o . ) trarily high fidelity. While several attempts have been made
and communication has undergone a dramatic evolisiea, ' X .
. to define a quantum analog of Shannon mutual information
e.g.,[1]). Major progress has been made toward the exten; ;
] . . . that would be a natural candidate for such a quantum mea-
sion to the quantum regime of the classical theory of infor-
mation pioneered by Shanndg]. In particular, the use of
guantumcommunication channels in order to transmit not

only cIaS_S|caI mfprmatlon but_ also intact _quantum stdt@s channel is still unsolved.
guantuminformation has received a considerable amount of The purpose of this paper is to further clarify the descrip-

attention, following the proof of the quantum analog of (o of noisy quantum channels centered on the von Neu-
Shannon’s fundamental theorem for noiseless coding byhann mutual entropysee[9]). It has been shown recently
Schumachef3]. It has been shown that the von Neumannthat a consistent information-theoretic framework that
entropy plays the role of a quantum information-theoreticclosely parallels Shannon’s construction can be developed,
entropy in the sense that it characterizes the minimunbased on von Neumaneconditional and mutual entropies
amount of quantum resourcésg., number of quantum bjts [10-13. The central peculiarity of this framework is that it
that is necessary to code an ensemble of quantum states withvolves negativeconditional entropies in order to account
an asymptotically vanishing distortion in the absence offor quantum nonlocal correlations between entangled vari-
noise. This result suggests that a general quantum theory ables. This is in contrast with Shannon information theory in
information, paralleling Shannon theory, can be developedvhich marginal and conditional entropies are all non-
based on this concept. While such a full theory does not exigtegative quantities. Negative quantum conditional entropies
as of yet, a great deal of effort has been devoted to this issugmply reflect the nonmonotonicity of the von Neumann en-
over the past few years, and several fundamental results hat®py [14] (the entropy of a composite system can be lower
been obtained, ranging from entanglement-based communikan that of its components if the latter are entangldthe
cation schemelt] to quantum error-correcting codgs). In resulting information-theoretic formalism provides grounds
particular, a substantial amount of work has been devotetbr the quantum extension of the usual algebraic relations
recently to the transmission of arbitrary states quantum between Shannon entropies in multipartite systehis-13.
information throughnoisy quantum channel&ee, e.g.[6—  Surprisingly, many concepts of Shannon theory can be
9]). A quantum state processed by such a channel undergossaightforwardly translated to the quantum regime by ex-
decoherencéy interacting with an external system or envi- tending the range for quantutaonditional and mutualen-
ronment, which effects an alteration of quantum information.tropies with respect to the classical one in order to encom-
A natural question that arises in this context concerns th@ass entanglemerntlO]. This is very helpful in analyzing
possibility of transmitting quantum informatiareliably, in ~ quantum information processes irunified framework, par-
spite of quantum noise, if it is suitably encoded as sequencealleling Shannon theory. For example, entanglement-based
of quantum bits in analogy with the standard constructionquantum communication procesqd$], quantum channels
used for classical channels. More specifically, a fundamentdB], and quantum error-correcting codgs5| can be de-
issue is to understand the quantum analog of Shannon'scribed along these lines.

noisy channel coding theorem and to definedhpacityof a In this paper, we focus on the application of this

sure of capacity(see the concepts of coherent information
[7,8] or von Neumann mutual entrog$®,10]), the problem
of characterizing in general the capacity of a noisy quantum

1050-2947/98/5(6)/333018)/$15.00 57 3330 © 1998 The American Physical Society



57 ENTROPIC BOUNDS ON CODING FOR NOISY QUANTUM ... 3331

information-theoretic framework to the issue of finding up- characterizingmultipartite quantum systems. Consider, for
per bounds on the capacity of quantum codes and quantuinstance, a tripartite systeXY Z The von Neumann condi-
channels. In Sec. II, we outline the general treatment of noisyional mutual entropyof X andY, conditionally onZ) can
guantum channels based on quantum entrofigsand ex- pe defined as

tend it to the characterization of consecutive uses of a quan-

tum memoryless channétf. the notions of one-symbol and S(X:Y|Z)=S(X|Z)—S(X|Y 2)

average loss explained in Sec. I).07his provides a simple

framework to consideblock codingwith quantum channels. =S(X|Z)+S(Y|Z)—S(XY|2)

Note that, just as in Shannon information theory, quantum .

entropic considerations alone do not resultconstructive =S(X2)+S(Y2)=S(2)-S(XY2D (2.4

methods for building codes. Rather, they are useful to derive . . .

bounds on what can possibly be achieved or not, from basi perfect analogy W't.h. the classical EXpressions. N.ote _that
principles. Accordingly, we analyze in Sec. il several uppern€ Strong subadditivity of quantum entropies implies
bounds(based on the Singleton bound on quantum codeS(X:Y|Z)=0 [12]. We can also define the von Neumann
[15]) for standard quantum channels such as the quantufgrnary mutual entropy as

erasure or depolarizing channel. This confirms bounds on the

quantum capacity that were derived otherwise, but places S(X:Y:Z) = S(X:Y) = S(X:Y|Z). (2.9
this problem in a unified context. Finally, we examine in Sec. ) ) o

IV the extension of this quantum entropic treatment of noisyNOte that, ifS(XY 2 =0 (i.e., the ternary system is in a pure
quantum channels to the case where an auxilidagsical Stat8, then S(X:Y:Z)=0 [12], or, equivalently, S(X:Y)
channel is available. Quantum teleportation appears then asaS(X:Y|Z), a property which is very useful in the analysis

special case of this construction when no block coding i€f quantum channels. Alsehain rulesfor quantum entro-
applied. pies can be written, such as

Il. ENTROPIC CHARACTERIZATION S(X:YZ)=S(X:Y)+S(X:Z|Y), (2.6

OF NOISY QUANTUM CHANNELS . . . .
which parallel the classical relatioh%2]. The motivation for

A. Notations building such a quantum entropic framework is that it pro-

Let us start by summarizing the basic definitions that will Vides aninformation-theoreticformulation of quantum en-
be useful in the rest of this paper when considering noisy@nglement in multipartite systems, unified with Shannon’s
quantum channels. The entropy of a quantum systefof ~ description of classical correlation. It is an extension of
arbitrary dimensionis defined as the von Neumann entropy Shannon’s formalism beyond its original range, as reflected,

of the density operatopy that characterizes the state Xf for example, by the _fact that the quantum mutual _entropy can
ie. reachtwice the maximum value allowed for classical entro-

pies[10], that is,
S(X) =Y px]=—Tr(pxlogpx)- 2.

0=<S(X:Y)=<2min S(X),S(Y)]. (2.7
It can be viewed as the uncertainty abouin the sense that
it measuregasymptotically the minimum number of quan- This factor 2 appears in many quantum information-theoretic
tum bits (qubits necessary to specif [3]. This definition  relations(see beloy, and originates from the Araki-Lieb in-
can be extended to the notionsaainditionalandmutualvon  equality for quantum entropigd0-12.
Neumann entropies, based on a simple parallel with their
classical counterparts which is motivated[k0-12. For a

. ) . . B. Quantum mutual entropy, loss, and noise
bipartite systemXY characterized byyy, the conditional

von Neumann entropy is Let us now outline the entropic treatment of a noisy quan-
tum channelsee also Refl9]). Such a treatment explicitly
S(X]Y)=S(XY)—S(Y) (2.2 displays the correspondence with the standard description of

noisy classical channelsee Appendix A thereby unifying

while the mutualvon Neumann entropy is . AT
classical and quantum channels. Our description involves

S(X:Y)=S(X)—S(X]Y) three quantum systems of arbitrary dimensid@sthe quan-
tum system whose processing by the channel is concgrned
=S(Y) = S(Y[X) R (a “reference” system tha® is initially entangled with,
=S(X)+S(Y)— S(XY), 2.3 andE (an external system or environment ti@afs interact-

ing with in the noisy channgl More specifically, we assume
where S(XY) is calculated fronpyy while S(X) and S(Y) that Q is initially entangled withR, so that the joint state of
are obtained from the reduced density operatpis Q andR is thepure state| ¥ ). We may as well regar@®
=Try(pxy andpy=Try(pxy). Subadditivity of quantum en- as a quantum source, being initially in a mixed state
tropies impliesS(X:Y)=0, where the equality holds X and  (realized by a given ensemble of quantum states associated
Y are independenti.e., pxy=px®py). Note that, when with some probability distribution The “purification” of
S(XY)=0 (i.e., the joint systenXY is in a pure state we  pgq into [¥ro) can always be achieved by extending the
have S(X:Y)=2S(X)=2S(Y) as a consequence of the Hilbert space Hy to Hgrg, SO that we havepg
Schmidt decomposition. This property will be useful in the =Trg(|¥ro)(¥rql). The corresponding reduced von Neu-
following. Several guantum entropies can also be defined fomann entropies are
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S(R)=S(Q)=S, (2.8

where S is called thesource entropyIn the dual picture

where anarbitrary pure state ofQ (rather than entangle- R — R’
men) is sent through the chann&,then measures the “ar- ‘:ZS

bitrariness” ofQ (it can be viewed as the average number of ! ] Q
guantum bits that are to be processed by the channel in orde

to transmit the state o). In what follows, we prefer to 0 i

consider a quantum inp@ that is entangled witlR, so that
the preservation of entanglement—rather than of arbitrary
states—will be the central feature of a quantum transmissic..

channel. The initiamutual entropyto be transmitted is thus

S(R:Q)=2S,

that is, twice' the source entropy.

When it is processed by the chann@l,interacts withE
(assumed to be initially in a pure std®)) according to the
unitary transformatiotJ ¢, inducingdecoherenceThis de-
scribes the most gener#érace-preservingoperation of a
guantum channel that is allowed by quantum mechanic
Roughly speaking, the resultingoisy quantum channel is

(2.9

such that, typically, only a fraction of the initial entangle- 9,15)). Physically
ment with R can be recovered after having been processef}. ;| ’

by the channe(the rest of the entanglement wilis lost, in
the sense that it is transferred to the environmektore

specifically, the decohered quantum system after interactio

with E, denoted a€)’, is in the state
po=Tre(Uqe(pq®[0)(0)UGp), (2.10

where pq is the initial state ofQ (with source entropyg).
The completely positive linear maqrb—q)(’g corresponds to
the “guantum operation” performed by the noisy channe

FIG. 1. Schematic representation of the quantum operation ef-
fected by a noisy quantum channel. The quantum sy€eis ini-
tially entangled with the referencR, with a mutual entropy of
twice the source entrop$ (this is indicated by a dashed lindhen
Q decoheres by interacting with an environméntinitially in a
pure statd0)). The entropy Venn diagram summarizes the entropic
relations betweei®’ (output of the quantum channgR’ (refer-
ence, andE’ (environmenk after decoherence. The three param-
etersl, L, andN denote the von Neumann mutual entrgguantum
%nformatior), the loss, and the noise, respectively.

the quantum informatioin corresponds
the residual mutual entropy between the decohered quan-

tum outputQ’ and the reference systeRithat purifies the

uantum inpulQ. The lossL is the mutual entropy that has

risen between the environment after decoher&iand the
reference systerR, while the noiseN is the mutual entropy
between the decohered quantum outPutand the environ-
mentE’. Note thatl, L, andN can be written as a function
of reduced entropies only, without explicitly involving the
environmentE in the discussion, by making use of the
| Schmidt decomposition of the state 6 Q'E’, namely

[7]. After such an environment-induced decoherence, thg(E/)ZS(RQ,):

joint system R'Q'E’ is in the state|¥gr e )=(1g
®Uog)| Pro)|Og) whose entropy Venn diagram is repre-
sented in Fig. Ithe primes refer to the systeraster deco-

herencé Note that, as the reference is not involved in deco-

herence, we havR’'=R.

The entropy diagram dR’ Q' E’ depends on three param-
eters, the von Neumarmutual entropy(or the quantum in-
formation |, the loss L, and thenoise N these quantities
being defined in analogy with their classical counterparts:

I=S(R:Q"), (2.10)
L=S(RE'|Q")=S(RE’), (2.12
N=S(Q":E'|R)=S(Q":E"). (2.13

1=8(Q)+S(Q")~S(RQ"), (2.14
L=S(Q)+S(RQ")—S(Q’), (2.19
N=S(Q")+S(RQ")-S(Q). (2.16

It can also be shown that these three quantities are in fact
independent of the choice of the reference syskemvhen-
ever the latter purifies the quantum inp@t so that they
provide a most concise entropic characterization of informa-
tion flow in the channel. They depend in general on the chan-
nel input(i.e., pg) andon the quantum operation performed
by the channel(i.e., the completely positive trace-preserving
map onQ that is specified by e in the joint space ofQ

and E). This exactly parallels the situation for the analog

The classical correspondence can be made fully explicit bglassical quantities. The informatidnlossL, and noiseN of
including an environment in the description of a classicala classical channel of inpdt and outputy (see Appendix A

channel, as shown ii®]. The second equality in Eq&.12

indeed depend on the input distributign{x) and on the

and(2.13 has no classical analog, and results from the vanehannel “operation” characterized by(y|x).

ishing of the ternary mutual entropB(R:Q":E’) (see

INote that this factortwo reflects a fundamental difference be-
tween classical and quantum chann@se Appendix A for com-
parison). Such a factor is omnipresent in the quantum information
theoretic relations between entrop[d<)].

Among these three quantities, onlandL are relevant as
far as(forward information transmission through the chan-
nel is concernedthe noiseN plays a role in the description
of the “reverse” channel, just as for classical chanhelis-
deed, information processing is characterized by the balance
-between the von Neumann mutual entropy and the loss, these
two quantities always summing twice the source entropy:
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I+L=25(Q)=2S. (2.1 C. Properties of quantuml, L, and N

The above entropies definitions for a noisy quantum chan-
nel can be shown to fulfill several properties, akin to classi-
The mutual entropyl =S(R:Q’) represents the amount of cal ones, which make them reasonable quantum measures of
the initial mutual entropy with respect B (i.e., 2S) that has  information, loss, or noisésee also Ref9]). First, the quan-
been processed by the channel, while the lossS(R:E’) tum mutual entropyl can be shown to beoncavein the
corresponds to the fraction of it that is unavoidably lost ininput pq for a fixed channel, i.e., a fixed quantum operation
the environment. If the channel Isssless(L=0), thenl po—pqr Or a fixedUqg. Therefore, any local maximum of
=2S, so that the interaction with the environment can bel is the absolute maximum, that is, the von Neumann capac-
perfect|y “undone,” and the initial entanglement f can Ity of the channel. This parallels the Concavity of the Shan—
be fu”y recovered by an appropriate decodirﬁg,g]. non mutual entrop)H(X:Y) in the Input probablllty distri-
(Equivalently, this means that an arbitrary initial stateQf Pution p(x) for a fixed channel, i.e., fixegp(y|x) [17].
can be recovered without errpiThis can be understood by Second,l is convexin the outputpq for a fixed inputpg .
noting thatR does not become entangleitectly with the Th|s property W.I|'| pe used in the next sgctlon when consid-
environment in a lossless channel, but only via the oufput  €"Ng & “probabilistic” channelthe effective channel result-
(see Fig. 1 wher.=0). An operation orQ’ only (namely, "G from the probabilistic use of a family of chan_n)eltt is
the decoding operatioris enough to transfer the unwanted h€ quantum analog of the property that the information
entanglement WittE’ (measured by the noige) to an an- H(X:Y) processed _by a classical channel is a convex func-
cilla, while preserving the entanglemer® fvith R. tion of p(y|x) for a fixedp(x) [17]. These two properties are
Thus, ifL=0, a perfect transmission of informatidim- simple to prove by reexpressing the von Neumann mutual
cluding quantum informationcan be achieved through the €Ntropyl as
channel by applying an appropriate decoding. Whe®, on O — e " "_ , =
the other hand, no information at dtllassicalor quantum S(RQN=SQ'EN+S(Q)=S(E)=S(Q)+S(Q 45_1)9)
can be processed by the channel. This is the case, for ex-
ample, of the quantum depolarizing channel with 3/4 (see  or as
Sec. Il D). In between these limiting cases, classical infor- o~ , L ,
mation(and, up to someestrictedextent, quantum informa- S(RQT)=S(R)+S(Q")=S(RQ )—S(R)—S(R|Q(%.20)
tion) can be reliably transmitted at the expense of a decrease '
in the rate by making use dflock coding The analysis of If the inputpq is a convex combination of density operators
such a transmission of quantum information immune to noisevhile the channel is fixed, it is easy to see thgfz and

is the main focus of this paper. thereforepq g/ are also convex combinatiofas the channel
For completeness, let us mention that a channel With operation is linegr Since the conditional entropg(Q’|E")
=0 is the quantum analog of deterministicchannel[16],  is concave in a convex combination @ g while S(Q’) is

that is, a channel where the input fully determines the outpu¢oncave inpq: [14], Eq. (2.19 implies theconcavityof the
(see Appendix A The quantum outpuQ’ is indeed not quantum mutual entropy in the input for a fixed channel.
directly entangled witle’ but only viaR, which implies that  The second property can be proven the same way by noting
its entanglement wittlR remains intac(see Fig. 1 whemN  that, if we have a “probabilistic’ channel—a convex com-
=0). This does not mean, however, that perfect error corredsination of quantum channels—acting on a fixed input, then
tion is achievable, as an operation on the refereRces  prq is a convex combination of density operators while
needed to recover the initial entanglemesti®&tweernQ and  is constant. Thus, Eq2.20 together with the concavity of

R. A channel which is both losslesk € 0) and deterministic  the conditional entrop$(R|Q’) in a convex combination of
(N=0) is callednoiselessits action onQ is the identity  prqo implies that the quantum mutual entropys convexin
operator(or any fixed unitary operator For example, the the output for a fixed input.

overall channel including a noisy quantum channel along A third important property is that the mutual entropy
with the encoder and decoder is obviously noiseless if perand the quantum lods are subadditivewhen considering a
fect error correction is achievedn other words, the decoder channel made of several independent quantum channels used
is used to eliminate the quantum nolNe 0 by transferring in parallel. This will be shown when analyzing quantum
the entanglement witk to an ancilla, which then makes the block coding(cf. Sec. Il D. Finally, it can be proved that
overall channel noiselegsrovidedthat L=0.) It is worth  obeys (forward and reverge data-processing inequalities
noting here that the noisd and the losd play symmetric when considering chained quantum channels. If we chain
roles when considering the “reverse” channel obtained bytwo channels by using the output of the first as an input for
interchanging the input and outpyThis is true for classical the secondsee Fig. 2, the total (1+2) channelpg— pg
channels as wejl More specifically N andl always sum to  —pq is characterized by

twice theoutputentropy,

I1,=S(R:Q"), (2.21)
| +N=25(Q"), (2.18 Li,=S(REE'E"), (2.22
Nq,=S(Q":E'E"), (2.23

in analogy with Eq.(2.17). Roughly speakingN plays the since we can regard the two environmeBfsandE” as a
role of the loss of the reverse channel, as shown in Sec. Il Qjlobal environment for this total channel.
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R , flow of data. This can make the transmission asymptotically
immune to errors, up to some level of noise. In quantum

28 error-correcting codes, the qubits that form a block eme
Q Q” tangledin a specific way, so that a partial alteration due to
Q decoherence can be recoverds. Even though entangle-
0 y 0— ’ ment gives rise to some qualitatively new featufgse[ 15]

| L E 1 E for a detailed analysjs the objective is similar. Namely,
o - _ when block coding is used, i.e., when daylogical” qubits
FIG. 2. Schematic view of the chaining of two noisy quantum are encoded into blocks af“physical” qubits, it is possible

channels. In each of them, the input state decoheres by interactin% hi . . h raverall | f the ioi
with a (separate environment. The input of the first channel is © achieve a situation where tr@verall loss of the joint

initially entangled withR, with a source entropy of (see the (n-bit) channel is arbitrarily small, while the loss for indi-
dashed ling The output of this chann&’ is then used as an input  Vidual qubits(for each use of the channes finite. In anal-
for the second channel. Sin€@’ is purified by RE’ (not by R ogy with the classical construction, if blocks ofqubits that
alone, the “reference” system that must be considered in the en-are initially entangled with respect ® (with a mutual en-
tropic characterization of the second channeRE'. tropy 2k) can be transmitted through the channel with an
asymptotically vanishing overall loss, we say that the chan-
Using the chain rule for quantum mutual entropiespe| processeskIn bits of entanglemenper qubit Equiva-
S(REE'E")=S(RE') + S(R:E"|E"), and remembering that |ently, the channel is transmitting atate R=k/n (on aver-
S(R:E"|E")=0 as a result of strong subadditivity, we obtain age k arbitrary binary quantum states can be transmitted for
n transmitted qubifs The maximum rate at which quantum
0<L;<Lg,, (2.24 : : . ) :
information can be reliably sent through the noisy channel is
whereL,=S(R:E’) is the loss of the first channel while, ~ defined as the quanturthannel capacity (This maximum
is the loss of the total channel. Thus, the loss can only inhas to be taken over all pOSSIbIe_ coding _sc_:hemes, and for
crease by further processing of quantum information in the~-) Whether a goodand operationaldefinition of such a
second channel. Since;+L,;=25(Q) and Iy+Ly, “purely quantum” channel capacity exists is currently an

—25(Q), we obtain theforward data-processing inequality ©Pen question. In the following, we restrict ourselves to the
issue of finding upper bounds on the rate of perfect quantum

1,<1,<25(Q) (2.25 information transmissiorfand therefore on such a “purely
guantum” capacity.
implying that the mutual entropy of the total channel cannot | et us consider the asymptotic use of a quantum discrete
exceed the one of the first channel. This is the quantum a.n&nemorwess channel, Whem(tending to |nf|n|ty qubits are
log of H(X:Z)<H(X:Y)=<H(X) for chained classical chan- transmitted sequentialf/Each qubit may decohere due to an
nelsX—Y—Z [17]. environment(quantum noisg the exact interaction depend-
Now, if we use the chain rul§(Q":E'E")=S(Q":E")  ing on the considered noise model. The important point is
+S(Q":E'|E") together with strong subadditivity, we obtain that the environment for each qubit is initiallydependenof
0<N.<N (2.26 the one interacting with every other qubit. Thus the informa-
— 2=z ' tion process can be viewed asequential uses of a quantum
where N,=S(Q":E") is the noise of the second channel memorylesschannel(the environment peing “reset” after
while Ny, is the noise of the total channel. As+N, each usgor, lequalently', an paralllel independent chan-
=25(Q") and 11+ Ny,=25(Q"), we obtain thereverse nels processing one qubit ea@ee Fig. 3. We assume that

. L . the set ofn input symbols Q,, ...,Q,) are initially en-
data-processing inequality tangled with R, so that S(R:Q;- --Q,)=2S and S(R)
11,<1,<25(Q"), (2.27 =95(Q;---Qn)=S. If we consider these symbols as the

_ single input of a jointn-bit channelQ;---Q,—Q1---Q,,
wherel,=S(RE":Q") is the mutual entropy processed by jnformation transmission is described by the mutual entropy
the second channelNote that the “reference” system that

purifies the inputQ’ of the second channel RE’.) This I=S(R:Q;---Q;)

parallels the classical inequalitd (X:Z)<H(Y:Z2)<H(Z) , , , ,

for chained channelgl7]. Equations(2.24) and (2.26) em- =S(Q1- Q) +3(Qq- - Q) —S(E;---Ep)
phasize that the lods and the nois&l play a symmetric role =S(Q1 - QplE1 - Ef)+S(Q1---Qp) (2.28

in this entropic description if one interchanges the input and

the output of the quantum chanr(@time-reversal”), just as

for classical channels. This is reflected by the symmetry be- d the |
tween the forward and the reverse data-processing inequaf/la-n € loss
ties.

2Throughout this paper, we use indistinctly the terms qubit or
symbol to denote the quantum state that is sent in a single use of the
The central idea of classical error correction by blockchannel. As a matter of fact, the reasoning is totally general, and
coding is to introducecorrelations between the bits that applies to quantum statésr symbols in a Hilbert space of arbi-
make a block, in order to have redundancy in the transmittettary dimension=2.

D. One-symbol loss and average loss
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D S(E}---E)<S(Ep+---+S(E), (234
1128 L - :
B and the subadditivity of von Neumann conditional entropies,
ALY “ S(E;- - ErlQ - Qp=S(E{|Q))+- - +S(EfQp),
S I ) (2.39
Q, [ ] Q, combined with Eqs(2.29 and(2.33 imply that the loss is
| oo , subadditive
I ! |\ E
| : L<Lq+---+L,. (2.3
| )
Q ] Q The same reasoning can be made using EA<8 and
" “"_J , " (2.32 and inte_rchanging t_hQi”s and_Ei’ 's in Eqs.(2._34)
[ E, and (2.35, which results in the equivalent expression for

o _mutual entropies:
FIG. 3. Schematic view of a memoryless quantum channel. This

channel is used times, but the environment is “reset” after each I<I;+---+1,. (2.37

use. This can be viewed asparallel (independentchannels, each

one being used for one of the input symbols. Thimput symbols  The latter inequality corresponds to teebadditivityof the

(Q1.Qz, ....Q,) are initially entangled witiR (as indicated by a von Neumann mutual entropy for parallel channels. Finally,

dashed ling with a joint source entropy o8. using the relation between the loss and the mutual entropy
for individual channels and for the joint channel, we obtain

L=S(RE;}---E})

Qo+ Qu) (B En) = S(Q1---Qn) with M=S(Qy)+ - +S(Qn) —(Q;- - -Q,)=0. Equiva-
=S(E;---E}Q1-- Q) +S(Ef---E)), (2.29 lently, if we define theaverageloss of the jointn-bit chan-
nel asl=L/n for n—~, we see that
where we have made use of the conservation of entropy im-
posed by the unitarity of the global interaction with the li—2m=I<ly, (2.39
environments E4, ... E,. Obviously, we havel+L
=29(Q;- - - Q,)=2S(R), which is twice the source entropy
S of the joint channel.
Each individual channe;— Q/ can be described in the

L+ -+L,—2Ms<L<L;+---+L, (2.39

wherem=M/n andl;=(L,+ - --+L,)/n is theone-symbol
loss, i.e., the loss for a single use of an individual channel
averaged over all 1-bit channels. Thus, E@s38 or (2.39
. . . . imply that the loss cannot increase by using block coding
same way, noting that eac} interacts with an environment - ,qing parallel channelslt typically decreases by an amount
E; (initially in a pure statg0)) which results inQ; andE{.  yhich is bounded by BI (or 2m), a quantity related to the
The only di}‘ference here is th&t has to be ;upplemented entanglement between the input symb@iote thatM =0 if
with all the inputQ’s except Qin order to purifyQ;. Thus,  the input symbols are independérthe analog construction
the mutual entropy characterizing thil channel is for a classical channel is presented in Appendix A in order to
, clarify the straightforward classical to quantum correspon-
li=S(RQy- -~ Qi-1Qi+1 - QniQi) (2.30 dence. As an example, let us consider the use of blocks of
_ ) ) two qubits. Assume also that the two 1-bit channels are iden-
while the corresponding loss is tical, i.e., Ly=L,=I,. The averageloss of the joint 2-bit

, channel | =L/2, can be bounded by
Li=S(RQ - Qi—1Qi+1 - - QniE). (2.3)

Il_S(leQz)glgll. (24@
These quantities can be reexpressed by using the fact that the o )
environments,, ... ,E, are initially in a product state and This explicitly shows that block coding can decrease the av-
that theQ; andE; interact pairwise. We have erage loss only when the symbols are entanglesd.,
S(Q1:Q2)>0]. . .
l,=S(Q)+S(Q!)—S(E)=S(Q!|E/) + S(Q/) Equations(2.38 or (2._39) allow us to derive a simple
(2.32  upper bound on the maximum achievable rate by block cod-
ing, as a function of the one-symbol lo& mutual entropy
and for a single use of the channel. Indeed, only if the lower
bound onL (or |) extends to zergthat is, if 2M=L,+ - - -
Li=S(Qi)+S(E/)—S(Q/)=S(E/|Q/)+ S(E/). +L,) is it possible that block coding makes the joint channel

(2.33

For each channel, the loss and the mutual entropy sum to®The average loskreflects the effective losger qubitprocessed
twice the source entropy of the chanitihcing over all the in the noisy channel, that is, the loss affecting the overall process
other channe)s I;+L;=2S(Q;). The subadditivity of von (encoding+ joint channel viewed as parallel one-bit noisy chan-
Neumann entropies, nels divided by the number of physical qubitswhenn—oo.
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perfectly immune to noise while each 1-bit channel_has &hannel, a fraction opn qubité‘ (at mosj are erased (or
nonvanishing loss. Thus, we have the necessary condition fQgpjaced by a distinguishable third state, e|g)). When

having a vanishing average logs<0): consideringerasuregrather than errojsthe important point
is that it is possible to perform an incomplete measurement
28(Q1- - Qn)=28(Qy) + - +25(Qp) —Ly— -+ —Lj. of each qubit at the output of the channel, to check whether
(2.41 it is in the |2) (erasurg state, or in the subspace spanned by

_ _ _|0) and |1), without destroying superpositions in the latter
As a consequence, the rate of quantum information transmisybspac¢19]. In this error model, transmission through the
sion through the joint channelR=S(Q;---Qn)/Nn, iS  channel is considered successful if an arbitrary initial quan-
bounded from above biyalf the averagedne-symboimutual  tym state can be perfectly recoveréat the entanglement

entropy for individual channels: with R can be maintainedwhich can obviously be achieved
if one uses a quanture-erasure correcting code with
PR = i i
R< 1 n (2.42 pn, that is, a code that allows any patternenfjubits of

2n each codeword to be erased. Thaée (i.e., the average num-

ber of logical qubits transmitted with arbitrarily high fidelity

Thus, the(averagedl mutual von Neumann entropy charac- Per physical qubjtof a channel subjected to a-bounded
terizing each use of the channel provides an upper bound diaction of error is thus equivalent to the rate of @n,k))
the achievable rate of transmission by block coding througlfluantum code correcting=pn erasures. The rate of an
the noisy channel. Except for the factor 1/2, this inequality((n,k)) code, i.e., a code mappirkglogical qubits into code-
parallels the one for a classical chanfiste Appendix A ~ words of n qubits, is defined aR=k/n. Consequently, an
Remember that the quantum capacity of a channel is definedPpper bound on the rate of quantum codes is simply equiva-
as the maximum rate that can be achieved through the chafgnt to an upper bound on the rate of a channel with this
nel (over all possible input and coding schemesth a fi-  particular error mode{or an upper bound on the capacity,
delity arbitrarily close to 1. The classical analogy suggestdvhich is the highest achievable rate through the channel
then that themaximum one-symbol von Neumann mutual When considering a channdd,is simply the source entropy
entropy yields the quantum capacity. However, this uppeS of the joint channeli.e., the number of arbitrary qubits
bound appears not to be attainable in genéseg, e.g.[6]), that are sent
in contrast with the equivalent classical boufithe physical Itis known that an upper bound on the Hamming distance
meaning of the von Neumann mutual entropy is better unof nondegeneratguantum codes with fixed andk can be
derstood in the context of noisy superdense coding, as showderived from “sphere-packing” consideratiof20]. How-
in [9].) Therefore, it is necessary to derive more constrainingever, as a bound on the ratar capacity of a quantum chan-
entropic upper bounds oR, which is the main concern of nelinvolves a maximization over all coding schemes, includ-
the rest of this paper. ing those based on degenerate codekich have been

In the next section, we build on the entropic derivation ofshown to exceed the Hamming bouid]), only the bounds
the Singleton bound for quantum codes presented in Refvhich are valid for all quantum codes are applicable to chan-
[15], and extend it to the treatment of noisy quantum chanfels. As proven in a previous pagés5], an upper bound on
nels in order to find better upper bounds on the rate of perthe rate of(nondegeneratand degeneratequantum codes
fect quantum information transmissigand therefore on the can be derived using entropic considerations only. This is the
“purely quantum” capacity. The bounds that we derive can quantum Singleton bounds=n—2e (see alsd22]). Trans-
be attained in some casés.g., for the quantum erasure lated in the channel language, this implies that an upper
channe), or not in other casege.g., for the quantum depo- bound on the rat¢and therefore the capacjtpf a lossless
larizing channél It is unknown whether such a purely en- (L=0) channel subjected to@fraction of erasures is
tropic approach unifying classical and quantum channels can
possibly yield the bestasymptotically attainab)eupper R<1-2p. 3.
bound, just as it is the case for classical channels, but this is
not out of the question. This will be further investigated in For completeness, we summarize the proof of the Singleton

future work. bound given in[15]. The basic idea of the proof will be
useful in the following, when considering other channels.

Ill. ENTROPIC BOUNDS ON CODES AND CHANNEL As pictured in Fig. 4, for each pattern of erased qubits
CAPACITIES Q., the entropic conditios(R:Q.) =0 must be fulfilled, so

) ] ) ) that the unerased qubi@, emerge from a lossless channel.
In this section, we derive several bounds, either on quanthjs implies that the full entanglement of the codewe@d

tum codes or on quantum channel capacities, using an efyjith respect taR) must be “concentrated” in the unerased
tropic approach based on the Singleton bousde Ref. qypitsQ,:

[15)).
R: =S(R:Q)=2S(R). 3.2
A. Quantum channel subject to ap-bounded fraction S(R:Qu=S(RQ)=2S(R) 3.2
of erasures

We say that a quantum channel is subjected to a“whenn—c, the number of erasurgm can be considered as an
p-bounded fraction of erasur¢&8] if, amongn uses of the integer without loss of generality.
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Since a channel where the fraction of errors is bounded
0 e can be made losslesk € 0) using anerror-correcting code
€ (just as for erasures in the preceding segtidris enough to

Q, n-e use the correspondence between error-correcting codes and

j n-%e erasure-correcting codes to derive an upper bound on the rate
of perfect transmission of quantum information in such a

0 n-e channel. In analogy with the classical situation, one can

u show that any code that corred¢tgrrors is also able to cor-

Q, € rect up toe=2t erasureg23]. This enables us to reuse the

result of the preceding section simply by replacmby 2p.

Thus, we obtain the Singleton upper bound on the (ate

FIG. 4. Schematic representation of two possible partitior® of . - . . .
into an erased pied@, (or QL) and unerased pie@, (or Q). The g?pé?rc(;trg.ofa losslessl(=0) channel with a fixed fractiop

“overlap” between the unerased pieces in both partitions is de-
noted byQ*. The entropic erasure-correction condition for the first R<1—4p. (3.9
partition is S(R:Q,) =0, while the condition for the second one is

S(R:Qg)=0.

(This bound, or rather the fact that the rate of a code is
vanishing atp=1/4, is originally due to Knill and Laflamme
[22].) To our knowledge, the only stronger boundsRrior

Using the fact that the joint state &Q,Q. is pure, along
with the subadditivity of quantum entropies, we have

S(R:0.)=S(R)+S — SR quantum codes that have been displayed for some special
(RQu)=S(R)+S(Qu)~S(RQ) cases are as followsl) R<H[1/2+2p(1—2p)] for addi-
=S(R)+S(Q:Q*)—S(Qe) tive (or stabilizej codes, wheréd stands for the dyadic Sh-

, . annon entropy18]. This bound is based on an upper bound
<S(R)+3(Qe) +S(Q*)=S(Qe), (33 0n classical linear codésii) R=0 for p=1/6 for all quan-
tum codeg25]. It is worthwhile looking for improvement of

where we have divided the unerased qukltsinto another Eq. (3.8) using an entropic approach as presented above.

pattern ofe qubits, Q;, and the remaining piece of—2e
qubits, Q* . Equations(3.2) and(3.3) provide the inequality

S(R)=S(Q*)=S(Q¢) = S(Qe)- (3.9 . :
We now consider a quantum erasure channel with erasure
Since this reasoning is symmetric@, vs Q/, the inequality ~ Probability p (see, e.g.[19]). In such a channel, each trans-

C. Quantum erasure channel

corresponding to the division @', into Q. and Q* mitted qubit has a probability of beingerased(and detect-
! able at the output as an “erased” qubitVe are interested in
S(R)—S(Q*)=<S(Q.)— S(QL), (3.5  the maximum rate of quantum information transmission that

can be achieved by this channel. More precisely, our aim is
must also be satisfied. Combining these two inequalitie$o derive an upper bound on this rate using an entropic ap-

yields the condition proach. It will appear that such an entropic bound exactly
coincides with the capacity of a quantum erasure channel
S(R)<=S(Q*)=<n—2e, (3.6)  recently displayed in Ref19].

_ The central point of the reasoning is to describe the joint
where the upper bound o&Q*) simply results from the “probapilistic” channel (with n qubits at input and output
dimension of the Hilbert space @*. Since the encoding of a5 a superposition of “binomial’n-bit channels(defined
a k-qubit arbitrary state requires th&R)=S(Q) =k, the  pelow). This allows us to make use of the convexity of the
above condition implies the quantum Singleton bound von Neumann mutual entropy in the output of a channel for

a fixed input(see Sec. Il € in order to derive an upper
k<n-—2e. (37 bound onR. We consider a family of “binomial” n-bit
FhanneIsC (labeled by the index), each characterized by a
pattern ofe erased qubitsQ.(c), and the complementary
pattern ofn—e unerased qubitsQ,(c). The probabilistic
channel of interest here corresponds to a probabilistic use of
these channels with kinomial distribution. More precisely,
each channet with e erased qubits is associated with a
probability (or weigh) w,=p®(1—p)" ¢, and there are ob-
B. Quantum channel subject to ap-bounded fraction of errors viously (2) distinct channels witfe erased qubits. The super-
Another possible error model for a quantum channel is thgposition means, physically, that the resulting probabilistic
case where a fraction gf qubits (at mos} are altered by joint channel consists in using one of thesedastinct “bi-
interacting with an environment. The difference with the pre-
vious error model is that the location of the errors is un-
known (by contrast with erasurgsi.e., there is no “flag” 5Some slightly stronger bounds have been recently obtained in
indicating which are the qubits that have been altered. Ref.[24].

The physical meaning of the Singleton bound is that, in orde
to have Q. independent ofR and, at the same time&),
=Q.Q* fully entangled withR, a minimum Hilbert space
for Q* (minimum number of qubijsis necessary in order to
accommodate the source entrdpy
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nomial” n-bit channels with the appropriate probability. S(R)=k if an arbitrary k-bit quantum state is sent in the
Thus, for a givem-bit input of the channel, sgy, the output  channel(i.e., the source entropy of the-bit channel isk
can thus be written as a convex combination bits), we have

p'=S wep, with > we=1, (3.9 1(p)+1(1—p)=2kK (3.14

for all n. Usingl(p) +L(p) =2k, the corresponding relation
wherew, is the weight of thecth (binomial) channel in the for the quantum losses of the dualith probability p and
superposition, ang/. is the output for that channel. The  1—p) erasure channels is
convexity of the von Neumann mutual entropy in the output

(for a given input for the overall probabilistic channel im- L(p)+L(1—p)=2k. (3.15
plies that
S(R:Q") < ch S(R:Q") 310 [Remember that &L(p)<2k.] This implies that aneces-
T’ c ﬁ/ﬂ sary condition for having a perfect channel at probability

i.e.,,L(p)=0,isthatL(1—p) =2k, i.e., that the dual channel
wherel =S(R:Q’) is the quantum mutual entropy between at probability 1-p is “fully erasing” (no information at
the referencék and the outpu’ of thejoint (n-bit) quan-  all—either classical or quantum—is processed through it
tum erasure channel, while=S(R:Q/) stands for the mu- Another way of expressing this condition is by writing a
tual entropy of the output of theth channel,Q, with re-  lower bound on the loss of the erasing channel
spect toR. Note that we haveS(R:Q.) = S(R:Q,(c)) since
only the unerased qubits of theth channel contribute to L(p)=I(1-p). (3.16
mutual entanglement witR (the erased qubits are indepen-
dent of R). As explained in Sec. Il C, the mutual von Neu- Only if no information is transmitted through the erasure
mann entropyS(R:Q’)=S(R) — S(R|Q’) is convex in the channel of probability +p, or if I(1—p)=0, is it possible
output (for a fixed inpuj because the conditional entropy that the loss of the erasing channel of probabftityanishes.
S(R|Q’) is concave in a convex combination @§ [i.e., a  This is obviously compatible with (0)=1(1)=0. Equation
convex combination of quantum channels acting on a fixed3.19 also implies that (1/2)=k, so that the quantum era-
input, as shown in Eq3.9)]. sure channel with probability 1/2 cannot be lossless for a
It is convenient to group the channe® into several nonzero source entropyThe fact that it actually has a van-
classes, according to the number of erased queitslsing  ishing capacity—or a maximum loss—will be shown below.
Eq. (3.10, can then write an upper bound on the processed his result can also be derived from an argument based on
quantum mutual information in the jointn¢bit) erasure the impossibility of cloning, as shown in RéfL9].)
channel of probabilityp as Let us now derive a general expression for an upper
bound on the mutual entropy of tinebit channelor, equiva-
n lently, a lower bound on the overall Igs&Jsing Eqs(3.11)
l(p)< 20 (1-p)"" %> S(R:Qu(c)), (3.1)  and(3.12, we have
e= Cc

n
where the sum over spans the) channels where qubits [ (p)<S(R)+ 2, (1—p)" ®p®>, [S(Q,(c))—S(Qq(Cc))].
are erased. Before deriving a simpler expression of this upper e=0 ¢

bound using the Singleton bound, let us show that a simple 3.17
relation betweem(p) andl (1—p) can be obtained from Eq. ] . )
(3.11. First, note that We first rewrite Eq.(3.17) as a summation up ta/2 (we
assume here thatis even, by combining each channelin
A — . _ this sum with its dual channel where erased qubits are un-
Q) =S(R: = + -
S(RQY=SRQUCD=SRITSQUEN=SQue) = 2 T el
=28(R) = S(R:Q¢(©)), (3.12 "
where we have used the fact th&®,Q, is in a pure state for l(p)=S(R)+ Z [(1-p)" = (1—p)°p""°]
. . e=0
each channeC. Equation(3.11) can then be rewritten as
n X 2, [S(Qu(0)) = SQe(0)]: (3.18
I(P)=2S(R)~ 2, (1-p)" P2 S(RQ:(c)).

(3.13 (Note that the term witle=n/2 is vanishing. We now fol-
low the reasoning that we used earlier to derive the Singleton
The second term on the right-hand side of B3y13 can be bound, and group the channels in paicsgndc’) which
interpreted as an upper bound i —p), i.e., the informa- “overlap” in n—2e qubits denoted byQ* (see Fig. 4
tion processed through a “dual” erasure channel of probabil-Thus, for a given value of, we have to calculate the sum of
ity 1—p where the erased qubits are replaced by unerasegrms [ S(Q,(c))—S(Q¢(c))] for channelsc and c’. We
qubits and conversely. As a consequence, remembering thhave
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S(Qu)— S(Qe) +S(Q)—S(QL) In Secs. lll A and Ill B, we have seen that the simple con-
nection between quantum error- and erasure-correcting codes

=S(QLQ*)— S(Qe) + S(QeQ*) —(QL) provides a trivial relation between the resulting upper bounds

on the rate of channels subjected to a bounded fraction of

<2S5(Q*)<2(n—2e), (3.19  errors or erasures. Unfortunately, there is no such simple

relationship when comparing the quantum erasure and depo-
larizing channels. As a matter of fact, the upper bound on
) : i error-correcting codes, E@3.8), is not immediately appli-
eachpair of terms in the summatlor_l overcan be l_)oungled cable to the quantum depolarizing channel. Such a situation
from above by 24— 2e), so that a simple calcula_nc_)n yields results from the fact that the definition of an error-correcting
an upper bound on the mutual entropy of the jointhit)  qqe requires thatll error patterngof at mostt=pn errors
channel are perfectly corrected, while a rate will be said to be attain-
n able through a channéle., it is below the quantum channel
) (1—p)"~°p%(n—2e) capacity whenever the fraction of uncorrected error patterns
e is asymptotically vanishingfor n—). Still, the reasoning
used to calculate the Singleton bound on the quantum erasure
channel is applicable to the quantum depolarizing channel as
or a lower bound on the overall loss of the joint channel ~ Well.
Assume that an individual qubi®, is initially entangled
L(p)=k+n(2p—1). (3.21) with the reference, so th&Q is in the state|\IfRQ> (for
example the singlet stgteAfter processing by the channel,

This results in a lower bound on tlaerageloss(per qubi} the systenRQ' is in a Werner stat§26] of “entanglement
for a quantum erasure channel of probabifitas a function fidelity” F=1—p, that is, the mixed state:

of the rateR=k/n,

where the last inequality reflects the limitation &Q*)
imposed by the dimension of the Hilbert space®f. Thus

l(p)<S<R>+§0

<k+n(1-2p) (3.20

15 lQ
7®—).

L(p) pro =(1—4p/3)|¥r)( VRl +4p/3 >

(3.29

(Note that this is only a lower bound on the loss, which is, by| gther words, the qubit emerges at the output of the chan-
definition, a non-negative quantilyThis inequality is con- e gither in a random stateaving totally lost the entangle-
sistent withl(p) +1(1—p)=2R [cf. Eq. (3.19]. It implies  any with R) with probability 4p/3, o in its intact original
that a vanishing average logise., the reliable transmission g;4:a (fully entangled withR) with probability 1—4p/3.
of informz_ition_ through then-bit probabilistic channeglis Whenp=23/4, the channel is 100% depolarizing, i.e., its out-
only possible if the rate put is random.

R<1-2p. (3.23 In the jointn-bit channel, each qubit undergoes the above

evolution independently of the other ones. As before, the

Thus, a quantum erasure channel witk1/2 (i.e., if the  resulting n-bit probabilistic channel can be described as a
channel is erasing 50% of the qubitsas a zero capacity. superposition of binomial channels, in which each qubit is
Equation (3.23 confirms the linear interpolatinbetween  either kept unchanged or “randomized.” The distribution of
the 50%-erasure channébr which the capacity is zeyjand  the underlying channels is thus a binomial one, just as in the
a noiseless channéfor which the capacity is )lthat was preceding section, the only difference being tipais re-
used in Refs[6,19]. In addition, since it is shown in Refs. placed here by @/3. The entire calculation of the preceding
[6,19 that this upper bound coincides with a lower boundsection can then be repeated, because the “randomization”
obtained from one-way random hash coding, KE8.23 or “erasure” of a qubit is equivalent as far as the mutual
therefore describes thexactcapacity of the quantum erasure entropy withR is concerned. Indeed, for a chanrelwe
channelC=1-2p [19]. have

D. Quantum depolarizing channel lc=S(R:Q¢)=S(R:Qy(c)), (3.29

We now consider a quantum depolarizing channel withyhere Q,(c) correspond to qubits that are not randomized
error prgbabllltyp. In this chgnnel, each qub|t.|nt('aracts With (rather than not erasgih channek. This is obvious because
the environment such that it undergoes a bit-flig, (fota-  the randomized qubifsn state (0)(0|+|1)(1])/2] are inde-
tion), a p.hase—.fllp &, rotgyon), or the combination of both pendent ofR, just as the erased qubiti® state|2)).

(o rotation with probability p/3 each. First, in analogy with Eq(3.15, we have

L(p)+L(3/4—p)=2k (3.2
8In Ref. [6], it is shown that the capacity of a composite channel
(which is a convex combination of a perfect and an imperfect quanimplying that L(3/8)=k, so that the quantum depolarizing
tum channel cannot exceed the appropriately averaged capacity othannel with probabilityp=3/8 cannot be losslegm fact, it
these two component channels. In other words, the quantum capabas a vanishing capacity, as shown beloiquivalently, we
ity cannot be superadditive when “mixing” a perfect channel with have L(p)=1(3/4—p), showing that thep=3/4 channel
an imperfect one. cannot transmit classical or quantum information, i.e.,
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[(3/4)=L(0)=0. The resulting Singleton lower bound on izing channel isR<1—H(p), based on a connection be-
the averageloss (per qubi} is tween quantum additivéor stabilizej codes and classical
linear codeg18].
L(p)
[(p)= ——=R+8p/3—1 (3.27
n IV. QUANTUM CHANNEL WITH AN AUXILIARY
CLASSICAL CHANNEL
in analogy with Eq.(3.22. Consequently, the quantum de-

polarizing channel can have a vanishing average (bes In this section_, we cons_ider a quantum channel Wh_ich is
allow an asymptotically reliable transmission of information SUPPlemented with a classical chanfessumed to be noise-
by using blocks of qubit9 at the condition that less anq of unllm_lted classical capagityVe are interested in
calculating the Singleton upper bound on the rate of reliable
R<1-8p/3 (3.28 (L=0) transmission ofjuantuminformation through a noisy

quantum channel, knowing that a classical side channel can
be used simultaneously for forward communication only. In
particular, we aim at analyzing how our quantum
information-theoretic formalism accounts for the property

as originally shown in Ref{6]. Thus the quantum depolar-
izing channel withp=3/8 has a zero capacity for the trans-

mission of quantum informatior(Note that such a channel -+ <.ch a classicabne-way communication channel does

corresponds in fact to a 50%-depolarizing channel, where J.io ooce the quantum capacity of the noisv chaféiel
50% of the qubits are replaced by a random qubit. This chan- I quantu pacity 1Sy L

nel can obviously not have a nonzero capacity, as a conse-

qguence of the no-cloning theoref@].) As for the quantum A. Entropic treatment of the channel
erasure channel, a linear interpolation between the perfect
channel and the 50%-depolarizing channel can be (exed
also results independently from our reasonidpte that Eq.

We first consider the problem in the language of quantum
codes, following closely Ref.15]. As explained earlier, the

328 vield | bound h itV of th result will then be immediately applicable to channels with
(3.28 yields only an upper bound on the capacity o €an error model where the fraction of errors or erasures is

quantum depolariz_ing channe_l, which is provably not achievy,; ey Also, the expression of a “probabilistic” joint
able (in contrast with the equwalent bound for the qua.nFumchanneI as a binomial superposition of underlying channels
erasure channglindeed, a tighter bound for the depolarizing will then yield the corresponding bounds for the quantum

channel has been obtained very recen2ly], erasure or depolarizing channel. We start with a “logical”

systemL (logical wordg, which is initially entangled with

R<1-4p, (329  the referenceR (the initial mutual entropy beingk so that

k arbitrary qubits are transmittgdAs before, the systerRL
which is based on the Buzek-Hillery universal cloning ma-is initially in a pure entangled stat&’,). We assume that
chine[28]. While Eq.(3.29 happens to be equivalent to Eq. the encoding operation dnincludes a partial measurement,
(3.8), there appears to be no direct relation between them. Ao that the encoder has a quantum and a classical output, as
simple intuitive reason why this bound is stronger than Egqshown in Fig. 5.
(3.28 can be understood by realizing that the two quantum Note that the encoding process can be described in terms
channels underlying the universal cloning machiinem the  of a unitary transformation applied dn(supplemented with
single input to both outputsannot be described classically. an ancilla initially in a|0) state without any projection op-
Indeed, when tracing over one of the outputs of the universadrators, so that the classical output is simply described as a
cloning machine, the other output appears to emerge from a
p=1/4 (or F=3/4) channel, i.e., a 33%-depolarizing chan-
nel. This looks as if the qubit was sent with probability 2/3 to
each output of the cloning machine, which is obviously not
understandable in classical terms. Only a quantum superpo-
sition, involving the cloning machine and both outputs, can
account for this situation and results in a stronger upper L ———  Enc Q
bound[27]. (and related entropic bound$he information- P
theoretic analysis of quantum clonirignd related entropic 0 — l NI,

2k

bounds$ will be the subject of further investigation. 0 —
To our knowledge, the only stronger upper bound on the 0 —
capacity(for a restricted range gb values of the depolar-

4
u

@]

; ) FIG. 5. Schematic representation of the “encoder” performing
Remember that a standard no-cloning argument to show that thg ynitary transformation on the “logical” systetn (initially en-

rate vanishes gi=3/8 is based on a classical machine that is transtangled withR with a mutual entropy B). The outputs are tha
mitting an input qubit to one of two outputs with probability 1/2, a “physical” qubits Q, the classical bit<C, and the “precursor’P
random qubit being sent on the other output, which results in twq“microscopic” classical bits, before amplificatipnEach classical
50%-depolarizing channe[$]. Clearly, this is the most constrain- bit can be thought of as a set of qubits that are classically correlated
ing bound orR that can be constructed by use of such a “classicalwhen tracing ovelP, appearing then as a collective classical vari-
cloning.” able (see[29]).
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mixture of orthogonal quantum states. More precisely, wehe full entanglement wittR when it is supplementeavith
have a quantum OUIP}Q (conS|sf|ng ofn “physical” qu-  he classical informatio€. In other words, the question will
bits), P, which is the “precursor” of the classical variable, pe whether decodingsing Callows to perfectly recover the

and C, which represents thamplifiedclassical variable. In |ogical words(and is more effective than in the absence of
general,C is a discrete variable of arbitrary dimension, but ¢|assical information

we often use the term classical kitvo-dimensional vari- We define the two parameteksandc as

able in the following. Each classical b can be thought of

as a set of qubits that beconetassically correlated when S(R) =k, (4.4
tracing over the corresponding “precursor,” and can then be

viewed as a collective variable. The resultiamplification S(C)=S(P)=S(CP)=c, (4.5)

gives toC the appearance of a classical variatsieg[29)). It
is convenient to keep the classical out@useparate from its  where the second equation is due to the fact@andP are

precursorP for reasons that will appear later. fully classically correlated, i.eS(C:P)=c. The parameter
To fix the ideas, let us write the intermediate wave fUnC'C: H[pl] S|mp|y represents the Shannon entropy processed
tion of RQP before amplification: by the classical side channel. As before, the paramieter
stands for the number of logical qubiise., k-qubit arbitrary
|prQP>:E Jp: |¢,iRQ>®|¢iP>_ (4.1 states are encodgdor, equivalently, the source entropy

i when considering a quantum channel.
i A necessary condition for the globé&lassical+ quan-
Here, thef¢p) form a set of orthogonal states fB; and the ¢,y channel to be lossless is clearly that the amplification of
|¥rq) are orthogonal states &Q. Equation(4.1) is simply  p s alosslesprocess, that is, does not destroy the quantum
the Schmidt decomposition ¢¥ rqp) divided inRQ versus  coherence of the logical words. More precisely, the con-
P, and impliesS(RQ) = S(P) before amplification. It is im-  straint we must express is that the charinetQC (consid-
portant to note that the orthogonal states) for P corre-  ered as a quantum channé losslessthat is,
spond to theclassicalinformation that will be amplified later
(the amplification ofP will be performed in this basjsthe S(R:P)=0, (4.6
classical variable being distributed accordingto Equation
(4.2) is the most general expression of the output of thewhereP plays the role of an “environment” for this chan-
encoder(before amplification ofP) if we require that its nel. This means that, when amplifying the classical kits
overall operation is unitarythe joint state oRQP must be  (ignoring the precursdP) no entanglement witR is lost. In
pure. We also have obviousl®(R:QP)=S(R:L)=2k as a  other words, the mutual entropyk 2vith R is entirely found
result of the conservation of mutual entropy under a locain QC, i.e., S(R:QC) =2k, so that no entanglement wifR
unitary operation on both subsystefig]. leaks out inP when tracing oveP. [This is so even though
The amplification of the precursasymbolically repre- the joint systemQPC is fully entangled withR, i.e.,
sented by theor gates inside the encodeén the|¢p) basis  S(R:QPC)=2k.] The condition(4.6) implies that
gives rise to a total wave function for the syst&@QPC (at
the output of the encodeof the form S(QC)=S(RP)=S(R)+S(P)—S(R:P)=k+c.
(4.7

| I I
WRQPC):Z Vpi 4R} @l dp) @[, 4.2 Thus, the parameters and c fully determine the ternary
' entropy diagrafifor R, QC, andP, as shown in Fig. 6. Note

where the| ¢') correspond to an orthogonal set of states forthat C and P are interchangeable, so that we have also
bothP andC. The classical information iP has been “am- S(QP)=k+c.
plified,” so that the precursoP and the collective set of A fourth parameter is necessary to fully describe the en-
qubits C are fully classically correlated when tracing over tropies of the 4-partite systenR( Q, C, andP):
the remaining variables. The entropy of the classical channel
is S(C)=S(P)=H[p;]. In fact, P and C are interchange- S(Q)=s. (4.8
able, but we need to keep them separate to account for the
fact that amplifying the classical bits, i.e., tracing over thelt corresponds to the von Neumann entropy of the quantum
precursorP, results in a mixed state for the systeRsQ, input of the noisy channelor quantum output of the en-
andC. The density matrix for the systeRQC is given by  code). GroupingC and P, we can also display the ternary
entropy diagram foR, Q, and CP, using the fact that the
joint system is in a pure statef. Fig. 7). It shows that
neither the quantum outp@ nor the classical on€P be-
fore amplification (i.e., including the precurspris unen-
This can be viewed as alassical mixture of orthogonal tangled withR. In short, the situation is thaP alone is
states ofRQ andC. Thus, conditionally on the classical bits
C, the systemRQ is in a pure(generally entanglgdstate
|¢rq)- The question now will be, roughly speaking, to de- ®The ternary diagram of a tripartite system in a pure state is de-
termine under which circumstances the quantum ou@Qut termined in general by three parameters, for example the reduced
(possibly altered by decoherence or partially erasethins  entropy of each of the three componefitg].

pRQC:Ei pi|¢’iRQ><¢iRQ|®|¢ic><¢ic|- 4.3



3342 NICOLAS J. CERF 57

x R
avh 6%6

P
C
FIG. 6. Entropy diagram characterizing the refereR¢c¢he sys-
tem QC (quantum and classical output of the encodandP (pre- FIG. 8. Entropy diagram characterizing the referefitethe
cursor or the classical bjtsThe conditionS(R:P)=0 means that ~quantum systen® (output of the encodgrand the classical output
the full mutual entropy R with R is found inQC and does not leak C afteramplification. The joint system is inraixedstate of entropy
out when tracing oveP, so that the amplification ibsslessThe ~ S(RQC)=c. Note thatR is independent o€ (i.e., C contains no
two parameters ar§(R)=k and S(P)=c. information about the encoded logical wrdvhile RQ is (fully)
classically correlated witlC.

unentangled withR (it can be traced over without altering

the entanglement witlR), while P and C together are en- S(R:C)=3(R)+S(C)~S(RC)

tangled withR. Moreover, even though the classical bits can —S(R)+S(C)—S(QP)

be amplified without losing coherence, the classical informa-

tion C is in general necessajogether withQ) in order to =k+c—(k+c)=0. (4.11
recover the initial entanglement &f with respect toR, as _ _ o _ o
implied by S(R:QC) = 2k. This means that, if the amplification of the classical bits is

We now want to describe the entropic situatifter am-  l0sslesgthat is, cannot result in an irrecoverable loss of mu-
plification of the classical bits, i.e., after tracing over thetual entanglement witlR), then the “amplified” classical

equivalently for the systerRQP) is given by no information about the encoded logical word is found in

the “amplified” classical bitsC even thouglC is in general
necessary to recover the entanglement wikh Using

i i i i S(QC)=S(R)+ S(C), the mutual entropy betwedp andC
proc=S plthivkdol s (s @9 ool RO ”

S(Q:C)=3(Q)+S(C)-S(QC)=S(Q) - S(R)=s—k.
The systenRQ is thusclassicallycorrelated withC, and we (4.12

have Thus, the quantum outp@ is in generahot independent of

the classical bit (in contrast withR). This simply means
S(RQ:C)=S(RQ)=S(C)=c. (4.10 that, in general, the encoder can introduce some extra en-
tanglement betwee® and CP, additionally to the initial
entanglement R betweenQ andR, giving rise to a nonvan-
For each value of the classical bitgoccurring with prob-  jshing mutual entropy. However, this additional entangle-
ability p;), RQis in a given purggenerally entangledstate  ment is useless as far as the transmission of quantum infor-
|rq)- Now, using S(QP)=S(QC)=k+c, we can show mation is concerned, and we will see below that the
thatR is independenof C: interesting situation corresponds &=k, in which case
S(Q:C)=0. Finally, it is easy to see th&QCis in a mixed
state of entropyS(RQC)=S(P)=c. The latter condition,
R 0 together with Eqgs.(4.4), (4.9, (4.8, (4.10, (4.11), and
(4.12), fully describes the entropies of the tripartite system
RQC after tracing oveP (i.e., after amplification The cor-
responding ternary entropy diagram is presented in Fig. 8.
In summary, we haveS(R)=k, S(Q)=s, S(C)=c,
é& S(RQ)=c, S(RC)=k+c, S(QC)=k+c, andS(RQQC) =c,

which implies that

S(R:Q:C)=S(R)+S(Q)+ S(C)—S(RQ)—S(RC)

r —-S(QC)+S(RQC)=s—k—c. (4.13
FIG. 7. Entropy diagram characterizing the referemtethe
quantum systen® (output of the encodgrand PC (the classical ~As visible from this diagram, the systeRQ is in a pure
output and precursobefore amplification. The three parameters entangled stateonditionally on the amplified classical vari-

areS(R) =k, S(Q)=s, andS(CP)=c. able C, i.e., S(RQ|C)=0, with a characteristic diagram
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R QocC R
A a Q R Q
P CP
C
FIG. 9. Entropy diagrambefore amplification of the classical FIG. 10. Entropy diagramafter amplification of the classical

bits in the case where the processed classical information is maxjits in the case where the processed classical information is maxi-
mum (c=2s=2k). As before,S(R:P) =0, so that the amplification  mym (c=2s=2k). Here,R andQ play the same role. The classical
of the precursoiP does not affect quantum coherence. Note thatyariaple C contains the information about which entangled state
S(R:Q)=0, so that the quantum outp@ can be erased if N0 RQ is in, while R or Q alone is independent a&. This diagram
amplification is performed. with k=1 plays a crucial role in the entropic description of super-
dense coding and teleportation, as shown elsewffgsre
(—k,2k,—K). Also, RQis classically correlated witl, with _ o _ .
a diagram (@;,0), so that the simultaneous knowledgeRof ~ The diagram in Fig. 10 plays an important role in the
and Q yields C, i.e., S(CIRQ)=0. Finally, it is easy to information-theoretic description of quantum teleportation
check that the diagram fda vs C is (k,0¢), i.e.,C is inde- ~ and superdense coding, as shown in a further W8g. In
pendent ofR. the special case whele=1 (no block coding is used it

Several inequalities relating the parametérsc, and s describes quantum teleportation in the following seigés

- . L ... the particle that is initially sent to Bofone half of the Bell
must be satisfied. First, the subadditivity of entropies 'mp“esstate shared with Alige andC are the 2 classical bits that

that Alice sends to Bob. If the teleported particleerelL) is
S(R:Q)=k+s—c=0, (4.14) initially entangled withR, so thatRL is in a Bell state, then

Q ends up in an entangled state wihwhich is one of the
S(Q:C)=s—k=0. (4.15  four Bell statesconditionally on C. (Teleportation is com-

pleted by having Bob applying a unitary transformation®n

Similarly, the strong subadditivity of entropies implies that that is specified by.) Thus, the 2 classical bits code for one
of the four Bell states, and the corresponding diagram is

S(R:C|Q)=k+c—s=0. (4.16  shown in Fig. 10 withk=1. The amplification of the classi-
cal bits by Alice doesiot destroy coherence, since we have
These inequalities can be summarized as S(R:P)=0, and bringingQ andC together yields the initial
entanglement with respect R i.e.,S(R:QC)=2. The non-
O=<s—k=c=s+tk (417 classical feature here is that the latter equation can be satis-

. . — fied even thougls(R:Q) =0 holds at the same time, that is,
implying, namely, that 8<c<2s. The two limiting cases are o harticle that Bob received initially is independentrof
(i) c=0 ands=k, which corresponds to a quantum channelihis must be true as a consequence of caugallyus, the
without a classical side channel; afi) c=2s=2k, which  entire entanglement witR is carried byC, as reflected by
corresponds to the situation where the entropy of the classg(R:qQ):z_ This will be discussed in more details else-
cal channel is maximum. In the following, we will focus on \here[30].
case(ii), that is, when a maximum amount of classical infor-  Note finally that the vanishing mutual entropy betwén
mation is processed, since it is supposedly the case where th@d Q implies that no entanglement witR is found in Q
classical side channel might help the transmission of quaralone. Therefore, the quantum outgitcan be erased with-
tum information the most. out losing the entanglement wit, provided that the classi-
We display in Figs. 9 and 10 the entropy diagrams correcal variable is not amplifiedby keeping CP). In other
sponding to the limiting case=2k=2s. Note thatS(R:Q) words, sinceS(R:Q) =0, the knowledge of the classical bits
=0 as shown in Fig. 9, so that the chanhelCP is loss- C (along with the precursoP) is sufficient to recovet.,
less. Thus, the entire entanglement wWRlis retained in the even in the absence @. For example, in teleportation, the
unamplifiedclassical variableCP. We will discuss this be- unamplifiedclassical bits alone are enough to teleport an
low. Figure 10 implies thaB(R:C)=S(Q:C)=0, i.e.,Q and  arbitrary state, so that the quiX that Bob received initially
R are bothindependenof the classical variabl€. This em-  can be erasedOf course, this is unrealistic, since one never
phasizes the fact th& andQ play exactly the same role in has access to all the microscopic degrees of freedom making
this limiting case(ii). The peculiar feature here is thatand  the classical bits. Tracing over one of them is enough to lose
R together are fully correlated wit8, according to the dia- the quantum information iQ is erased.
gram (0,%,0), althoughQ or R taken separately is indepen-
dent of C. In other words, the classical variable contains
the information about which entangled st®€) is in (i.e.,
the mutual entropy B) while it contains no information Let us now repeat the reasoning which results in the
aboutQ or R alone. Singleton bound on a quantum co¢®ec. Ill), but taking

B. Singleton bound on a quantum channel
with a classical side channel
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into account the classical auxiliary channel. Thus, we assumia other words, the classical side chanftehnsmitting data
again that the quantum outp@ of n qubits is partitioned with an entropy up to twice the quantum source entrkpy
into an erased pied®, (of e qubity and an unerased olig,  does not increase the Singleton bound on the maximum at-
(of n—e qubitg. We are seeking for a necessary conditiontainable distance for quantum codes.

for the possibility of recovering the erasure @f when the This result can be immediately applied to a quantum
decoder has access to the classical informa€oiiso the channel characterized by @bounded fraction of erasures
decoding operation can be conditional Gi. As before, we  (cf. Sec. Il A) and supplemented with an auxiliary classical
consider two different partitions d (see Fig. 4, and ex- channel, since, in that case, the use d{mk)) code pro-

press a lower bound on the entropy of the “overla@*.  tecting fore=np erasures is enough to guarantee reliable
The basic constraintgwhich must be satisfied simulta- transmission. Therefore, the upper bound on the rate is given
neously are by
S(R:QcP)=0, (4.18 R<1-2p (4.28
S(R:Q.P)=0, (4.19 similar to Eq.(3.1), confirming the fact that the classical side

channel does not enhance the quantum information transmis-
expressing the fact that no entanglemenmith respect toR)  sion through the quantum chanrjél.

is lost when amplifying the classical bigd erasingQ, (or In the case of a quantum erasure chanméth erasure
Q.). Equivalently, the full initial entanglement &f must be ~ Pprobability p) supplemented with a classical channel, the
“squeezed” intoQ, (or Q') andC: entire reasoning of Sec. Il C can be repeated, the only dif-
! ference being that one has to calculate the sufSeQ,C)
S(R:Q,C)=S(R:QC)=23(R), (420 —S(QC)] for two overlapping channels(andc’):
S(R:Q/C)=S(R:QC)=2S(R). (4.21) S(QuC) —S(Q.LC)+S(Q,C)—S(QeC)
In other words, the knowledge of the unerased @yt(or <2S8(Q*)<2(n—2e). (4.29

Q.) is sufficient to reconstrudiusing C) the initial logical
word. Since the systerRQ,Q.PC is in a pure state, we
have

The resulting bound on the mutual entropy is thus the same
as Eq.(3.20, so that we have the same upper bound on the
rate of reliable transmission of quantum information:

S(RQ,C)=S(QeP)=S(QC), (4.22

where we used the fact th& and C are interchangeable.
Now, dividing Q,, into Q; and Q*, we can write an upper
bound on the mutual entropy betweBrand Q,C,

R<1-2p. (4.30

Finally, the cases of a channel withpabounded fraction of
errors and the quantum depolarizing channel can be treated
exactly as in Secs. Il B and Il D, so that the classical side

: _ + _ channel does not modify the Singleton upper bound on the
S(RQUE)=SR)+S(QLC)~S(RQC) rate in both cases.
=S(R)+S(Q¢Q*C)—S(QeC)

, V. CONCLUSION
<S(R)+5(QC) +S(Q*) = S(QeC),
4.23 The search for better bounds on the capacity of quantum

channels such as the depolarizing channel is still a major

where we have used the subadditivity of quantum entropie€ndeavor in quantum information theory today. Clearly, en-

Egs. (4.20, (4.2)), (4.23, and its counterpartwhenQ, is  tropic considerations alone do not suffice to prove that a
replaced byQ!) thus give reliable quantum coding scheme exists that achieves a trans-
u

mission rate arbitrarily close to the capacity. As a matter of

S(R)—S(Q*)<S(QLC)—S(Q.C), (4.24  fact, a similar situation prevails for classical channels as
€ well. Nevertheless, an entropic approach appears to be help-
S(R)— S(Q*)=S(Q.C)—S(Q.C) (4.25 ful in order to derive bounds on the capacity of classical or
= e e . .

quantum channels from similar principles, and to analyze

Combining these two last inequalities results in the samé&l@ssical and quantum communication in a unified frame-

inequality as in the case where no classical auxiliary channél©'k: as shown in this work. More generally, the leading
is used: idea underlying the approach to quantum information pre-

sented in this work and in Reff9—13] is to build a theory
S(R)<S(Q*)<n—2e. (4.26  that extends Shannon’s concepts to the quantum regime.
Rather than attempting to definedastinct (purely quantum
Therefore, we obtain theamequantum Singleton bound for information theory that would apply to the transmission of

a quantum code supplemented with a noiseless classicgHantum states only, we prefer to considereatendedSh-
channel as in the absence of such a channel: annon theory, which should account for the processing of

classical as well as quantum informatiGarbitrary classical
k<n-2e. (4.27 or quantum statgs After all, any classical information-
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processing system should be describable, in principle, ientropic bounds on the capacity of quantum channels will be
terms of its underlying quantum mechanical degrees of freethe subject of future work.
dom. In this sense, Shannon theory should simply be viewed
as a special case of a more general theory of information in ACKNOWLEDGMENTS
guantum mechanics that remains to be built. _ )
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cent observation should be viewed as the central novelty of a

guantum mechanical extension of Shannon theory beyond its ~ APPENDIX A INFORMATION-THEORETIC

original range. Since most of the classical concepts of Shan- CHARACTERIZATION OF A NOISY

non theory have a straightforward quantum analog, it is pos- CLASSICAL CHANNEL

sible to repeat a great part of the classical reasoning and |, this appendix, we outline the information-theoretic de-
apply it to quantum information processes, as shown in thigcrintion of noisy classical channels, for the sake of clarify-
paper and our previous work. More specifically, we havejnq the correspondence with the treatment of noisy quantum
shown here that an mformgtlon-theorenc description of NoisYehannels used throughout this paper. At first sight, a classical
quantum channels following closely Shannon theory procpannel seems very different from a quantum channel as no
vides insight into the derivation of entropic bounds on theg|assical “reference” is used to purify the input. Also, the
quantum capacitythe maximum rate at which quantum in- cjassical input-output joint probability distribution has no
formation can be reliably processed in spite of the noise qyantum equivalent, since there is no joint state for the initial
Namely, the entropic Singleton bound on quantum eITorguantum systen® and the final systen®’ (it is the same
correcting codeg15] can be used in order to investigate gystem. However, a classical channel can be thought of as a
standard quantum channels such as the quantum erasyjgyjce which processes classicafrelation (with respect to
channel or the quantum depolarizing channel. The same fol reterencer). If the inputX is initially fully correlated with

malism can be extended in order to account for an auxiliary, eferencer. then the residual mutual entropy between the
classical channel used for forward communication beSideﬁutputY andi? is a measure of the amount of correlatian
the noisy quantum channel. Entropic Singleton bounds cajormation) transmitted through the channel. For a quantum
be derived in the latter case, too, showing that the classic@l,annel we consider the processingesttanglementwith
Ehangel does not enhance t.hﬁ qlrjlantum Cap&mitgn UpPer  osnact t0R) rather than correlation, so that the residual
ound on i}, in agreement wit what was proven in RE&‘].. mutual entropy between the decohered quantum sy§ém
The central part of the reasoning consists in calculating fthe quantum outputandR is the interesting quantity. This

lower t_)o_und on theverage losef the channe(Le., the loss makes the classical-quantum correspondence easier to under-
of the joint channel made of consecutive uses of a memo- d

ryless channel, divided by the number of processed symbols
n—o) which characterizes the “quality” of the transmis-
sion. If the use of block coding makes the jointBit) chan-

A noisy classical channel with inp and outputY is
characterized by

nel losslesgi.e., the average loss is zgrthen reliable trans- I=H(X:Y), (A1)
mission of quantum information is achievable. This is true
even though theone-symbol losgfor a single use of the L=H(X|Y), (A2)
channel is nonzero, reflecting the alteration due to noise in
each use of the channel. Perfect transmission by block cod- N=H(Y|X), (A3)

ing is thus possible provided that this lower bound on the

average loss is zero or less, which results in an upper boungherel, L, andN denote thenformation the loss and the

on the attainable rate. noise respectively(see, e.g.[16]). Information processing
Obviously, there remains much to be done in order tathrough the channel is measured by the balance between

derive better bounds on the rater perhaps the exact capac- andL, these two quantities summing to the source entropy:
ity) using such an entropic approach. We have made

progress in this direction, as illustrated by the entropic |+L=H(X). (A4)
Singleton bound on the capacity of the quantum erasure

channel C<1-2p), which happens to be the exact capac-The loss measures the inherent uncertainty in the process of
ity calculated in[19]. For the quantum depolarizing channel, inferring the input of the channel from the altered output
however, we obtain a well-known bound on the capacity(decoding, that is, the entropy of the input conditional on
(C=<1-8p/3, sed6]), which has been recently shown not to the output. When the losks is zero (losslesschannel, the

be attainabld27]. Nevertheless, the characterization of theinformation | is maximum so that classical information is
exact quantum capacity of the depolarizing channel is still aperfectly transmitted through the channel. Conversely, when
open problem, and it is possible that the entropic approach=0 (andL is maximum, no classical information is pro-
presented here could be further improved. Also, the issue afessed by the channel. The noléeeflects the uncertainty of
the attainable capacity of a general noisy quantum channe¢he output symbol for a given input symbol, and is irrelevant
might be explored along the same lines. The search for betters far as the transmission of information is concerfied
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corresponds to the loss of threversechannel where the the allowed range for the overall loss of the joint channel is

input and output are interchanged channel withN=0 is

called deterministic and a channel which is both determin-

istic and lossless is nameatbiseless We follow the same
nomenclature for quantum channels in this paper.

If n independentchannels are used in parallel with

X1---X, as an input string and, - - - Y,, as an output string,
it can be shown that the information and the losssaread-
ditive:
I<l;+---+1,, (A5)
L<L;+---+L,, (AB)

wherel (L) is the information(loss of the joint (n-symbo)
channel, whilel; (L;) is the information(losg of the ith
individual channelX;—Y;. Property(A5) results from the

subadditivity of Shannon entropies
H(Y: - Y <H(Yy)+---+H(Y,) (A7)

and from the fact that the channels are indepen¢eathy;
depends orX; only) [17]:

I=H(Xq - - XYq - Yy)
=H(Y - Y) = H(Yp- - Yo Xy - X)

<3 [HOYD=HYYa iy Xy X))

A

El [H(YD = H(Yi X)) (A8)

L+ +L,—MsLsL;+---+L, (Al
with M=H(X;)+---+H(X,)—H(X;---X,)=0. Conse-
quently, the loss cannot increase by using block codimg,
using parallel channels with correlated input symhdisit it
can decrease by an amount which is boundedvhyNote
that M vanishes when the input symbols are independent,
while a positive value oM reflects the correlation between
the input symbols.

It is simple to obtain a necessary condition for perfect
transmission(i.e., with a vanishing overall logsby block
coding through a noisy channel. Clearly, the condition

(X X) SHOK) + oo A HOG) — Ly — L
(A12)

must be fulfilled for the lower bound dn to extend to zero.
Therefore, the rate of transmission through the joint channel,
R=H(X;---Xpy)/n, is bounded from above by the averaged
one-symbolinformation of the individual channels:

PR
n

L,
(A13)

This is related to the weak converse of Shannon’s noisy cod-
ing theoren{17]: the transmission cannot be perféot loss-
less, i.e.,L=0) if the rate of transmission exceeds fta-
eraged mutual Shannon entropy characterizing each use of
the channel. This is consistent with Shannon'’s result that the
classical channel capacity is the maximyover all input
distributions of the mutual information between channel in-

Property(A6) is an immediate consequence of the subaddiput and output for asingle use of the channel. Note that

tivity of Shannon conditional entropies

H(Xp - Xn| Y1 - Y) SH X[ Y + - - +H(Xn|Yn)(A9)

Since the information and the loss of each individ(@te-

entropy considerations alone do not suffice to prove that a
reliable coding scheme exists that achieves a transmission
rate arbitrarily close to the capacity. A similar situation is
found for quantum channels as well, as shown throughout
this paper. Still, an entropic approach is very helpful in order

symbo) channel sum to the source entropy of that channel {0 derive bounds on classical or quantum channels from ba-

li+Li=H(X), (A10)

sic principles, and to analyze classical and quantum commu-
nication in a unified manner.
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