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A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order
\Jd, whered is the dimension of the search space, whereas any classical algorithm necessarily 04tbs as
It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree
search problem byestingone quantum search within another. The average number of iterations required to
find the solution of a typical hard instance of a constraint satisfaction problem is found to sclé,asith
the constantv<<1 depending on the nesting depth and the type of problem considered. This corresponds to a
square-root speedup over a classical nested search algorithm, of which our algorithm is the quantum counter-
part. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring
problem,« is estimated to be around 0.62.

PACS numbd(s): 03.67.Lx, 89.70+c

[. INTRODUCTION [3,4] can be adapted quite readily to the service of solving
NP-complete problems. As any candidate solution to an NP-
Over the past decade there has been steady progress in ttmmplete problem can be tested for correctness in polyno-
development of quantum algorithms. Most attention has fomial time, one simply has to embody this testing in an
cused on the quantum algorithms for finding the factors of a'oracle” (i.e., a black-box function that returns 1 if the can-
composite integef1,2] and for finding an item in an un- didate solution is correct, and zero otherwjsend apply the
sorted “database’[3,4]. These successes have inspired sevunstructured quantum search algorithm. Unfortunately, the
eral researchers to look for quantum algorithms that carspeedup afforded by this algorithm is or®y(\N), whereN
solve other challenging problems, such as decision problenis the number of candidate solutions to be tested. For a typi-
[5] or combinatorial search probleni§], more efficiently —cal NP-complete problem in which one has to find an assign-
than their classical counterparts. ment of one ob values to each g& variables, the number of
The class of nondeterministic polynomial-time completecandidate solutiond*, grows exponentially withe. An un-
(NP-completg problems includes the most common compu-structured classical algorithm would therefore take an aver-
tational problems encountered in practi@é In particular, it age timeO(b*) to find the solution, whereas the unstruc-
includes scheduling, planning, combinatorial optimization,tured quantum search algorithm would taka(b*?).
theorem proving, propositional satisfiability, and graph col-Although this is an impressive speedup, one would still like
oring. In addition to their ubiquity, NP-complete problemsto do better.
share a fortuitous kinship: any NP-complete problem can be While there is now good evidence that for unstructured
mapped into any other NP-complete problem using onlyproblems, the quantum search algorithm is optif®at11],
polynomial resourcef7]. Thus any quantum algorithm that these results have raised the question of whether faster quan-
speeds up the solution of one NP-complete problem immetum search algorithms might be found for problems that pos-
diately leads to equally fast quantum algorithms for all NP-sessstructure [6,12—14. It so happens that NP-complete
complete probleméup to the polynomial cost of translatipn  problems have such structure in the sense that one can often
Unfortunately, NP-complete problems appear to be evemuild up complete solution@.e., value assignments to all the
harder than the integer factorization problem. Whereas, clasrariable$ by extending so-called partial solutiofis., value
sically, the best-known algorithm for the latter problem assignments to a subset of the variapl@his suggests that,
scales only subexponentiallg], NP-complete problems are rather than performing an unstructured quantum search
widely believed to be exponentidl7]. Consequently, the amongall candidate solutions, it may be possible to perform
demonstration that Shor's quantum algorithin2] can fac- a quantum search amompgrtial solutions in order to narrow
tor an integer in a time that is bounded by a polynomial ina subsequent quantum search among their descendants. This
the “size” of the integer(i.e., the number of bits needed to is the approach presented in this paper, which, we believe, is
represent that integgrwhile remarkable, does not lead to a applicable in all structured quantum searches.
polynomial-time quantum algorithm for NP-complete prob- We present an average-case complexity analysis of our
lems, the existence of which being considered as highly imalgorithm, the average being taken acros$aagsof problem
probable[9]. Moreover, it has proven to be very difficult to instances, defined as a set of instances characterized by the
adapt Shor's algorithm to other computational applications.same value of a parameter that is, roughly speaking, related
By contrast, the unstructured quantum search algorithnto the difficulty of the problenie.g., the average connectiv-
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ity of the graph to be colorgd Previous work in classical Il. NESTED CLASSICAL SEARCH
computer science has indeed identified the class of problem ON STRUCTURED PROBLEMS
instances at which the hardest cases are most often encoun-
tered[15—19. The motivation for investigating the average-
case complexity of this class is that it is expected to give an Many hard computational problems, such as propositional
estimate of the cost of ypical hard problem. In contrast, satisfiability, graph coloring, scheduling, planning, and com-
worst-case analyses can be misleading because they tendii@atorial optimization, can be regarded as examples of so-
focus on atypical problem instances. Similarly, naivecalled “constraint satisfaction problems.” Constraint satis-
average-case analyses can be misleading because the &gtion problems consist of a set of variables, each having a
semble of problem instances over which the average is confinite set of domain values, together with a set of logical
puted may contain, for example, an exceedingly large numrelations(or “constraints”) among the variables that are re-
ber of easy instances. Thus, the complexity analysis in termguired to hold simultaneously. A solution is defined by a
of classes of problems that is carried out in this paper ixomplete set of variable-value assignments such that every
believed to give a good tool for comparing the cost of solv-variable has some value, no variable is assigned conflicting
ing typical hard problemginstead of that of an atypical values, and all the constraints are satisfied.
maximally difficult problem with different algorithms. In such constraint satisfaction problems, there is often a
Our improved quantum search algorithm worksrnmst-  degree of commonality between different nonsolutions. One
ing one quantum search within another. Specifically, by pertypically finds, for example, that certain combinations of as-
forming a quantum search at a carefully selected level in theignments of values to a subset of the variables are inconsis-
tree of partial solutions, we can narrow the effective quantunient (i.e., violate one or more of the constraingd cannot,
search among the candidate solutions so that the net comptirerefore, participate in any solution. These commonalities
tational cost is minimized. This allows us to find a solution (several nonsolutions descending from the same inconsistent
to a constraint satisfaction problem in a time that grows, orpartial solution can be exploited to focus the search for a
average, a®©(b**?) for hard problem instances, whete  solution. Thus, a classicatructuredsearch algorithm can
<1 is a constant depending on the type of problem considfind a solution to a constraint satisfaction problem in fewer
ered. The resulting algorithm is the quantum counterpart of ateps than that required by a unstructured search, by avoiding
classicalnested search algorithm which scales@®*#), regions of the search space that can be guaranteed to be
giving a quantum square-root speedup overall. This procedevoid of solutions. Before investigating whether the prob-
dure corresponds to single level of (classical or quantum lem structure can be exploited in a quantum seésele Sec.
nesting, but it can be easily extended to several nesting leyV), we need to understand the circumstances under which
els. The constant is then shown to decrease with an in- knowledge of problem structure has the potential to be use-
creasing nesting deptle., an increasing number of nesting ful, classically. The key idea is that one can obtain complete
levels. solutions to a constraint satisfaction problem by systemati-
The outline of the paper is as follows. Section Il intro- cally extending partial solution§.e., value assignment to a
duces a simple classical tree search algorithm that exploits gubset of the variablgsNot all partial solutions are equally
problem structure to localize the search for solutions amonglesirable however. A partial solution is “good” if it is con-
the candidates. This is not intended to be a sophisticated treséstent with all the constraints against which it may be tested.
search algorithm, but rather is aimed at providing a baselin€onversely, a partial solution is “nogood” if it violates one
against which our quantum algorithm can be compared. I®wr more such constraints. Sophisticated search algorithms
Sec. llI, we outline the standard unstructured quantum searahork by incrementally extending good partial solutions and
algorithm[3,4]. We focus especially on the algorithm basedsystematically terminating nogood partial solutions. This in-
on an arbitrary unitary search operaf@0], as this is a key duces a natural treelike structure on the search space of par-
for implementing quantum nesting. Finally, Sec. IV de-tial solutions.
scribes the quantum tree search algorithm based on nesting, To give a concrete example of a tree search problem, we
which is the quantum analog of the classical search algoeonsider thegraph coloring problemas depicted in Fig. 1.
rithm presented in Sec. I(The quantum search algorithm We have a graph that consists @f nodes connected by
with several levels of nesting is briefly discussed in Appen-edges, with 8=e< u(x—1)/2. Each node must be assigned
dix C.) We conclude by showing that the expected time toa color (out of b possible colors so that any two nodes
find the solution of a typical hard problem instance grows asonnected by an edge have different colors. More generally,
O(b**??), that is, as the square root of the classical timefor a constraint satisfaction problem, we are given a set of
This result suggests a systematic technique for translating \aariables &, . .. x,) which each must be assigned a value
nested classical search algorithm into a quantum one, givingut of b possible values. This assignment must simulta-
rise a square-root speedup that can be useful to accelerateously satisfy a set of constraints, each involvingari-
efficientclassical search algorithnifistead of a simple ex- ables. In the special case of the graph coloring problem, there
haustive search, of no practical us8uch a square-root im- are e constraints of siz&k=2, since each edge imposes a
provement was demonstrated independently in R&f] in constraint on the colors assigned to the pair of nodes it con-
the special case of “heuristics{i. e., probabilistic rule-of- nects.
thumb algorithms which tend to guide the search toward so- For each constraint, we define ground instanceas a
lutions). specific assignment of a value to each of the variables in that

A. Structured search in trees
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X nogood,¢ [15-17. Clearly, if £ is small, there are generally
% many solutions satisfying the few constraints, so that the
problem is easy to solve. Conversely{ifs large, the prob-
] ) lem is in general overconstrained, and it is easy to find that it
X3 ! (b states) admits no solution. The problem is maximally hard in an
§l intermediate range of values fér In an effort to understand

the observed variation in difficulty across different instances

Xs of NP-complete problems for fixege and b, it has been

u (b states) shown that the cost of finding a solutidor proving none

] ) i ) ] _existg depends essentially on the parameter
FIG. 1. Constraint satisfaction problem in which we must find

an assignment to thg variablesx;,X,, ... X, . As an example, B=E&lu, 1)

we picture thegraph coloring problemin which we have to assign

one ofb possible colors to each node of a graph so that every paivhich characterizes the average number of nogood ground
of nodes that are connected directly have different colors. The cofinstanceger variable[15,18,19. Specifically, the problem
responding search tree is characterized by a depdind a branch-  splving difficulty exhibits a ubiquitous easy-hard-easy pat-

search space being of sib8 and considering only the descendants around a critical value of given, approximately, by
at level u of these partial solutions, one avoids having to search ' '

through the entire space at the bottom of the ffesizeb*). Be= bk In(b) )

X4

constrail_wt. For example, in the graph CO'O”T‘Q problem, @ ssuming heré*>1 for simplicity. This phenomenon, akin
ground instance corresponds to a color assignment to any 5 phase transitionin physical system$18,19], persists

two nodes connected by an edge. A ground instance is salghross many different sophisticated algorithrfor a gen-

to be nogoodif it violates the corresponding constraint. An oo reference on scaling in random graphs, see, e.g., Refs.

important variable in the following will be the number of [22,23.) The average case complexity for a fix@d(for a
nogood ground instances, denotedéyrhus, for the graph  iyen class of problem instangeis therefore believed to be

coloring problem, the number of nogood ground instance$, more informative measure of computational complexity
¢=eb because each edge contributes exabtlyogood in- i either worst-case or naive average-case complexity. It is
stancegfor each edgeb pairs of identical colors are forbid-  harefore the measure that we will use in the rest of this
den and there are a total af edges.(For other constraint  aner for estimating the scaling of the complexity of our
satisfaction problems{ is in general only approximately jnnroved quantum search algorithfas well as the corre-
proportional to the number of constraints because not a'éponding classical search algorithm
constraints need to have the same $ize.

The search tree corresponding to this constraint satisfac- . ) ) .
tion problem is also shown in Fig. 1. Theh level of the B. Average computational complexity of a classical algorithm
search tree enumerates all possipéetial solutions involv- Let us describe a simple classical algorithm for a tree
ing a specific subset af out of the totalu, variables. The search problem that exploits the structure of the problem by
branching ratio in this tree, i.e., the number of children peruse of nesting. As pictured in Fig. 1, the key idea is to per-
node, is equal td, the number of domain values of a vari- form a preliminary search through a spacepaitial solu-
able. If anunstructuredsearch algorithm is used to solve a tions in order to avoid a search through the entire space at the
constraint satisfaction problem, the number of steps requiredottom of the tree. By definition, a partial solution at level
to find a good assignment at the bottom of the fiaedecide in the tree assigns values to a subset sb-calledprimary
that there is no possible assignment satisfying all the convariables &,, ... X;), which we denote a8. The subset of
straintg scales ab”. Thus, a space of the order of the entire secondaryvariables §;,4, ... X,), denoted asB, corre-
space of candidate solutions must be explored. As we wilsponds to the variables to which we assign a value only when
see,structuredsearch algorithms work by pruning much of extending the partial solution§.e., when considering the
the search space, giving rise to a cost exponentially smalletescendants of the partial solutipnk general, any partial
thanb*, though still exponential in the size of the problem solution can be tested against a part of the constraints,
M. namely, just those constraints involving the primary vari-
In our analysis of the computational cost, we will be ablesA. A partial solution that satisfies all theggestablg
helped by an approximate model of tree search problems thabnstraints can be viewed asauld-besolution in the sense
greatly simplifies the calculation. Remarkably, many of thethat all solutions at the bottom of the tréat level ) must
properties of search trees can be understood without precid® descendants of could-be’s. A classical search can be
knowledge of the problem. Indeed, it has been found empirispeeded up by terminating search along paths thanhare
cally that the difficulty of solving a particular instance of a descendants of a could-be, thereby avoiding to search
constraint satisfaction problem can be specified approxithrough the entire space. The following algorithm can be
mately by four parameters: the number of variabjesthe  used.
number of values per variable;, the number of variables per (i) Find a could-be solution at levelin the tree. For this
constraint,k; and the number of ground instances that arepurpose, repeatedly choose a random partial solution at level
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i, until it satisfies the testable constraints. of them havingdg descendantsshaded area at level in
(ii) For each could-be solution, check exhaustiv@lyby  Fig. 1). The denominator in Eq6) accounts for a problem
use of a random searhll its descendants at the bottom of admitting more than one solution. We will see in Sec. IV that
the tree(level i) for the presence of a possible solution.  the quantum counterpart of Ed6) involves taking the
This is clearly not a sophisticated algorithm. It amounts tosquare root ofn, m, and r, which essentially results in a
nesting the search for a successful descendant atdeirgb  quantum-mechanical square-root speedup over this classical
the search for a could-be solution at leveNevertheless, it algorithm.
does exploit the problem structure by using the knowledge To make the estimate of this classical average-case com-
gleaned from the search at leveb focus the search at level plexity more quantitative, lep(i) be the probability that a
. By finding a quantum analog of this algorithfof. Sec.  partial solution at level is “good” (i.e., that it satisfies all
IV), we will, therefore, be able to address the impact ofthe testable constraintdn Appendix A, we provide an ap-
problem structure on quantum search. proximate estimate gf(i) for an average instance of a large
Let us estimate the expected cost of running this algoproblem (u>1) with a fixed value of the paramet@r Re-
rithm. This cost consists essentially of three components: call that, if we want to preserve the difficulty while consid-
the cost of finding a consistent partial soluti@could-b¢at  ering the limit of large problems3 must be kept constant.
leveli in the treejm, the cost of the subsequent search amondrhis is necessary for the complexity measure that we con-
its descendants at levet andr, the number of repetitions of sider in this paper, as mentioned before. Thus, by making use
this whole procedure before finding a solution. The searchf this estimate ofp(i), we can approximate the expected
space for partial solutiongassignment of the primary vari- number of could-be solutions at théh level, na=p(i)b',
ables A) is of size dy=Db'. Assuming that there ara,  and the expected number of solution at the bottom of the
could-be solutions at levél (i.e., partial solutions that can tree, nag=p(u)b*. Therefore, the average search time of
lead to a solutiop the probability of finding one of them by the classical algorithm to find the first solution is approxi-
using a random search is thng/d, . Thus one needs of the mately equal to
order of _
b+ p(i)b*
n:dA/nA (3) TC(I)_ p(M)qu

his mean-field approximation of; is essentially the cost

or finding one solution(which basically requires checking

all the partial solutions for a could-be solution, and subse-

quently checking the descendants of all these could-be solu-

ltj|bns) divided by the expected number of solutions at the

bottom of the tredof the order of one wheg= 3., i.e., for
m=dg (4) hard problem)s _ _

Equation(7) yields an approximate cost measure for our
iterations. If the problem admits a single solution, this wholeclassical nested search algorithm as a function of the level of
procedure needs to be repeate_dtimesy on average, since the “cut,” i. An important question now is where to cut the
we haven, could-be solutions. More generally, if the num- Search tree? If one cuts the tree too higiearching for
ber of solutions of the problem is given Ioyg, this proce- could-be solutions at smail), one is unlikely to learn any-

()

could-be solution are obtained by assigning a value to th
subset ofsecondaryvariablesB, of size dg=b*""' (each
could-be solution hasdg descendanis Thus, searching
through the entire space of descendants of a could-be sol
tion requires, on average,

iterations to find one could-be solution. The descendants ofél

dure must only be repeated thing useful as most partial solutions will probably be
“goods,” allowing for little discrimination between solu-
r=np/Nag (5) tions and nonsolutions. In other words, the second term in

the numerator of Eq.7) dominates sinc@(i) is close to 1,
times in order to find a solution with a probability of order 1. j.e., there are many could-be solutions at levebearching
Thus, the total number of iterations required to find a solufor could-be solutions is thus fag&he space of primary vari-
tion of an average instance is of the order of ables is of sizeb' only), but those partial solutions are of

little use for singling out the actual solutions. The cost of the
da+nadg 6 search among the descendants of those partial solutions is
Nag ©) then high. Conversely, if one cuts the tree too désgarch-
ing for could-be solutions at largg, although this would
This corresponds to an improvement over a namstruc-  enhance discrimination between solutions and nonsolutions,
tured search algorithm. Indeed, the cost of a naive algorithnthe search space for the primary variables would be almost as
that does not exploit structure is simptiag/nNag, Where large as the entire space. Then the first term dominates the
dag=dadg=b* is the dimension of the total search space. scaling as the search for could-be solutions becomes time
The first term in the numerator of E¢G) corresponds to consuming. It is therefore apparent that, for a typical prob-
the search for could-be solutions in a space of partial solulem instance, there ought to be an optimal level at which to
tions of sized, (shaded area at levelin Fig. 1), while the  cut.
second term corresponds to the search for actual solutions We can estimate the optimal level by finding the value of
among all the descendants of thg could-be solutions, each i that minimizes the classical computation tifig(i) for a

Te=r(n+m)=
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given value ofu, b, & andk, using the functional form for state|t) in a number of steps of ordé(t|U|s)|~* only,
p(i) given in Appendix A. This is done in Appendix B, Which represents a huge speedup provided {tidt|s)|
where we approximate the behavior of the location of the<1 (this corresponds to the situation of interest where the
optimal cut level as a function g8. We then estimate the Search space is very lange

corresponding scaling df,, for large problems g>1). The The idea behind a quantum search algorithm ipast-
result is that the computation cost of running the classicaPonethe measurement, and keep a superposition of quantum
nested search algorithm scales as states throughout the algorithm. Only at the end, a measure-
ment is performed. Let us define the unitary operation
Te=b** (8
for a search space of dimensiah=b*, where a<1 is a Q=-UlUM=-Uesu'e™, 9

constant depending on the problem conside(dtbre gen-

erally, a also depends on the number of nesting levels, but

we have considered a single level of nesting in this segtionwherePs=|s)(s| and P,=|t)(t| are projection operators on
As we will see, the structured quantum search algorithm thals) and |t), respectively. The two unitary operators=1

we present in Sec. IV has a computational cost of order of-2P¢ andl=1— 2P, perform a controlled-phase operation:
Jb% in agreement with the prevailingput unprovepopin-  applyingls (or I;) on a statex) flips its phase ifx=s (or

ion that a square-root speedup is the best that can be=t), and leaves it unchanged otherwise. Note that the tar-
achieved instructured search problems. The focus of this get state|t) is of course not availabléit is what we are
paper is to show explicithhow a quantum algorithm can be searching for. Instead, we have at our disposal the “oracle”
implemented that reaches this square-root speedup over tiggiantum circuit that computes the functibfx), and we can
classical algorithm discussed above. Interestingly enoughyse it to implement the circuit fot,: we havel|x)=

the quantum complexity of our nested algorithm scales thei—1)®|x) for all states|x). The circuit for I, does not

as a power of the dimension of the search sghe®* thatis  require the functiorf(x) and is trivial.

less than 1/2. Structured quantum search therefore offers a The quantum search algorithm is based on iterating the
significant speedup over both structured classical search amperatorQ starting fromU|s), in order toamplify the target

unstructured quantum search. componentt). This quantumamplitude amplificatior{21]
can be understood by noting that, after applyldgo the
Ill. UNSTRUCTURED QUANTUM SEARCH starting statds), the repeated applications &f essentially

rotate this state into the target statp with an angle that is

Let us first review the standardnstructuredquantum linear in the number of iterations. More specifically, using
search algorithni3,4]. Consider a Hilbert space of dimen- Q= —1+2|t)(t|+2U|s)(s|UT—4U|s)(s|UT|t)(t|, we can
sion d in which each basigx) state ¢=1,... d) corre-  see thatQ preserves the two-dimensional subspace spanned
sponds to a candidate solution of a search problem. Anyy U|s) and|t), namely,
search problem can be recast as the problem of finding the
valugs) of x at which a black-box functiorii(x), tradition-
ally called an “oracle,” is equal to Xthis function being (U|s}) (1—4|<t|U|s>|2 2<t|U|s>) (U|s>)
zero elsewhepe We start the quantum search process from Q = *
an arbitrary basis stafe), and the goal is to reach a solution It) —2(t|U]s) 1 It)
(or targe} basis statét), with f(t)=1, in a shortest compu-
tation time. More precisely, if there is a single soluti@r
target statg the goal is to reach a state that has an amplitud

of order 1 in|t), so that a measurement of this state gives th PN
solution with a probability of order 1(If there arer solu- Eh) are almost orthogonal, anQ tends to an infinitesimal

i th Lis t h i f the st rotation matrix.(In fact, the transformatio® is alwaysex-
lons, the goal IS to reach a su_pszrpo& ion of the stittes actly a rotation if it is expressed in an orthogonal basis
each with an amplitude of order ~'<))

The quantum search algorithm we discuss below is in facE4’za') Indeed, keeping only the first-order terms in

an immediate extension of the original of®4], where an =(t|U]s), we obtain

arbitrary unitary transformation is used instead of the Walsh-

Hadamard transformatio20]. Assume that we have at our U 1 2 U
disposal a quantum circuit that performs a particular unitary ( |S>) 2( u) ( |S>)
operationU. If this operation connects the starting stfgp |t) —2u* 1 It)
to the target statg), i.e.,(t|U|s)# 0, then this operation can 0 20\ (Uls)
be usedclassicallyto find the target. Indeed, if we measure zexp( ) ( )
the system after applying, the probability of obtaining the Ity )’
solution |t) is obviously [(t|U]s)|2. Thus, on average, we

need to repeat this experimelt|U|s)| 2 times to find the

solution with probability of order 1. We will show now that, so thatQ is a rotation of angle @<1. We can then easily
using a quantum algorithm, it is possible to reach the targeapproximateQ" in the subspace spanned bys) and|t):

(10

Sherefore, at the limit of(t|U|s)|<1, the state)|s) and

—-2u* 0 (D
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nUls)) p( 0 2nu)<U|s))

Uy 7 —onee o )
) cog2n|ul) &sin(ZnM) (U|S>)
—u—sin(2n|u|) cog2n|ul) v

|l
12

implying that the amplitude of the target stdte after n
iterations is

u

(t|Q"U[s) =ucog2n|u|)+ al sin(2njul). (13

PHYSICAL REVIEW A61 032303

a rotation fromU|s) to |t) based on the repeated operation of
Q, followed by a measurement. In the above discussion, the
search operatdd can be arbitraryprovidedit connects/s)
and|t). In the case of annstructuredsearch problem, as we
have noa priori knowledge about where the solution is lo-
cated, the most natural choice foris the Walsh-Hadamard
transformatiorH [3,4]

d-1

1 _
H|x>=ﬁy§0 (—1)*Yy), (17)

wherex-y=2?;01xiyi(mod2), withx; (y;) being the binary
digits of x (y). [Here and below, we assume for simplicity
thatd is a power of 2. If it is not, then we need to choose for
the size of the Hilbert space the nearest power of 2 that is

These last expressions are only asymptotically valid at thédrger thand and pad the functiori(x) with additional ze-

limit of small |u|. The exact expressions for Eq4.2) and

ros] Clearly, U=H does not bias the search toward a par-

(13) in terms of Chebyshev polynomials can be found in Ref.ticular candidate solution sindé|s) has the samésquared

[26].

amplitude in all the candidate solutions, so that the search

Consider first the case of a small rotation angle. From EgStarts from a uniform distribution of all states. Applying

(13), we see that if we iterate the application@fon U|s),
the amplitude oflt) grows approximatelyinearly with the
number of iterations, provided that the total anglenful
<1:

(t|Q"U[s)=(1+2n) (t[U]s). (14
Consequently, if we measure the system aftdterations,
the probabilityp(n) of finding the solution growsjuadrati-
cally with n, asp(n) ~n?|(t|U|s)|2. This is a great improve-

U=H to an arbitrary state in the computation basis, e.g.,

|s)=]00...0), we see that
(t|H|s)=+1/yd (18)

for all possible target statg). Thus, according to Eq15),

the number of iterations in the quantum search algorithm

relying onH is O(+/d) [3,4], whereas a classical search al-

gorithm obviously require®(d) steps. When there are mul-
tiple target statesthe problem admits several solutiong

ment compared to the linear scaling of the classical algogzn pe shown that the quantum computation time becomes

rithm consisting in repeating times the measurement of
Uls), namely,p(n)~n|(t|U|s)|2. This is the quadratic am-
plification effect provided by quantum mechanics.

Now, consider the goal of reaching the target staje
using this operatoR. From Eq.(12) we see that, starting
from the stateU|s), we need to applyQ until we have ro-
tated it by an angle of about/2 in order to reacit). At this

O(+/d/r), wherer is the number of solutiongl0]. The clas-
sical counterpart is then simp®(d/r).

For astructuredsearch problem, however, it is natural to
use the knowledge of the structure in order to choose a better
operatorU or initial state|s). Indeed, if we have partial
knowledge about where the solutions are, it seems that we
can exploit it tobiasthe search in such a way thid{s) has

time only, one measures the system and obtains the deSir‘FQrger amplitudes in states which are more probable to be

solution with a probability of order 1. The number of itera-
tions required to rotat®|s) into the solution|t) is thus

w
n=—

7 ltuls)

(15
and scales as trszjuare roowf the classical time. It is worth
noting that the amplitude of any stalte) orthogonal to the
target|t) is given by

(x|Q"U[s)=cog 2n|u|) (x|U|s), (16)

so that(x|Q"U|s)=(x|U|s) for small angles. Thus the am-
plitude of nonsolutions isrot amplified by applyingQ re-

solutions. It has been shown recently that an arbitfagn-
uniform) initial amplitude distributions) can be used with
the standard quantum search algorithm, resulting in a
O(+/d/r) quantum computation timg27]. This seems to in-
dicate, however, that the scaling remainsdf/d) even if

we use our knowledge about the problem by biasing the
initial distribution. In contrast, we will show in Sec. IV that
the use of anestedquantum search algorithm results in a
power law ind with an exponent that ismallerthan 1/2. The
central idea is thaU is not fixeda priori, but is rather ob-
tained “dynamically” by the quantum algorithm itself, de-
pending on the particular instance. More specifically, the
standard search algorithm is useddaonstructan effective

peatedly, so that the quantum search algorithm selectivelgearch operatotJ (or a nonuniform initial distribution

amplifies the solutions only.

which, itself, is nested within another quantum search algo-

Thus, here we have described a general technique faithm. In other words, we apply quantum search “recur-
achieving a quantum-mechanical square-root speedup of sively”: the overall operator { HIgHI,)"H resulting from a

search algorithm relying omny unitary transformationJ

nested search algorithm based ldris used as a better op-

[20]. The quantum search algorithm can be simply viewed asratorU for a quantum search at an upper level of hierarchy.
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FIG. 2. Schematic representation of stages
and (ii) of the quantum algorithm. These stages
partially amplify the solution states, and can be
nested into a standard quantum search algorithm

() H H H (iii) in order to speedup the amplification of the
i ' | i solutions.

IV. NESTED QUANTUM SEARCH able) constraint. We start from stats) in subspacé{,, and
ON STRUCTURED PROBLEMS apply a quantum search based on the Walsh-Hadamard trans-
A. Core quantum algorithm formationH since we do not hava priori knowledge about

. .the location of could-be solutions. Usin
Assume that the Hilbert space of our search problem is 9

the tensor product of two Hilbert spacés, and Hg. As (c|H|s)==1/\d,, (19
before, A denotes the set of primary variables, that is, the

variables to which we assign a value in the first stage. Thgue can perform an amplification of the components
partial solutions correspond to definite values for these varipased orQ= —HI HI, where

ables. ThusH, represents the search space for partial solu-

tions (of dimensiond,). The set of secondary variables, | s=exp(im|s)(s|), (20)
characterizing the extensions of partial solutions, is denoted

by B, and the corresponding Hilbert spakfy is of dimen-

siondg. (Again, we assume here that anddg are powers Ic=ex;{ i wz |c><c|). (22
of 2 to simplify the discussioh.Let us briefly describe the ceC

qguantum algorithm with a single nesting le\&he counter- : . .
part of the classical algorithm of Sec).li The stategc) correspond to the could-be partial solutions in

(i) The first stage consists of constructing a superpositiontA (@signment of the primary variables that could lead to a
(with equal amplitudesof all the could-be solutions at level SOlution, and belong to the subs€={c, ... Cp,;. We
i by use of the standard unstructured search algorithm bas@$sume that there arg, could-be partial solutions, with 1
on H. <na<<d,. The quadratic amplification of these could-be so-
(i) Then one performs a subsequent quantum search itions, starting fronys), is reflected by
the subspace of the descendantsaabfthe could-be partial
solutions, simultaneously. This second stage is achieved by (c|Q"H|s)=n (c|H|s)=n/\/d, (22)
using the standard quantum search algorithm with, as an in-
put, the superpositionof could-be solutions resulting from for a small rotation angle. Thus, applyit@sequentially, we
the first stage. The overall yield of stagés and (ii) is a  can construct a superposition of all the could-be solutions
superposition of all states where the solutions have been pale), each with an amplitude of order \ii,. The required

tially amplified with respect to nonsolutions. number of iterations 0@ scales as
(iii) The final procedure consists of nesting sta@eand
(il)—using them as a search operatd+—inside a higher- Nn=+/da/Nx. (23

level quantum search algorithm until the solutions are maxi-
mally amplified, at which point a measurement is performedThis amplitude amplification process can be described
This is summarized in Fig. 2. equivalently in the joint Hilbert spac{,® Hg, starting

Let us now follow in more details the evolution of the from the product stats,s’), where|s’) denotes an arbitrary
quantum state by applying this quantum nested algorithmstarting state irf{g, and applying Q®1) sequentially:
and estimate the number of iterations required. The starting
state of the search is denoted|ass’), where|s) (lying in (c,s’|(Q®l])”(H®H)|s,s’>=<c|Q”H|s>:n/\/d—A.
H,a) and|s’) (lying in ‘Hg) are just the initial state of two (24)
different parts of the same, single, quantum register which is
large enough to hold all the potential solutions in the totalHere and below, we use the convention that the (ieght)
search spacé.e., all theb* leaf nodes of the search tree at term in a tensor product refers to subspaceB).
level ). RegisterA stores the starting state at an intermedi- (i) The second stage of the algorithm is a standard quan-
ate leveli in the tree, while registeB stores the continuation tum search for the secondary variabR# the subspace of
of that state at level.. In other wordsA holds partial solu- the “descendants” of the could-be solutions that have been

tions andB their elaboration in the leaves of the tree. singled out in stage€i). As before, we can use the search
(i) The first stage of the algorithm consists in a standardperatorH that connects extended could-be solutitnis’)
quantum search fozould-bepartial solutiongc) at leveli,  to the actual solutions or target stateg’) in the joint Hil-

that is, states in subspaé, that do not violate anytest-  bert space:
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(t,t'|(1eH)|c,s')y=(t|c) (t'|H|s")=* &/ \/dg. =[cx) for all x, so thatR™(1&H)|c,s')=(—1@HIgH)™(1

(25  @H)|c,s'y=(I®H)|c,s'), and the matrix element is not
amplified bym compared to the case=t. In other words, no
amplification occurs in the space of descendants of could-be
partial solutions that do not lead to an actual solution. Thus
Eq. (28) results in

Note that, this matrix element is non-vanishing only for
could-be statefc) that lead to an actual solution. Define the
operatorR=— (1®HIsH)I,, with

|y =expim|s'}{s'|), (26)
(LU [RY1eH) e s’ )= s, . (29

l=exd im > |t,t’>(t,t’|), 27) Vdg
(tt")eT

Assuming that, among the descendants of each could-be so-

lution |c,s’), there is either zero or one solution, we need to

iterateR of the order of

whereT is the set of solutionit,t’) at the bottom of the tree,
and #() =nag, i.e., the problem admits,g solutions. We
can apply the operatdR sequentially in order to amplify a

target statet,t’), namely, m=\dg (30
ey m (t,t'[(1&H)|c,s’") if c=t
t t/ R H ! ~ . . . . . .
(t,t'|R"(1@H)|c,s") (Lt |(1eH)|cs') i ot times in order to maximally amplify each solution. We then

(29) obtain a superposition of the solution stales’), each with
an amplitude of order 4/h,. This can also be seen by com-
for a small rotation angle. Note that, for a could-be staje  bining Eqs.(24) and(29), and using the resolution of identity
that does not lead to a solutiorc#t), we havelc,x) 1=3, I y)(x,yl:

(GUIRT (@ H) Q@ )M H@1)|s,s) =3 (t,¢|R"(1 @ H)lz,y) (e,y|(Q @ 1)"(H @ 1)|s, ')

‘ZYy

U
= (LY|R™(1 @ H)|t,s') (t,5')(Q © 1)"(H @ 1)]s, )
~ (m/\/dB)(n/v/da)
>~ l/w/nA . (31)
|
Thus, applying the operat@" followed by the operatoR™ NA
connects the starting stats,s’) to each of the solutions r== e (33

|t,t") of the problem with a matrix element of orden/h,.
(i) The third stage consists of using the operaltbr
=R"(1eH)(Q®1)"(H®1) resulting from stepsi) and (i)  This completes the algorithm. At this point, it is sufficient to
as a search operator for a higher-level quantum search algperform a measurement of the amplified superposition of so-
rithm, in order to further amplify the superposition nfg  lutions. This yields one solutioft,t’) with a probability of
target(or solution statedt,t’). The goal is thus to construct order 1.
such a superposition where each solution has an amplitude of In Fig. 3, the quantum network that implements this
order 14/ng. As before, we can make use of the operatornested quantum search algorithm is illustrated. Clearly, a se-
S=-U(I®Il¢)UTl, wherelg, Iy, andl, are defined in quence of two quantum search circui search in theA
Egs. (20), (26), and (27), in order to perform amplification Space followed by a search in tiBespacg is nestedinto a
according to the relation global search circuit in the whole Hilbert spatgg. This
can be interpreted as a “dynamical” choice of the search
operatorU that is used in the global quantum search. This
(t,t'|S'U]s,s')=r (t,t'|U]s,s')=r/\nA (32)  quantum nesting is distinct from a procedure where one
would try to choose an optimutd before running the quan-
tum search by making use of the structalassically(i.e., by
for a small rotation angle. The number of iterations ©f making several classical queries to the oracle in order to
required to maximally amplify the solutions is thus of the speedup the resulting quantum seardHere no measure-
order of ment is involved, and structure is used at the quantum level.
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It

H

m iterations

It

s

1 iterations

FIG. 3. Circuit implementing the nested quantum search algorithith a single level of nesting The upper set of quantum variables,
initially in state|s), corresponds to the primary variablesThe lower set of quantum variables, initially in statg, is associated with the
secondary variablesB. The quantum circuit makes use of controlled-phase gdtesexp(msKd), |s=explm|s'Xs'|), I
=exp(nZc.cle)(cl), andl =exp(mZqy).rlt.t’Xtt']), and Walsh-Hadamard gates The entire operation dff (exhibited inside the dashed
box) is repeated times. Note that)~*=U" corresponds to same the circuit dsbut read from right to left.

B. Quantum average-case complexity which is the quantum counterpart of E(/). In order to
Let us estimate the total number of iterations, or moredetérmine the scaling df;, we use the estimate i) that

precisely the number of times that a controlled-phase operds derived in Appendix A, namely,
tor (I, which flips the phase of a solution, ky, which flips
the phase of a could-be partial solutias used. Since we
need to repeat times the operatiols, which itself requires
applyingn timesQ andm timesR, for the quantum compu-
tation time we obtain

p(i)zbw(ﬁ/ﬁc)(im)k, (36)

where 8.=b¥In(b), andk is the size of the constrairt.e.,
number of variables involved in a constrairnEquation(36)
is a good approximation gf(i) when the dimension of the

— problem(or the number of variableg) is large. Remember
~r(n+m)= M that, in order to keep the difficulty constant when increasing
Tg=r(n+m) . (39
VNag the size of the problem, we need to choose the number of

constraintsé = Bu for increasingu. For the graph coloring

This expression is the quantum counterpart of &), and prc()jbkljer?], sincegbzebf(whlereer?eing thle numlber or: edgr;les
has the following interpretation. The first term in the nu- 2"d b the number of colops this simply implies that the

merator corresponds to a quantum search for the could—tféu(rjnbe][ of e;(_igeds musbt grofw Illnear_ly W('jth the number ?]f
partial solutions in space of siz#,. The second term is nodes for a fixed number of colors In order to preserve the

associated with a quantum search of actual solutions in th@fﬁculty, or, In other words, that the average connectivity
space of all the descendants of thg could-be solutions must remain constant. In general, the consx_ﬁnbrres_ponds
(each of them has a subspace of descendants oflg)z&he roug_hly to the average nu_rr_lber of constraipts' variable
denominator accounts for the fact that the total number ofinflj_ IS admea;surotlat(r)]f the ?'ﬁ;'ﬁu“y Téﬁi&igg'em-th tth
iterations decreases with the square root of the number of 0 understand this, note tha(u) = »Sothatthe

solutions of the problemm,g, as in the standard quantum num?l%rﬂlgf) solupqns "."t the bqttom of the tree rigu)
search algorithm. =h* ¢, This implies that, ifB=8;, we havep(u)

Let us now estimate the scaling of the computation timef:b_ﬂ' SO that the problem admits of th? order of one solu-
It is therefore reasonable to consider that the hardest

required by this quantum nested algorithm for a large searcHo"- - _ :
space. Remember that>1 is the number of variables Problems are found in the region whegis close to the
(number of nodes for the graph coloring probjemndb is f:rmcal vaI}JeBC, where one is sgarchlng for a single solution
the number of valueécolors per variable. As before, if we [N the entire search spachis is not rigorously trug18],
“cut” the tree at leveli (i.e., assigning a value fovariables but is a good enough characterization of hard problems for

out of u defines a partial solutionwe haved,=b' anddg e Purpose of this papgWhenS< ., however, there are
—b“~'. Also, we haven,=p(i)b', and nag=p(w)b” less constraints and the problem admits more than one solu-

wherep(i) is the probability of having a partial solution at toN. on average. 3> g, the problem is overconstrained,
level i that is “good” in a tree of heightw. [The quantity and it typically becomes easier to check the nonexistence of

p(w) is thus the probability of having a solution in the total a solution. Thus, in both cases, the difficulty of the average

search spaceEWe can reexpress the computation time as éproblem instances is 'OWGF-
function gﬂ b P P Now, plugging Eq.(36) into Eq. (35), for the quantum

computation time we obtain

Vb’ \p(i)b* a5 _ B+ Ve HBR)
Jpmpr O

To(i)= (37)
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Defining thereducedlevel on the tree ag=i/u, i.e., the  This shows that our nested quantum search algorithm is the
fraction of the height of the tree at which we exploit the precise counterpart of this particular classical nondetermin-

structure of the problem, we have istic algorithm.
Consider the regime wherg<p., i.e., there are fewer
a*+al- (BlBX constraints and therefore more than one solution on average,
T(x)= W' (39 so that the problem becomes easier to solve. For a diven

the solutionx of Eq. (40) increases wheB decreases, and
where a= \b”. Now, we want to find the value of that tends to 1 forB3— 0. This means that we recover thestruc-

minimizes the computation tim€,(x), so we have to solve tured quantum search algorithm in the limit whefe—0.
The denominator in Eq(41) increases, and it is easy to

(Bl B.) Kk~ 1= g(BlBIX +x-1 (39 check that the computation time
For largeu (or largea), this equation approximately reduces Tq= Vo T7FE (43

to
decreases whep decreases. As expected, the computation

(BIBe) X<+x—1=0. (40)  time of the nested algorithm approach®$.d??) as g

) ) tends to O(or x—1); that is, it reduces to the time of the
The solutionx (with 0<x=1) therefore corresponds to the gstandard unstructured quantum search algorithm at the limit
reduced level for whichTy(x) grows asymptotically & B—0.
—o°) with the smallest power ih. Note that this optimumx As an illustration of the scaling of our quantum algorithm,
is such that both terms in the numerator of E87) grow  consider an average hard instan@=(3.) of the graph col-
with the same power i (for large u). This reflects that  oring problem k=2). We must solve the linear equation of
there is a particular fraction of the height of the tree where ¢ocong orderx®+x—1=0, which yieldsx=(— 1+ 5)/2
it is optimal to “cut,” i.e., to look at partial solutions. The _q g1g0. (When k>2, the solution forx increases, and

optimum computation time can then be written as tends to 1 for large.) This means that the level on the tree
N — where it is optimal to use the structure is at about 62% of the
T ~ 2a — b (1) total height of the tree, i.e., when assigning values to about

R - NN YR C R 62% of theu variables. In this case, the computation time of

the quantum nested search algorithm scalesOés 39,
where the constant<<1 is defined as the solutionof Eq.  which is clearly an important computational gain compared
(40). (We may ignore the prefactor 2 as it only yields anto O(d °9).
additive constant in the logarithm of the computation time.  Finally, it is worth comparing the scaling of our quantum
Note that, for a search with several nesting levels, the conalgorithm with that of the best-known classical algorithm.
stanta<<x, as shown in Appendix C. In fact; can be shown For this comparison, here we consider another constraint sat-
to decrease with an increasing nesting ddpth, an increas- isfaction problem, the satisfiability problem of Boolean for-
ing number of nesting levels mulas in conjunctive normal form, &SAT problem. In this

Equation (41) implies that the scaling of the quantum problem, one has to decide whether a given formula made of
search in a space of dimensidr=b* is essentiallyO(d*’?) k clauses is satisfiabléThis problem is known to be NP-
modulo the denominatofwhich simply accounts for the complete fork=3.) The best known classical algorithm for
number of solutions In contrast, the standamuhstructured 3-SAT has a worst-case running time that scales as
quantum search algorithm applied to this problem correQ(2%446) [28]. Applying our quantum nested search algo-
sponds toa=x=1, with a computation time scaling as rithm to it (b=2,k=3), we obtaina=x=0.68, so that the
Tq(@=1)=0(d*?. This means that exploiting the structure expected computation time scales @§2°34) for hard
in the quantum algorithm results in a decrease of the powegproblem instances. This is compatible with our algorithm
in b by a coefficienta: the power 1/2 of the standard quan- being better tharior comparable tpthis best classical algo-
tum search is reduced /2 for this nested quantum search rithm.
algorithm. Consider this result @#= 3., i.e., when the dif-
ficulty of the problem is maximum for a given size Then V. CONCLUSION

the nested algorithm essentially scales as
There is considerable interest in the possibility of using

qud“’zz Voo, (42 guantum computers to speedup the solution of NP-complete
problems given the importance of these problems in com-
where a=x<1 with x being the solution ok*+x—1=0,  plexity theory and their ubiquity among practical computa-
andd=Db* is the dimension of the search space. This repretional applications. This paper presents an attempt in this
sents a significant improvement over the scaling of the undirection by showing that nesting the standard quantum
structured quantum search algorith@®(d*/?). Nevertheless, search algorithm results in a faster quantum algorithm for
it must be emphasized that the speedup with respect to thetructured search problems such as the constraint satisfaction
computation timeO(d*) of the classical nested algorithm problem than heretofore known. The key innovation is to
presented in Sec. Il is exactly a square r@bt Appendix B.  cast the construction of solutions of the problem as a quan-
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tum search through a tree of partial solutions, which narrowgach constraint involves exactk/variables, and each vari-

a subsequent quantum search at the next level in the searahle can be assigned any one ofbitsllowed values, there
tree. The corresponding computation time scales exponemre exactlyo® “ground instances” of each constraint. More-
tially with the problem size, but with a reduced coefficient over, as each constraint involves a different combinatiok of
that depends on the number of nesting levels and on theut of a possibleu variables, there can be at mogf (con-
problem. The speedup that is achieved sgaare rootover ~ straints. Each ground instance of a constraint may be
the computation time of a corresponding classical nestedgood” or “nogood,” so the number of ground instances
search algorithm, therefore which represents the appropriatfat are nogoodé, must be such that9é<b*({). If ¢ is
benchmark. Nevertheless, it is @xponentialimprovement ~small the problem typically has many solutionsélfs large
with respect to the time needed to solve the problem by us#e problem typically has few, or perhaps no, solutions. The
of the standard unstructured quantum search algorithnfXact placement of thé& nogood ground instances is, of
Moreover, for the 3-SAT problem, the computation time of COUrse, important in determining their ultimate pruning
the nested quantum search algorithm scales comparably RPWET-

the worst-case running time of the best-known classical al- 1 hUS {0 gstimat@(i).li'n ar;]averagetreg, Wﬁ c?lcglatt_a- thhe
gorithm today. More generally, our result opens the possibilS0Tresponding probability that a node in the lattieehic
mplicitly incorporatesall treeg is nogood, conditional on

ity that a square-root quantum improvement could be . X
achieved for any classical search method. there beingt nogood nodes at lev&l For a node at levelof

the lattice to be good it must not sit above any of the
nogood nodes at levéd A node at level of the lattice sits
ACKNOWLEDGMENTS above () nodes at levek. Thus, out of a total possible pool
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for Integrated Space Microsystem&rant No. 100306- nogood nodes at levéd is given by the ratio of the_number
3ROUO, UPN-632 Program(Grant No. 100356-8AX24 of ways t_o pick the nogood nodes such that a parpcqlar node
and NASA Advanced Concept&rant No. 233-O0NM71-D at leveli is good, to the total number of ways of picking the

This work was also supported by the Caltech President'$ Nogood nodes. As a consequence, the probability for a
Fund. partial solution to be good at levein a tree of heighj, and
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APPENDIX A: PROBABILITY OF A NODE ( bk({:)—(:())
IN A SEARCH TREE TO BE GOOD
)= L (Al)
Let us derive an approximate functional form fu(i), the p(i)= bX(£) '
probability that a node at levéein the search tree is “good.” ( £ )

The derivation is complicated by the fact that the same prob-
lem instance can be easy or hard depending orotterin  wherek is the size of the constraird.e., the number of
which the variables are assigned values. This is because it \&riables involved in a constraintand ¢ is the number of
possible that the constraints are such that a particular varhogood ground instance®r number of constraints This
able can only take one possible value. If this variable isapproximation essentially relies on the assumption that the
examined early in the search process, the recognition that thébgood ground instances at ledeprune independently, so
value is highly constrained would permit a large fraction ofthat the nogood partial solutions at levedre uncorrelated.
the search space to be avoided. Conversely, if this variable i% reality, the structure of the partial solution lattice implies
examined late in the search process, much of the tree miglihat there are correlations among the nodes pruned by a
already have been developed, resulting in relatively littlegiven set of nogood nodes at level
gain. However, the algorithm described in Sec. Il is a naive  Now we are interested in obtaining an approximate ex-
algorithm that doesiot optimize the order in which the vari- pression forp(i) for large problems, i.e., when the number
ables are assigned values. Thus we can compute the progf variablesy is large. Recall that to scale a constraint sat-
ability p(i) for an average tree having randomvariable jsfaction problem up, however, it is not sufficient to increase
ordering. only . In addition, we also ought to increase the number of
The simplest way to do this is to considerlatice of  constraints so as to preserve the “constrainedness per vari-
partial solutions rather than taee of partial solutions, be- gpjle” B=¢&lw. Thus, when we consider scaling our prob-
cause a lattice of partial solutions effectively encodes all postems up, as we must do to assess the asymptotic behavior of
sible variable orderings. In particular, thé level of a lattice  the classical and quantum structured search algorithms, we
of partial solutions represents all possible subsets\afri-  have u— o and scaleé=Bu, keepingB, b andk constant.
ables out ofu variables, assigned values in all possible com-For graph coloring, this scaling corresponds to adding more
binations. Thus in a lattice there arf)b' nodes at level  edges to the graph as we allow the number of nodes to in-
rather than thd' nodes in a tree. So each level of the latticecrease, while simultaneously keeping the average connectiv-
encodes the information contained i) (different trees. As ity (number of edges per nodend the number of colors
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fixed. We now make the assumption th&tbX(f) and Eq. (40) such that 8x=<1. For hard problems, i.e., prob-
£<b (") — (i), which is justified in the asymptotic regime. lems which admit a single solution on average<(8,), the

Using the Stirling formula, we have classical time thus scales as
(M) K K T 2 =0(d® B3
\KJ_M=K)”_(M (A2) ©gl-BIB (@ B3
(N) (N—K)X N
K for a search space of dimensial+b*. This represents a

significant improvement over a classical search that does not

for largeM andN, provided thakK<M,N. This allows us to exploit the structure, i.eT,=0(d).

reexpress EqAl) as

(k)) APPENDIX C: QUANTUM SEARCH WITH SEVERAL

R (A3) LEVELS OF NESTING
] ] ) The quantum algorithm described in Sec. IV A relies on a
Now, assuming thak<i andk<g, and reusing Eq(A2),  gjngle level of nesting. Indeed, the search at the bottom of
we have the tree(level ) is speeded up by making use of a search at
ke level i which determines the partial solutions which are
(i) ( "(—) )

p(i)=(1 b~k

(A4)  “good.” Only the candidate solutions which are descendants
of these partial solutions are examined in the search at level
_ : _ o K w. It should be realized that these good partial solutions at
for largei and . Finally, assuming for simplicity thdi*>1  |eye| i are selected, themselves, byaive search: stagé)

k .
and (/u)"<1, we obtain indeed amounts to use the standard unstructured search
. (1B (il based orH. In the corresponding classical nested algorithm,
p(i)=b ¢ , (A5)  this amounts to select a random partial solution at leweld

check whether it is good.

It is natural that both the classical and the quantum algo-
rithms could be improved further if the search for good par-
tial solutions at level itself was made faster by making use
of the structure of the upper part of the tré®y examining
partial solutions at levej, with j<i, and considering only
the descendants of the good ondshis leads to the notion of
a search with several levels of nestifige., a nesting depth
larger than 1

In order to analyze the scaling achieved by several levels
APPENDIX B: AVERAGE-CASE COMPLEXITY of nesting, let us consider a search at leivelhich corre-

OF THE CLASSICAL SEARCH sponds to theath nesting level. We suppose that this search
relies itself on a search at levgl where j<i<u, which
Vceorresponds therefore to th@< 1)th nesting level. Lei
Xp andj =X, 1 x4, Wherex, andx, ., denote the reduced
level on the tree at thath and 1+ 1)th nesting level, re-

where the parametes= &/ measures the difficulty of the
problem andB.=b"In(b) is the critical value of this param-
eter.

Note that forB8= 8., we havep(u)=b™#, that is, the
problem admits a single solution on avera@Ehis is actu-
ally how the critical pointB; is defined It is therefore rea-
sonable to consider tha@. approximately characterizes the
region of hard problems, as observed empirically.

Plugging Eq.(A5) into Eq.(7), we obtain an approximate
expression of the classical computation time needed to sol
an average instance with fixegl

bi & i H(BIBR) (il ) spectively. Assume that the quantum computation cost at
)= levelj is given b
Te(i) b (BB ; (B1) Jisg y
bn+1l
where the denominator is simply the expected number of t(j)= - (CY)
solutions. Let us now find the levewhere it is optimum to p(j)b’

“cut” the tree. The value of which minimizesT(i) corre-

sponds, for large:, to the situation where both terms in the wherea , is the scaling coefficient at the ¢ 1)th level of
numerator grow with the same power lnfi.e., the solution nesting(levelj in the treg. Using the structure at levgl the
of the equationi = u— wu(B/B)(i/w)¥. Then one can show quantum computation cost at levietan be written as

that the computation time approximately scales as
VP()P[t(j)+ Vb ]

apm t )2 - !
2b (B2) ! Vp(i)b'

Te= @iy

ap ] H I
where the scaling coefficient=x with x=i/u, the fraction = b2+ Vp(i)b )
of the height at which one cuts the tree, being the solution of Vp(i)b'

(C2
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By optimizingj so thatt(i) is minimum, as before, we obtain TABLE I. Reduced levek, on the tree and corresponding scal-

j =Xn4+ 10, Wherex,, ; is a solution of ing coefficienta,, at thenth level of nesting for the graph coloring
problem k=2) at B=pB.. The variableN denotes the nesting
(BIB:) XE+1+ ani1 Xpr1— X, =0, (C3 depth, andy, governs the scaling of the overall quantgan clas-

sica) algorithm.

with 0=x,,,=<1. Defining the scaling coefficient, by

Xo g X1 a; X3 a; X3 ag

A Xp= Any1Xn+1, (C4

1 1.000 0.618 0.618 1.000 - - - -
we see that the corresponding computation cost at leiel 2 1.000 0484 0.718 0.674 0.484 1.000 - i
given by 3 1.000 0.416 0.764 0.545 0.590 0.706 0.416 1.000
t(i)=——. (CH _ _ _
Vp(i)b the multinested quantum search algorithm remains a square

root if compared with the corresponding multinested classi-
%al search algorithm.

In Table | we show the values of thg’s and «,'s for an
average instance of maximum difficultyB€ B;) of the
graph coloring problemk=2). The scaling coefficient
decreases with an increasing nesting deytiimplying that
ay=1 (the innermost search at théth level of nesting is the speedup over an unstructured search @mproves by adding
supposed to be a naive searclihese two conditions, to- further nes_tlng levels. It sh(_)uld be empha§|zed, however, th_at
gether with the & recurrence relations, uniquely determine the formalism used to estimate the scaling throughout this
the variables Xo,X, ...xy) and (ag, s, ....ay). The Paper cannot be used for a large nesting déptimdeed, the
overall scaling of the quantum search algorithm isderivation ofp(i) essentially neglects the correlations be-

O(+/b™H), i.e., it is governed byy, (the constant that was tween partial solutions at any level in the tree which arise
denoted asy in Sec. IV B). Note that this entire calculation because of their sharing a same ancestor. Thus our cost esti-

is also valid for a classical nested search with several levelgate for the multinested algorithm is only valid provided
of nesting, except for the square root. Thus the speedup dhatN<u (the fact thatry— 0 whenN— < is meaningless

Thus, to determine the cost of the global algorithm, we nee
to solve the set of recurrence equatid@3) and (C4) for
n=0,1,... N—1, whereN is the nesting depthN=1 cor-
responds to the algorithm described in Sec. IV Ahe
boundary conditions argy=1 (the upper level is a search
for solutions at the bottom of the tree, i.e., at leygl and
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