
Monte Carlo simulation of quantum computation1

N.J. Cerf*, S.E. Koonin

W.K. Kellogg Radiation Laboratory, 106-38, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

The many-body dynamics of a quantum computer can be reduced to the time evolution of non-interacting quantum bits in

auxiliary fields using the Hubbard±Stratonovich representation of two-bit quantum gates in terms of one-bit gates. This makes

it possible to perform the stochastic simulation of a quantum algorithm based on the Monte Carlo evaluation of an integral of

dimension polynomial in the number of quantum bits. As an example, the simulation of the quantum circuit for the fast Fourier

transform is discussed. # 1998 IMACS/Elsevier Science B.V.
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1. Introduction

The potential use of quantum computers for solving certain classes of problems has recently received
a considerable amount of attention (see, e.g., [1±3] for a comprehensive review). Several quantum
algorithms have been developed, such as quantum factoring [4], having the potential for revolutionizing
computer science. The purpose of this paper is to explore the application of a Monte Carlo method that
has been developed in the context of quantum many-body systems to the simulation of quantum computers
[5]. Quantum computers can be seen as peculiar quantum many-body systems that evolve according to a
non-local time-dependent interaction so as to carry out a `̀ computation''. The component quantum bits
(qubits) interact via a sequence of quantum gates, each performing a prescribed unitary transformation
(rotation, Hadamard transformation, controlled NOT, controlled phase, etc.) [6]. Two-bit (or n-bit) gates
therefore effect non-local interactions between qubits, and the `̀ quantum algorithm'' (characterized by a
network of quantum gates) corresponds to a specific sequence of unitary transformations, i.e., a time-
dependent interaction. Numerous methods have been developed for years in order to treat general quantum
many-particle systems (see, e.g., [7]). It is therefore intriguing to examine whether the application of the
same methods to quantum computers might be similarly successful. We focus here on a stochastic approach
based on the Hubbard±Stratonovich transformation [8] which has been shown to be suitable for the
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description of quantum many-body systems (see, e.g., [9,10]). The central idea of this approach is to replace
the many-body propagator for the entire quantum computer (of say L `̀ interacting'' qubits) with L one-bit
propagators in fluctuating auxiliary fields, thereby `̀ decoupling'' the qubits. More specifically, solving the
quantum dynamics of the L-bit computer in a very high-dimensional Hilbert space (d � 2L) reduces to
evaluating a high-dimensional ± but polynomial in L ± integral over auxiliary fields. The latter is then
approximated by a stochastic method.

2. Quantum computer as a many-particle system

Consider a quantum computer consisting of a register of L qubits supplemented with a quantum
algorithm, defined as a sequence of G quantum gates. The total unitary transformation characterizing
the quantum computation is thus expressed as an ordered product of the operators (note the product
from right to left):

U �
YG
g�1

Ug � UG � � �U1 (1)

where Ug is the unitary transformation performed by the gth gate and G is the total number of gates. It
has been shown that two-bit gates are universal, i.e., quantum gates operating on one and two qubits are
sufficient to construct a general quantum circuit [6,11±13]. Therefore, we restrict ourselves to the
simulation of quantum circuits made of G two-bit gates (Ug being a two-bit gate acting on qubits ag and
bg), keeping in mind that an arbitrary quantum computation can be achieved with an appropriate
sequence of such gates. (Obviously, one-bit gates can always be incorporated into two-bit gates.) Note
that an efficient quantum algorithm must have a G polynomial in L. For example, the quantum fast
Fourier transform (FFT) circuit [14] used in quantum factoring [4] requires G � L�Lÿ 1�=2 two-bit
gates. A two-bit quantum gate that effects a unitary transformation on qubits ag and bg can be written
generically as the two-bit operator

Ug � eÿi�gAgBg (2)

where �g is a real number, and Ag and Bg are two commuting one-bit Hermitian operators referring to
the qubits involved in the quantum gate (i.e., the operator Ag (Bg) affects qubit ag (bg)). For example,
the controlled-NOT gate [6] acting on qubit a (as a control) and qubit b (as a target) has � � �=4,
A � 1ÿ �z, and B � 1ÿ �x, with �x and �z being Pauli matrices. The Hubbard±Stratonovich
representation of Ug is obtained by writing the identity

i�gAgBg � i�g�Ag ÿ �g��Bg ÿ �g� � i�g�gAg � i�g�gBg ÿ i�g�g�g (3)

where �g and �g are real auxiliary fields corresponding to the gth gate, and then integrating the
exponential of Eq. (3) over �g and �g, resulting in

Ug � j�gj
2�

Z1
ÿ1

d�g d�g ei�g�g�g eÿi�g�gAg eÿi�g�gBg (4)
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This expression is most important because the two-bit gate Ug is represented as an infinite sum of the
products of (field-dependent) one-bit gates, eÿi�g�gAg and eÿi�g�gBg . For a given value of the fields �g and
�g, the two qubits ag and bg act as non-interacting particles and evolve independently (they do not
become entangled when initially prepared in a product state).2 Only the sum over fields creates a
`̀ coupling'' between them as pictured in Fig. 1. As a consequence, for a given set of �g's and �g's, the
time-evolution effected by the whole quantum circuit can be computed separately for each qubit: one
calculates the time-evolution of L qubits in L two-dimensional Hilbert spaces rather than the time-
evolution of a single quantum state (the state of the entire computer) in the full 2L-dimensional Hilbert
space. This exponential reduction of the size of the Hilbert space appears clearly when writing the total
unitary transformation for the quantum circuit

U �
Z

D� exp i
X

g

�g�g�g

 !
(5)

where D� �Qg�j�gj=2�� d�g d�g is the measure over the auxiliary fields �1; . . . ; �G and �1; . . . ; �G,
and U[�] is the total unitary transformation for a given `̀ path'' � in the auxiliary-field space. Here,
Vg��g� � eÿi�g�gAg and Wg��g� � eÿi�g�gBg stand for the unitary transformation performed by the one-bit
gate acting separately on qubit ag and bg, respectively. (The one-bit gates Vg and Wg replacing the gth
two-bit gate Ug depend on the auxiliary fields �g and �g.) Eq. (5) involves only one-bit operators, and
therefore describes the time-evolution of L non-interacting qubits (averaged over auxiliary fields). The
operator U[�] is more conveniently written as a product of one-bit operators over the L qubits,

U��� �
YL

l�1

U�l����; (6)

where the one-bit operator U[l] describing the overall evolution of the lth qubit is expressed as the
ordered product

U�l���� �
Y

g

U�l�g ��g; �g� (7)

Fig. 1. Hubbard±Stratonovich representation of a two-bit quantum gate in terms of two one-bit gates in fluctuating auxiliary

fields � and � .

2Several alternative Hubbard±Stratonovich representations of a two-bit quantum gate requiring only one auxiliary field per

gate can be written, the drawback being that the involved one-bit transformations are in general non-unitary.

N.J. Cerf, S.E. Koonin / Mathematics and Computers in Simulation 47 (1998) 143±152 145



with

U�l�g ��g; �g� �
Vg��g� if l � ag;
Wg��g� if l � bg;
1 otherwise:

8<: (8)

The drawback of this exponential reduction in the Hilbert space is obviously the 2G-dimensional
integral over fields in Eq. (5), which can only be approximated by a numerical method in general. The
underlying idea of a stochastic method is to compute only the dominant terms in this integral, i.e., to
consider the paths in the auxiliary-field space that contribute the most to it, assuming that this yields a
good estimate of the exact integral. Several (more or less efficient) Monte Carlo techniques can be
thought of for sampling these paths, but a generic `̀ sign'' problem is likely to occur to the complex
weight in Eq. (5). This will be discussed later on. However, the central point here is that the dimension
2G of this integral is polynomial in the dimension of the problem, i.e., a polynomial in the number of
qubits L, at the condition that G � poly�L�. The latter condition is fulfilled for any efficient quantum
algorithm, suggesting that the Monte Carlo simulation of a quantum computer is promising provided
that the `̀ sign'' problem is circumvented.

3. Stochastic simulation of a quantum computer

Consider the stochastic calculation of the quantities of interest in a general quantum computation.
In the context of quantum many-body systems, stochastic methods are especially appropriate for
calculating quantum expectation values, so that our goal is to express the output of the quantum
computation as an observable. Assume that the quantum computer is initially in a product state
j0102 � � � 0Li. (If this is not the case, the first step of the computation should simply be the preparation
of the correct initial state from j0102 � � � 0Li.) The quantum computation (i.e., the unitary transformation
U) is implemented by a quantum circuit acting on this initial state. The final step of the quantum
algorithm is then to measure a set of `̀ output'' qubits (not necessarily all the L qubits). We restrict
ourselves here to quantum algorithms that provide a deterministic result (unlike quantum factoring).
We assume therefore that the output bits are in a product state so that they can be measured individually
(i.e., one can perform an inclusive measurement for each of them separately). The most general
observable O with vanishing variance (deterministic output) consists then in a product of one-bit
observables, and several such O's can be measured simultaneously. (If the output bits are not in a
product state, one should extend the quantum computation with a unitary transformation mapping the
entangled final state into a product state.3) More generally, the quantum many-particle simulation
approach allows us to prescribe the value of certain qubits in the output register. We separate the
L output qubits into Lm measured qubits, Lp prescribed qubits, and Lt�LÿLmÿLp traced over qubits
(i.e., `̀ scratch'' qubits that are necessary to make the overall computation unitary, but are not observed

3It is not clear whether this requirement makes the extended quantum computation much harder in a general case. At least,

some quantum algorithms are known to provide a deterministic result, such as Grover's quantum search algorithm [15], so that

the output bits are then in a product state. Note that the same requirement must be met for the recently suggested realization of

quantum computers using NMR experiments [16].
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in the final measurement). The observable can then be written as

O �
YLm

fmg
Om (9)

where Om is a one-bit observable acting on a qubit m. Consequently, the result of a quantum
computation can be written as the expectation value of the observable O:

hOi � h01 � � � 0LjUyOPUj01 � � � 0Li
h01 � � � 0LjUyPUj01 � � � 0Li (10)

where we define the projector P as

P �
YLp

fpg
Pp (11)

and Pp � j�pih�pj is a projector on the prescribed value �p for qubit p. Note that it is crucial to consider
a quantum algorithm such that the variance of O vanishes when the prescribed qubits have the correct
value, so that Eq. (10) yields the deterministic output of the quantum computation. The only variance in
the simulated output will be the statistical noise resulting from the stochastic evaluation of Eq. (5).

The central point now is that, using Eqs. (5) and (6), the numerator and the denominator in Eq. (10)
can be expressed in terms of an infinite sum of products of L one-bit matrix elements for each qubit,

hOi �
R

D�D�0 ei
P

g
�g��g�gÿ�0g� 0g�QL

l�1h0ljUy�l���0�O�l�P�l�U�l����j0liR
D�D�0 ei

P
g
�g��g�gÿ�0g� 0g�QL

l�1h0ljUy�l���0�P�l�U�l����j0li
(12)

where �0 represents the set of auxiliary fields (�0g and � 0g) used in the Hubbard±Stratonovich expression
of Uy. This can be written more concisely as

hOi �
R

D�D�0 exp�ÿiS��; �0��O��; �0�R
D�D�0 exp�ÿiS��; �0�� (13)

where the (complex) action is defined as

S��; �0� � ÿ
X

g

�g��g�g ÿ �0g� 0g� � i
XL

l�1

lnh0ljUy�l���0�P�l�U�l����j0li (14)

The operator P[l] is a one-bit projector if the lth qubit is prescribed, and the unit operator otherwise.
The estimator of O is

O��; �0� �
YL

l�1

h0ljUy�l���0�O�l�P�l�U�l����j0li
h0ljUy�l���0�P�l�U�l����j0li ; (15)

where O[l] is the l-th one-bit component of the observable O if the lth qubit is measured, and the unit
operator otherwise. Note that the L matrix elements in the right-hand side of Eq. (14) are for single
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qubits, so that the calculation of the action involves �4G products of non-unit 2�2-matrices. (There are
two fields per gate, and the Hermitian conjugate Uy must be considered together with U.) The
calculation of Eq. (15) requires essentially the same operations.

4. Sampling of the auxiliary-field paths

Let us now consider the stochastic evaluation of Eq. (13) based on a sampling of the paths (set of �g's
and �g's) that contribute the most to the integral. The simplest possibility is to perform an importance
sampling of the paths according to the weight |eÿiS|. (Note that this weight is not equal to 1 since S is
generally complex.) This can be done for example by using the Metropolis method [17]. A random
walk in the auxiliary-field space is simulated such that the limit distribution of sampled paths is
proportional to |eÿiS|. This makes it possible to write hOi as a ratio of Monte Carlo averages:

hOi � he
ÿi Re S��;�0�O��; �0�i�;�0
heÿi Re S��;�0�i�;�0

(16)

where h�i�,�0 stands for the simulation average over auxiliary-field paths. A test of this approach has been
carried out, showing that the term eÿi Re S generally makes the (averaged) numerator and the denominator of
Eq. (16) exceedingly small. Unless this `̀ sign'' problem can be overcome, the standard Metropolis method
seems therefore to be inefficient in this context.4 Since the weight of the paths in Eq. (13) is complex (this is
at the heart of the sign problem) a more promising possibility is the recourse to a simulation based on the
complex Langevin equation [18,19]. In the Langevin algorithm (see, e.g., [20,21]), paths distributed
according to the `̀ complex probability distribution''�eÿiS can be generated, allowing the computation of
Eq. (13) as a time-average over a guided random walk for the fields in the complex plane. In the case of
interest here, the random walk for a field �g is the solution of the stochastic differential equation

d�g

dt
� ÿ i

2

@S

@�g

� �g�t� (17)

where t is a fictitious time (simulation time) and �g is a (real) Gaussian white noise satisfying
h�g�t�i � 0 and h�g�t��g�t0�i � ��t ÿ t0�. The first term in the right-hand side of Eq. (17) can be seen as
a `̀ string'' force which keeps �g close to the value for which the action S is extremum, while the
`̀ noise'' term is responsible for the sampling of a region in auxiliary-field space around this extremum.
Although a general proof of the convergence of the complex Langevin simulation does not exist [20], it
turns out to work very nicely for a number of systems (the convergence is related to the location of the
repulsive points of the Langevin dynamics). The Langevin simulation yields then a stochastic estimate
of the output of the quantum computer,

hOi � 1

T

Zt�T

t

dt O���t�; �0�t�� (18)

4This numerical test has been performed on a small quantum circuit (L � 3, G � 4) using a one-field per gate Hubbard±

Stratonovich transformation, but the `̀ sign'' problem for longer circuits most probably remains.
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which is calculated by averaging O��; �0� for a sufficiently long random walk. Using Eq. (14), the time-
derivative of the field �g can be written explicitly as

d�g

dt
� i

2
�g�g � 1

2
Rg��; �0� � �g�t� (19)

with

Rg��; �0� �
YL

l�1

h0ljUy�l���0�P�l� dU�l����=d�gj0li
h0ljUy�l���0�P�l�U�l����j0li (20)

One single term (l � ag) differs from one in this product as only the one-bit gate acting on qubit ag

depends on �g (see Eqs. (7) and (8)). One has

dU�ag����
d�g

�
Y

g0

~U
��g�
g0 ��g0 ; �g0 � (21)

with

~U
�ag�
g0 ��g0 ; �g0 � � ÿi�gAgU

�ag�
g ��g; �g� if g0 � g;

U
�ag�
g0 ��g0 ; �g0 � otherwise:

(
(22)

The calculation of the derivative d�g/dt (necessary to increment the fields along the random walk)
thus relies on an estimate of Rg��; �0� which is of the same kind as expression (15) for the observable O:
rather than inserting the observable O, one inserts the operator Ag (conjugate to the field �g) at a
specific point in the ordered product of propagators. The coupling in the time-evolution of the fields is
obvious from Eq. (19). In particular, each pair of fields ��g; �g� is strongly coupled through the first
term in the right-hand side of Eq. (19). Indeed, combining Eq. (19) and its counterpart for �g, it is easy
to see that the time-evolution of the field �g (or, equivalently, �g) is governed by a second-order
differential equation of the type d2�g=dt2 ' ÿ�2

g�g=4, supplemented with a drift term (Rg) and a noise
term (�g) in both the field �g and its velocity d�g/dt.

The detail of the Monte Carlo algorithm for implementing the complex Langevin simulation will be
reported elsewhere. In short, the Langevin algorithm proceeds essentially in two alternating steps: (i)
for the current value of the fields, calculate O and store it; (ii) update the fields by calculating all their
time-derivatives d�g/dt, using expression (20) for estimating the Rg's. The time-average of O then
yields the output of the quantum computation, the statistics being controlled by adjusting the length of
the random walk.

5. Example: The quantum FFT circuit

Let us now discuss the scaling of the computational effort required to simulate a quantum algorithm,
focusing on the quantum FFT algorithm [14] used in Shor's factoring algorithm as an illustration.5

5Note that the FFT is not the most computationally demanding task in Shor's algorithm, but this is unimportant for our

illustrative purpose here.
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Since Shor's algorithm has been described in detail in the literature (see, e.g., [3] for a review), it will
be sufficient to note that after a certain number of computational steps, the quantum register is in a
periodic superposition of states labeled by an integer between 0 and 2Lÿ1, the period being related to
the sought factor of the composite number. The register is then subjected to a quantum FFT, resulting in
a probabilistic estimate of the period (the probability of success can be made arbitrarily close to one by
repeating the computation). The time-demanding task in the Monte Carlo simulation of the quantum
FFT is the update of the 4G auxiliary fields. Performing one step of the random walk in the auxiliary-
field space needs the computation of 4G time-derivatives, each requiring the calculation of a single (cf.
Eqs. (21) and (22)) one-bit matrix element (involving a product of about G/L non-unit 2�2 matrices).
Thus, since G scales as L2/2 for the quantum FFT circuit, of the order of L3 computation steps (2�2
matrix multiplication) are necessary to perform one step of the random walk. Assuming that the number
of steps necessary to achieve a given statistical error in the estimate of hOi does not grow exponentially
with G (the sign problem should be overcome and the auto-correlation time of the random walk should
not be exponential in G), the total number of computation steps would be polynomial in L. This does
not rule out the possibility that, for a general quantum algorithm, the simulation effort might be
polynomial in L whenever the number of gates G required in the quantum circuit is polynomial in L.
This is an open question.

As an example, we consider here a two-bit quantum FFT, i.e., the quantum computation of the
discrete Fourier transform of a 4-point function (see Fig. 2). The input qubits of the quantum register
(L � 2) are labeled 0 (and 1) for the least (and most) significant qubit. The two-bit quantum FFT circuit
[14] requires a single two-bit gate, a controlled-phase operator C01 � ei!AB acting on qubits a and b,
with ! � �=2 and A � B � �1ÿ �z�=2, and two additional one-bit gates H0 and H1 with H being the
Hadamard transformation,

Hj0i ! �j0i � j1i�=
���
2
p

; Hj1i ! �j0i ÿ j1i�=
���
2
p

(23)

The total unitary transformation is the ordered product U � H0C01H1. The two one-bit gates H0 and H1

can be incorporated into the two-bit gate, which can in turn be written in terms of field-dependent one-
bit gates using the Hubbard±Stratonovich representation, yielding U��� � U0���U1���, with

U0��� � 1���
2
p 1 ei!�

1 ÿei!�

� �
; U1��� � 1���

2
p 1 1

ei!� ÿei!�

� �
(24)

For a simple test of the Langevin algorithm, we consider here the Fourier transform of a constant
function, i.e., the initial state is the product state 2ÿ1=2�j0i � j1i� 
 2ÿ1=2�j0i � j1i�. The complex

Fig. 2. Two-bit quantum fast Fourier transform circuit. It requires two one-bit Hadamard gates and one two-bit controlled-

phase gate.
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action can then be simply expressed as

S � !��� ÿ �0� 0� � i ln
1� ei!��ÿ�0�

2

� �
(25)

depending on the four auxiliary fields �, � , �0, and � 0. A straightforward calculation shows that the
stochastic differential equations obeyed by the fields are

d�

dt
� ÿi

!

2
� ÿ 1

2

� �
ÿ !

4
tan

!

2
��ÿ �0�

� �
� �� (26)

d�0

dt
� i

!

2
� 0 ÿ 1

2

� �
� !

4
tan

!

2
��ÿ �0�

� �
� ��0

d�

dt
� ÿi

!

2
�� �� ; d� 0

dt
� i

!

2
�0 � �� 0

The Monte Carlo simulation of these equations is easy to perform. (Note that the fixed point of the
Langevin dynamics, i.e., the path of minimum action, is � � �0 � 0, � � � 0 � 1=2.) The resulting
Monte Carlo averages for the one-bit observables O0 � j0ih0j and O1 � j0ih0j converge to 1, implying
that the expectation value for the output register is |00i as expected (the spectrum has a continuous
component only). The simulation of larger quantum circuits using this technique is the subject of
further work to be reported elsewhere.

6. Conclusion

We have shown that a quantum computer can be treated as a genuine quantum many-particle system,
and that such an approach sheds new light on quantum computation. More specifically, the use of a
quantum Monte Carlo method might be interesting for sinulating `̀ large'' quantum computers because
of the polynomial scaling of the auxiliary-field space in the dimension of the problem. This advantage,
however, hinges on an appropriate circumvention of the Monte Carlo `̀ sign'' problem. In this respect,
the use of a Langevin algorithm as a possibly efficient simulation technique is discussed. The stochastic
simulation of quantum computation proposed here could be useful for at least two reasons: (i) it could
help in devising actual quantum computers by avoiding the need for an explicit experimental realization
to test a quantum algorithm; (ii) it could give rise to a new class of `̀ quantum-inspired'' algorithms that
could be implemented on an ordinary classical computer for solving certain computationally hard
problems.

Acknowledgements

We acknowledge C. Adami for many helpful discussions. This work has been funded in part by the
NSF under grant nos. PHY 94-12818 and PHY 94-20470, and by a grant from DARPA/ARO through
the QUIC Program (no. DAAH04-96-1-3086).

N.J. Cerf, S.E. Koonin / Mathematics and Computers in Simulation 47 (1998) 143±152 151



References

[1] S. Lloyd, Science 261 (1993) 1569; Science 273 (1996) 1073.

[2] D.P. DiVincenzo, Science 270 (1995) 255.

[3] A. Ekert, R. Jozsa, Rev. Mod. Phys. 68 (1996) 733.

[4] P.W. Shor, Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Press, New York,

1994.

[5] S.E. Koonin, JASON Report (JSR-95-115).

[6] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Phys.

Rev. A 52 (1995) 3457.

[7] J.W. Negele, H. Orland, Quantum Many-particle Systems, Addison-Wesley, Reading, MA, 1988.

[8] J. Hubbard, Phys. Lett. 3 (1959) 77; R.D. Stratonovich, Dokl. Akad. Nauk. SSSR 115 (1957) 1907 [Sov. Phys. Dokl. 2

(1958) 416].

[9] Y. Alhassid, S.E. Koonin, Phy. Rev. C 23 (1981) 1590; Y. Alhassid, B. Muller, S.E. Koonin, Phys. Rev. C 23 (1981) 487.

[10] C.W. Johnson, S.E. Koonin, G.H. Lang, W.E. Ormand, Phys. Rev. Lett. 69 (1992) 3157; S.E. Koonin, D.J. Dean, K.

Langanke, Phys. Rep. 278 (1997) 2.

[11] D.P. DiVincenzo, Phys. Rev. A 51 (1995) 1015.

[12] D. Deutsch, A. Barenco, A. Ekert, Proc. R. Soc. London, Ser. A 449 (1995) 669.

[13] S. Lloyd, Phys. Rev. Lett. 75 (1995) 346.

[14] D. Coppersmith, IBM Res. Rep. RC19642, 1994; D. Deutsch, unpublished.

[15] L.K. Grover, Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996.

[16] N.A. Gershenfeld, I.L. Chuang, Science 275 (1997) 350.

[17] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21 (1953) 1087.

[18] G. Parisi, Y.S. Wu, Sci. Sin. 24 (1981) 483; G. Parisi, Phys. Lett. B 131 (1983) 393.

[19] J.R. Klauder, Phys. Rev. A 29 (1984) 2036.

[20] K. Okano, L. Schulke, B. Zheng, Prog. Theor. Phys. Suppl. 111 (1993) 313.

[21] C. Adami, S.E. Koonin, unpublished.

152 N.J. Cerf, S.E. Koonin / Mathematics and Computers in Simulation 47 (1998) 143±152


