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A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order
Ad, whered is the dimension of the search space, whereas any classical algorithm necessarily scales asO(d).
It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree
search problem bynestingone quantum search within another. The average number of iterations required to
find the solution of a typical hard instance of a constraint satisfaction problem is found to scale asAda, with
the constanta,1 depending on the nesting depth and the type of problem considered. This corresponds to a
square-root speedup over a classical nested search algorithm, of which our algorithm is the quantum counter-
part. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring
problem,a is estimated to be around 0.62.

PACS number~s!: 03.67.Lx, 89.70.1c
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I. INTRODUCTION

Over the past decade there has been steady progress
development of quantum algorithms. Most attention has
cused on the quantum algorithms for finding the factors o
composite integer@1,2# and for finding an item in an un
sorted ‘‘database’’@3,4#. These successes have inspired s
eral researchers to look for quantum algorithms that
solve other challenging problems, such as decision probl
@5# or combinatorial search problems@6#, more efficiently
than their classical counterparts.

The class of nondeterministic polynomial-time comple
~NP-complete! problems includes the most common comp
tational problems encountered in practice@7#. In particular, it
includes scheduling, planning, combinatorial optimizatio
theorem proving, propositional satisfiability, and graph c
oring. In addition to their ubiquity, NP-complete problem
share a fortuitous kinship: any NP-complete problem can
mapped into any other NP-complete problem using o
polynomial resources@7#. Thus any quantum algorithm tha
speeds up the solution of one NP-complete problem im
diately leads to equally fast quantum algorithms for all N
complete problems~up to the polynomial cost of translation!.
Unfortunately, NP-complete problems appear to be e
harder than the integer factorization problem. Whereas, c
sically, the best-known algorithm for the latter proble
scales only subexponentially@8#, NP-complete problems ar
widely believed to be exponential@7#. Consequently, the
demonstration that Shor’s quantum algorithm@1,2# can fac-
tor an integer in a time that is bounded by a polynomial
the ‘‘size’’ of the integer~i.e., the number of bits needed t
represent that integer!, while remarkable, does not lead to
polynomial-time quantum algorithm for NP-complete pro
lems, the existence of which being considered as highly
probable@9#. Moreover, it has proven to be very difficult t
adapt Shor’s algorithm to other computational application

By contrast, the unstructured quantum search algori
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@3,4# can be adapted quite readily to the service of solv
NP-complete problems. As any candidate solution to an N
complete problem can be tested for correctness in poly
mial time, one simply has to embody this testing in
‘‘oracle’’ ~i.e., a black-box function that returns 1 if the ca
didate solution is correct, and zero otherwise!, and apply the
unstructured quantum search algorithm. Unfortunately,
speedup afforded by this algorithm is onlyO(AN), whereN
is the number of candidate solutions to be tested. For a t
cal NP-complete problem in which one has to find an assi
ment of one ofb values to each ofm variables, the number o
candidate solutions,bm, grows exponentially withm. An un-
structured classical algorithm would therefore take an av
age timeO(bm) to find the solution, whereas the unstru
tured quantum search algorithm would takeO(bm/2).
Although this is an impressive speedup, one would still li
to do better.

While there is now good evidence that for unstructur
problems, the quantum search algorithm is optimal@9–11#,
these results have raised the question of whether faster q
tum search algorithms might be found for problems that p
sessstructure @6,12–14#. It so happens that NP-complet
problems have such structure in the sense that one can
build up complete solutions~i.e., value assignments to all th
variables! by extending so-called partial solutions~i.e., value
assignments to a subset of the variables!. This suggests that
rather than performing an unstructured quantum sea
amongall candidate solutions, it may be possible to perfo
a quantum search amongpartial solutions in order to narrow
a subsequent quantum search among their descendants
is the approach presented in this paper, which, we believ
applicable in all structured quantum searches.

We present an average-case complexity analysis of
algorithm, the average being taken across aclassof problem
instances, defined as a set of instances characterized b
same value of a parameter that is, roughly speaking, rel
to the difficulty of the problem~e.g., the average connectiv
©2000 The American Physical Society03-1
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ity of the graph to be colored!. Previous work in classica
computer science has indeed identified the class of prob
instances at which the hardest cases are most often enc
tered@15–19#. The motivation for investigating the averag
case complexity of this class is that it is expected to give
estimate of the cost of atypical hard problem. In contrast
worst-case analyses can be misleading because they te
focus on atypical problem instances. Similarly, nai
average-case analyses can be misleading because th
semble of problem instances over which the average is c
puted may contain, for example, an exceedingly large nu
ber of easy instances. Thus, the complexity analysis in te
of classes of problems that is carried out in this pape
believed to give a good tool for comparing the cost of so
ing typical hard problems~instead of that of an atypica
maximally difficult problem! with different algorithms.

Our improved quantum search algorithm works bynest-
ing one quantum search within another. Specifically, by p
forming a quantum search at a carefully selected level in
tree of partial solutions, we can narrow the effective quant
search among the candidate solutions so that the net com
tational cost is minimized. This allows us to find a soluti
to a constraint satisfaction problem in a time that grows,
average, asO(bam/2) for hard problem instances, wherea
,1 is a constant depending on the type of problem con
ered. The resulting algorithm is the quantum counterpart
classical nested search algorithm which scales asO(bam),
giving a quantum square-root speedup overall. This pro
dure corresponds to asingle level of ~classical or quantum!
nesting, but it can be easily extended to several nesting
els. The constanta is then shown to decrease with an i
creasing nesting depth~i.e., an increasing number of nestin
levels!.

The outline of the paper is as follows. Section II intr
duces a simple classical tree search algorithm that explo
problem structure to localize the search for solutions am
the candidates. This is not intended to be a sophisticated
search algorithm, but rather is aimed at providing a base
against which our quantum algorithm can be compared
Sec. III, we outline the standard unstructured quantum se
algorithm @3,4#. We focus especially on the algorithm bas
on an arbitrary unitary search operator@20#, as this is a key
for implementing quantum nesting. Finally, Sec. IV d
scribes the quantum tree search algorithm based on nes
which is the quantum analog of the classical search a
rithm presented in Sec. II.~The quantum search algorithm
with several levels of nesting is briefly discussed in Appe
dix C.! We conclude by showing that the expected time
find the solution of a typical hard problem instance grows
O(bam/2), that is, as the square root of the classical tim
This result suggests a systematic technique for translatin
nested classical search algorithm into a quantum one, gi
rise a square-root speedup that can be useful to accel
efficientclassical search algorithms~instead of a simple ex
haustive search, of no practical use!. Such a square-root im
provement was demonstrated independently in Ref.@21# in
the special case of ‘‘heuristics’’~i. e., probabilistic rule-of-
thumb algorithms which tend to guide the search toward
lutions!.
03230
m
un-

n

to

en-
-
-
s

is
-

r-
e

u-

n

-
a

e-

v-

a
g
ee
e

In
ch

ng,
o-

-

s
.
a
g

ate

-

II. NESTED CLASSICAL SEARCH
ON STRUCTURED PROBLEMS

A. Structured search in trees

Many hard computational problems, such as propositio
satisfiability, graph coloring, scheduling, planning, and co
binatorial optimization, can be regarded as examples of
called ‘‘constraint satisfaction problems.’’ Constraint sat
faction problems consist of a set of variables, each havin
finite set of domain values, together with a set of logic
relations~or ‘‘constraints’’! among the variables that are re
quired to hold simultaneously. A solution is defined by
complete set of variable-value assignments such that e
variable has some value, no variable is assigned conflic
values, and all the constraints are satisfied.

In such constraint satisfaction problems, there is ofte
degree of commonality between different nonsolutions. O
typically finds, for example, that certain combinations of a
signments of values to a subset of the variables are incon
tent ~i.e., violate one or more of the constraints! and cannot,
therefore, participate in any solution. These commonali
~several nonsolutions descending from the same inconsis
partial solution! can be exploited to focus the search for
solution. Thus, a classicalstructuredsearch algorithm can
find a solution to a constraint satisfaction problem in few
steps than that required by a unstructured search, by avoi
regions of the search space that can be guaranteed t
devoid of solutions. Before investigating whether the pro
lem structure can be exploited in a quantum search~see Sec.
IV !, we need to understand the circumstances under w
knowledge of problem structure has the potential to be u
ful, classically. The key idea is that one can obtain compl
solutions to a constraint satisfaction problem by system
cally extending partial solutions~i.e., value assignment to
subset of the variables!. Not all partial solutions are equally
desirable however. A partial solution is ‘‘good’’ if it is con
sistent with all the constraints against which it may be test
Conversely, a partial solution is ‘‘nogood’’ if it violates on
or more such constraints. Sophisticated search algorit
work by incrementally extending good partial solutions a
systematically terminating nogood partial solutions. This
duces a natural treelike structure on the search space of
tial solutions.

To give a concrete example of a tree search problem,
consider thegraph coloring problemas depicted in Fig. 1.
We have a graph that consists ofm nodes connected bye
edges, with 0<e<m(m21)/2. Each node must be assigne
a color ~out of b possible colors!, so that any two nodes
connected by an edge have different colors. More genera
for a constraint satisfaction problem, we are given a set om
variables (x1 , . . . ,xm) which each must be assigned a val
out of b possible values. This assignment must simul
neously satisfy a set of constraints, each involvingk vari-
ables. In the special case of the graph coloring problem, th
are e constraints of sizek52, since each edge imposes
constraint on the colors assigned to the pair of nodes it c
nects.

For each constraint, we define aground instanceas a
specific assignment of a value to each of the variables in
3-2
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NESTED QUANTUM SEARCH AND STRUCTURED . . . PHYSICAL REVIEW A 61 032303
constraint. For example, in the graph coloring problem
ground instance corresponds to a color assignment to
two nodes connected by an edge. A ground instance is
to benogoodif it violates the corresponding constraint. A
important variable in the following will be the number o
nogood ground instances, denoted byj. Thus, for the graph
coloring problem, the number of nogood ground instan
j5eb because each edge contributes exactlyb nogood in-
stances~for each edge,b pairs of identical colors are forbid
den! and there are a total ofe edges.~For other constraint
satisfaction problems,j is in general only approximately
proportional to the number of constraints because not
constraints need to have the same size.!

The search tree corresponding to this constraint satis
tion problem is also shown in Fig. 1. Thei th level of the
search tree enumerates all possiblepartial solutions involv-
ing a specific subset ofi, out of the totalm, variables. The
branching ratio in this tree, i.e., the number of children p
node, is equal tob, the number of domain values of a var
able. If anunstructuredsearch algorithm is used to solve
constraint satisfaction problem, the number of steps requ
to find a good assignment at the bottom of the tree~or decide
that there is no possible assignment satisfying all the c
straints! scales asbm. Thus, a space of the order of the ent
space of candidate solutions must be explored. As we
see,structuredsearch algorithms work by pruning much
the search space, giving rise to a cost exponentially sma
than bm, though still exponential in the size of the proble
m.

In our analysis of the computational cost, we will b
helped by an approximate model of tree search problems
greatly simplifies the calculation. Remarkably, many of t
properties of search trees can be understood without pre
knowledge of the problem. Indeed, it has been found emp
cally that the difficulty of solving a particular instance of
constraint satisfaction problem can be specified appr
mately by four parameters: the number of variables,m, the
number of values per variable,b; the number of variables pe
constraint,k; and the number of ground instances that

FIG. 1. Constraint satisfaction problem in which we must fi
an assignment to them variablesx1 ,x2 , . . . ,xm . As an example,
we picture thegraph coloring problem, in which we have to assign
one ofb possible colors to each node of a graph so that every
of nodes that are connected directly have different colors. The
responding search tree is characterized by a depthm and a branch-
ing ratio b. By looking at partial solutions at leveli in the tree~the
search space being of sizebi) and considering only the descendan
at level m of these partial solutions, one avoids having to sea
through the entire space at the bottom of the tree~of sizebm).
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nogood,j @15–17#. Clearly, if j is small, there are generall
many solutions satisfying the few constraints, so that
problem is easy to solve. Conversely, ifj is large, the prob-
lem is in general overconstrained, and it is easy to find tha
admits no solution. The problem is maximally hard in
intermediate range of values forj. In an effort to understand
the observed variation in difficulty across different instanc
of NP-complete problems for fixedm and b, it has been
shown that the cost of finding a solution~or proving none
exists! depends essentially on the parameter

b5j/m, ~1!

which characterizes the average number of nogood gro
instancesper variable @15,18,19#. Specifically, the problem
solving difficulty exhibits a ubiquitous easy-hard-easy p
tern, with the class of hard problem instances cluste
around a critical value ofb given, approximately, by

bc5bk ln~b! ~2!

assuming herebk@1 for simplicity. This phenomenon, akin
to a phase transitionin physical systems@18,19#, persists
across many different sophisticated algorithms.~For a gen-
eral reference on scaling in random graphs, see, e.g., R
@22,23#.! The average case complexity for a fixedb ~for a
given class of problem instances! is therefore believed to be
a more informative measure of computational complex
than either worst-case or naive average-case complexity.
therefore the measure that we will use in the rest of t
paper for estimating the scaling of the complexity of o
improved quantum search algorithm~as well as the corre-
sponding classical search algorithm!.

B. Average computational complexity of a classical algorithm

Let us describe a simple classical algorithm for a tr
search problem that exploits the structure of the problem
use of nesting. As pictured in Fig. 1, the key idea is to p
form a preliminary search through a space ofpartial solu-
tions in order to avoid a search through the entire space a
bottom of the tree. By definition, a partial solution at levei
in the tree assigns values to a subset ofi so-calledprimary
variables (x1 , . . . ,xi), which we denote asA. The subset of
secondaryvariables (xi 11 , . . . ,xm), denoted asB, corre-
sponds to the variables to which we assign a value only w
extending the partial solutions~i.e., when considering the
descendants of the partial solutions!. In general, any partia
solution can be tested against a part of the constrai
namely, just those constraints involving the primary va
ablesA. A partial solution that satisfies all these~testable!
constraints can be viewed as acould-besolution in the sense
that all solutions at the bottom of the tree~at levelm) must
be descendants of could-be’s. A classical search can
speeded up by terminating search along paths that arenot
descendants of a could-be, thereby avoiding to sea
through the entire space. The following algorithm can
used.

~i! Find a could-be solution at leveli in the tree. For this
purpose, repeatedly choose a random partial solution at l

ir
r-

h
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CERF, GROVER, AND WILLIAMS PHYSICAL REVIEW A61 032303
i, until it satisfies the testable constraints.
~ii ! For each could-be solution, check exhaustively~or by

use of a random search! all its descendants at the bottom
the tree~level m) for the presence of a possible solution.

This is clearly not a sophisticated algorithm. It amounts
nesting the search for a successful descendant at levelm into
the search for a could-be solution at leveli. Nevertheless, it
does exploit the problem structure by using the knowled
gleaned from the search at leveli to focus the search at leve
m. By finding a quantum analog of this algorithm~cf. Sec.
IV !, we will, therefore, be able to address the impact
problem structure on quantum search.

Let us estimate the expected cost of running this al
rithm. This cost consists essentially of three componentsn,
the cost of finding a consistent partial solution~a could-be! at
level i in the tree;m, the cost of the subsequent search amo
its descendants at levelm; andr, the number of repetitions o
this whole procedure before finding a solution. The sea
space for partial solutions~assignment of the primary vari
ables A) is of size dA5bi . Assuming that there arenA
could-be solutions at leveli ~i.e., partial solutions that can
lead to a solution!, the probability of finding one of them by
using a random search is thusnA /dA . Thus one needs of th
order of

n.dA /nA ~3!

iterations to find one could-be solution. The descendants
could-be solution are obtained by assigning a value to
subset ofsecondaryvariablesB, of size dB5bm2 i ~each
could-be solution hasdB descendants!. Thus, searching
through the entire space of descendants of a could-be s
tion requires, on average,

m.dB ~4!

iterations. If the problem admits a single solution, this wh
procedure needs to be repeatednA times, on average, sinc
we havenA could-be solutions. More generally, if the num
ber of solutions of the problem is given bynAB , this proce-
dure must only be repeated

r .nA /nAB ~5!

times in order to find a solution with a probability of order
Thus, the total number of iterations required to find a so
tion of an average instance is of the order of

Tc.r ~n1m!.
dA1nAdB

nAB
. ~6!

This corresponds to an improvement over a naiveunstruc-
turedsearch algorithm. Indeed, the cost of a naive algorit
that does not exploit structure is simplydAB /nAB , where
dAB5dAdB5bm is the dimension of the total search spac

The first term in the numerator of Eq.~6! corresponds to
the search for could-be solutions in a space of partial s
tions of sizedA ~shaded area at leveli in Fig. 1!, while the
second term corresponds to the search for actual solut
among all the descendants of thenA could-be solutions, each
03230
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of them havingdB descendants~shaded area at levelm in
Fig. 1!. The denominator in Eq.~6! accounts for a problem
admitting more than one solution. We will see in Sec. IV th
the quantum counterpart of Eq.~6! involves taking the
square root ofn, m, and r, which essentially results in a
quantum-mechanical square-root speedup over this clas
algorithm.

To make the estimate of this classical average-case c
plexity more quantitative, letp( i ) be the probability that a
partial solution at leveli is ‘‘good’’ ~i.e., that it satisfies all
the testable constraints!. In Appendix A, we provide an ap
proximate estimate ofp( i ) for an average instance of a larg
problem (m@1) with a fixed value of the parameterb. Re-
call that, if we want to preserve the difficulty while consid
ering the limit of large problems,b must be kept constant
This is necessary for the complexity measure that we c
sider in this paper, as mentioned before. Thus, by making
of this estimate ofp( i ), we can approximate the expecte
number of could-be solutions at thei th level, nA.p( i )bi ,
and the expected number of solution at the bottom of
tree, nAB.p(m)bm. Therefore, the average search time
the classical algorithm to find the first solution is appro
mately equal to

Tc~ i !.
bi1p~ i !bm

p~m!bm . ~7!

This mean-field approximation ofTc is essentially the cos
for finding one solution~which basically requires checkin
all the partial solutions for a could-be solution, and sub
quently checking the descendants of all these could-be s
tions! divided by the expected number of solutions at t
bottom of the tree~of the order of one whenb5bc , i.e., for
hard problems!.

Equation~7! yields an approximate cost measure for o
classical nested search algorithm as a function of the leve
the ‘‘cut,’’ i. An important question now is where to cut th
search tree? If one cuts the tree too high~searching for
could-be solutions at smalli ), one is unlikely to learn any-
thing useful as most partial solutions will probably b
‘‘goods,’’ allowing for little discrimination between solu
tions and nonsolutions. In other words, the second term
the numerator of Eq.~7! dominates sincep( i ) is close to 1,
i.e., there are many could-be solutions at leveli. Searching
for could-be solutions is thus fast~the space of primary vari-
ables is of sizebi only!, but those partial solutions are o
little use for singling out the actual solutions. The cost of t
search among the descendants of those partial solution
then high. Conversely, if one cuts the tree too deep~search-
ing for could-be solutions at largei ), although this would
enhance discrimination between solutions and nonsolutio
the search space for the primary variables would be almos
large as the entire space. Then the first term dominates
scaling as the search for could-be solutions becomes
consuming. It is therefore apparent that, for a typical pro
lem instance, there ought to be an optimal level at which
cut.

We can estimate the optimal level by finding the value
i that minimizes the classical computation timeTc( i ) for a
3-4
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NESTED QUANTUM SEARCH AND STRUCTURED . . . PHYSICAL REVIEW A 61 032303
given value ofm, b, j, andk, using the functional form for
p( i ) given in Appendix A. This is done in Appendix B
where we approximate the behavior of the location of
optimal cut level as a function ofb. We then estimate the
corresponding scaling ofTc for large problems (m@1). The
result is that the computation cost of running the class
nested search algorithm scales as

Tc.bam ~8!

for a search space of dimensiond5bm, where a,1 is a
constant depending on the problem considered.~More gen-
erally, a also depends on the number of nesting levels,
we have considered a single level of nesting in this sectio!
As we will see, the structured quantum search algorithm
we present in Sec. IV has a computational cost of orde
Abam, in agreement with the prevailing~but unproven! opin-
ion that a square-root speedup is the best that can
achieved instructuredsearch problems. The focus of th
paper is to show explicitlyhow a quantum algorithm can b
implemented that reaches this square-root speedup ove
classical algorithm discussed above. Interestingly enou
the quantum complexity of our nested algorithm scales t
as a power of the dimension of the search spaced5bm that is
less than 1/2. Structured quantum search therefore offe
significant speedup over both structured classical search
unstructured quantum search.

III. UNSTRUCTURED QUANTUM SEARCH

Let us first review the standardunstructuredquantum
search algorithm@3,4#. Consider a Hilbert space of dimen
sion d in which each basisux& state (x51, . . . ,d) corre-
sponds to a candidate solution of a search problem. A
search problem can be recast as the problem of finding
value~s! of x at which a black-box functionf (x), tradition-
ally called an ‘‘oracle,’’ is equal to 1~this function being
zero elsewhere!. We start the quantum search process fr
an arbitrary basis stateus&, and the goal is to reach a solutio
~or target! basis stateut&, with f (t)51, in a shortest compu
tation time. More precisely, if there is a single solution~or
target state!, the goal is to reach a state that has an amplit
of order 1 inut&, so that a measurement of this state gives
solution with a probability of order 1.~If there arer solu-
tions, the goal is to reach a superposition of the statesut&,
each with an amplitude of orderr 21/2.!

The quantum search algorithm we discuss below is in
an immediate extension of the original one@3,4#, where an
arbitrary unitary transformation is used instead of the Wal
Hadamard transformation@20#. Assume that we have at ou
disposal a quantum circuit that performs a particular unit
operationU. If this operation connects the starting stateus&
to the target stateut&, i.e.,^tuUus&Þ0, then this operation can
be usedclassicallyto find the target. Indeed, if we measu
the system after applyingU, the probability of obtaining the
solution ut& is obviously u^tuUus&u2. Thus, on average, we
need to repeat this experimentu^tuUus&u22 times to find the
solution with probability of order 1. We will show now tha
using a quantum algorithm, it is possible to reach the tar
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state ut& in a number of steps of orderu^tuUus&u21 only,
which represents a huge speedup provided thatu^tuUus&u
!1 ~this corresponds to the situation of interest where
search space is very large!.

The idea behind a quantum search algorithm is topost-
ponethe measurement, and keep a superposition of quan
states throughout the algorithm. Only at the end, a meas
ment is performed. Let us define the unitary operation

Q52UI sU
†I t52U eipPs U† eipPt, ~9!

wherePs5us&^su and Pt5ut&^tu are projection operators o
us& and ut&, respectively. The two unitary operatorsI s51
22Ps andI t5122Pt perform a controlled-phase operatio
applying I s ~or I t) on a stateux& flips its phase ifx5s ~or
x5t), and leaves it unchanged otherwise. Note that the
get stateut& is of course not available~it is what we are
searching for!. Instead, we have at our disposal the ‘‘oracle
quantum circuit that computes the functionf (x), and we can
use it to implement the circuit forI t : we have I tux&5
(21) f (x)ux& for all statesux&. The circuit for I s does not
require the functionf (x) and is trivial.

The quantum search algorithm is based on iterating
operatorQ starting fromUus&, in order toamplify the target
componentut&. This quantumamplitude amplification@21#
can be understood by noting that, after applyingU to the
starting stateus&, the repeated applications ofQ essentially
rotate this state into the target stateut& with an angle that is
linear in the number of iterations. More specifically, usin
Q52112ut&^tu12Uus&^suU†24Uus&^suU†ut&^tu, we can
see thatQ preserves the two-dimensional subspace span
by Uus& and ut&, namely,

QS Uus&

ut& D 5S 124 u^tuUus&u2 2^tuUus&

22^tuUus&* 1 D S Uus&

ut& D .

~10!

Therefore, at the limit ofu^tuUus&u!1, the statesUus& and
ut& are almost orthogonal, andQ tends to an infinitesima
rotation matrix.~In fact, the transformationQ is alwaysex-
actly a rotation if it is expressed in an orthogonal ba
@24,25#.! Indeed, keeping only the first-order terms inu
[^tuUus&, we obtain

QS Uus&

ut& D .S 1 2u

22u* 1 D S Uus&

ut& D
.expS 0 2u

22u* 0 D S Uus&

ut& D , ~11!

so thatQ is a rotation of angle 2u!1. We can then easily
approximateQn in the subspace spanned byUus& and ut&:
3-5
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QnS Uus&

ut& D .expS 0 2nu

22nu* 0 D S Uus&

ut& D
.S cos~2nuuu!

u

uuu
sin~2nuuu!

2
u*

uuu
sin~2nuuu! cos~2nuuu!

D S Uus&

ut& D ,

~12!

implying that the amplitude of the target stateut& after n
iterations is

^tuQnUus& .u cos~2nuuu!1
u

uuu
sin~2nuuu!. ~13!

These last expressions are only asymptotically valid at
limit of small uuu. The exact expressions for Eqs.~12! and
~13! in terms of Chebyshev polynomials can be found in R
@26#.

Consider first the case of a small rotation angle. From
~13!, we see that if we iterate the application ofQ on Uus&,
the amplitude ofut& grows approximatelylinearly with the
number of iterationsn, provided that the total angle 2nuuu
!1:

^tuQnUus&.~112n! ^tuUus&. ~14!

Consequently, if we measure the system aftern iterations,
the probabilityp(n) of finding the solution growsquadrati-
cally with n, asp(n);n2u^tuUus&u2. This is a great improve-
ment compared to the linear scaling of the classical al
rithm consisting in repeatingn times the measurement o
Uus&, namely,p(n);nu^tuUus&u2. This is the quadratic am
plification effect provided by quantum mechanics.

Now, consider the goal of reaching the target stateut&
using this operatorQ. From Eq.~12! we see that, starting
from the stateUus&, we need to applyQ until we have ro-
tated it by an angle of aboutp/2 in order to reachut&. At this
time only, one measures the system and obtains the de
solution with a probability of order 1. The number of iter
tions required to rotateUus& into the solutionut& is thus

n.
p

4
u^tuUus&u21, ~15!

and scales as thesquare rootof the classical time. It is worth
noting that the amplitude of any stateux& orthogonal to the
targetut& is given by

^xuQnUus&.cos~2nuuu! ^xuUus&, ~16!

so that^xuQnUus&.^xuUus& for small angles. Thus the am
plitude of nonsolutions isnot amplified by applyingQ re-
peatedly, so that the quantum search algorithm selecti
amplifies the solutions only.

Thus, here we have described a general technique
achieving a quantum-mechanical square-root speedup
search algorithm relying onany unitary transformationU
@20#. The quantum search algorithm can be simply viewed
03230
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a rotation fromUus& to ut& based on the repeated operation
Q, followed by a measurement. In the above discussion,
search operatorU can be arbitrary,provided it connectsus&
andut&. In the case of anunstructuredsearch problem, as we
have noa priori knowledge about where the solution is lo
cated, the most natural choice forU is the Walsh-Hadamard
transformationH @3,4#

Hux&5
1

Ad
(
y50

d21

~21! x̄• ȳuy&, ~17!

wherex̄• ȳ5( i 50
d21xiyi(mod2), withxi (yi) being the binary

digits of x (y). @Here and below, we assume for simplici
thatd is a power of 2. If it is not, then we need to choose f
the size of the Hilbert space the nearest power of 2 tha
larger thand and pad the functionf (x) with additional ze-
ros.# Clearly, U5H does not bias the search toward a p
ticular candidate solution sinceHus& has the same~squared!
amplitude in all the candidate solutions, so that the sea
starts from a uniform distribution of all states. Applyin
U5H to an arbitrary state in the computation basis, e
us&5u00 . . . 0&, we see that

^tuHus&561/Ad ~18!

for all possible target stateut&. Thus, according to Eq.~15!,
the number of iterations in the quantum search algorit
relying onH is O(Ad) @3,4#, whereas a classical search a
gorithm obviously requiresO(d) steps. When there are mu
tiple target states~the problem admits several solutions!, it
can be shown that the quantum computation time beco
O(Ad/r ), wherer is the number of solutions@10#. The clas-
sical counterpart is then simplyO(d/r ).

For astructuredsearch problem, however, it is natural
use the knowledge of the structure in order to choose a be
operatorU or initial state us&. Indeed, if we have partia
knowledge about where the solutions are, it seems that
can exploit it tobias the search in such a way thatUus& has
larger amplitudes in states which are more probable to
solutions. It has been shown recently that an arbitrary~non-
uniform! initial amplitude distributionus& can be used with
the standard quantum search algorithm, resulting in
O(Ad/r ) quantum computation time@27#. This seems to in-
dicate, however, that the scaling remains inO(Ad) even if
we use our knowledge about the problem by biasing
initial distribution. In contrast, we will show in Sec. IV tha
the use of anestedquantum search algorithm results in
power law ind with an exponent that issmallerthan 1/2. The
central idea is thatU is not fixeda priori, but is rather ob-
tained ‘‘dynamically’’ by the quantum algorithm itself, de
pending on the particular instance. More specifically,
standard search algorithm is used toconstructan effective
search operatorU ~or a nonuniform initial distribution!
which, itself, is nested within another quantum search al
rithm. In other words, we apply quantum search ‘‘recu
sively’’: the overall operator (2HI sHI t)

nH resulting from a
nested search algorithm based onH is used as a better op
eratorU for a quantum search at an upper level of hierarc
3-6
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FIG. 2. Schematic representation of stages~i!
and ~ii ! of the quantum algorithm. These stag
partially amplify the solution states, and can b
nested into a standard quantum search algorit
~iii ! in order to speedup the amplification of th
solutions.
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IV. NESTED QUANTUM SEARCH
ON STRUCTURED PROBLEMS

A. Core quantum algorithm

Assume that the Hilbert space of our search problem
the tensor product of two Hilbert spacesHA and HB . As
before,A denotes the set of primary variables, that is,
variables to which we assign a value in the first stage. T
partial solutions correspond to definite values for these v
ables. ThusHA represents the search space for partial so
tions ~of dimensiondA). The set of secondary variable
characterizing the extensions of partial solutions, is deno
by B, and the corresponding Hilbert spaceHB is of dimen-
siondB . ~Again, we assume here thatdA anddB are powers
of 2 to simplify the discussion.! Let us briefly describe the
quantum algorithm with a single nesting level~the counter-
part of the classical algorithm of Sec. II!.

~i! The first stage consists of constructing a superposi
~with equal amplitudes! of all the could-be solutions at leve
i by use of the standard unstructured search algorithm b
on H.

~ii ! Then one performs a subsequent quantum searc
the subspace of the descendants ofall the could-be partial
solutions, simultaneously. This second stage is achieved
using the standard quantum search algorithm with, as an
put, thesuperpositionof could-be solutions resulting from
the first stage. The overall yield of stages~i! and ~ii ! is a
superposition of all states where the solutions have been
tially amplified with respect to nonsolutions.

~iii ! The final procedure consists of nesting stages~i! and
~ii !—using them as a search operatorU—inside a higher-
level quantum search algorithm until the solutions are ma
mally amplified, at which point a measurement is perform
This is summarized in Fig. 2.

Let us now follow in more details the evolution of th
quantum state by applying this quantum nested algorit
and estimate the number of iterations required. The star
state of the search is denoted asus,s8&, whereus& ~lying in
HA) and us8& ~lying in HB) are just the initial state of two
different parts of the same, single, quantum register whic
large enough to hold all the potential solutions in the to
search space~i.e., all thebm leaf nodes of the search tree
level m). RegisterA stores the starting state at an interme
ate leveli in the tree, while registerB stores the continuation
of that state at levelm. In other words,A holds partial solu-
tions andB their elaboration in the leaves of the tree.

~i! The first stage of the algorithm consists in a stand
quantum search forcould-bepartial solutionsuc& at level i,
that is, states in subspaceHA that do not violate any~test-
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able! constraint. We start from stateus& in subspaceHA , and
apply a quantum search based on the Walsh-Hadamard t
formationH since we do not havea priori knowledge about
the location of could-be solutions. Using

^cuHus&561/AdA, ~19!

we can perform an amplification of the componentsuc&
based onQ52HI sHI c where

I s5exp~ ipus&^su!, ~20!

I c5expS ip (
cPC

uc&^cu D . ~21!

The statesuc& correspond to the could-be partial solutions
HA ~assignment of the primary variables that could lead t
solution!, and belong to the subsetC5$c1 , . . . ,cnA

%. We

assume that there arenA could-be partial solutions, with 1
!nA!dA . The quadratic amplification of these could-be s
lutions, starting fromus&, is reflected by

^cuQnHus&.n ^cuHus&.n/AdA ~22!

for a small rotation angle. Thus, applyingQ sequentially, we
can construct a superposition of all the could-be solutio
uc&, each with an amplitude of order 1/AnA. The required
number of iterations ofQ scales as

n.AdA /nA. ~23!

This amplitude amplification process can be describ
equivalently in the joint Hilbert spaceHA^ HB , starting
from the product stateus,s8&, whereus8& denotes an arbitrary
starting state inHB , and applying (Q^ 1) sequentially:

^c,s8u~Q^ 1!n~H ^ 1!us,s8&5^cuQnHus&.n/AdA.
~24!

Here and below, we use the convention that the left~right!
term in a tensor product refers to subspaceA (B).

~ii ! The second stage of the algorithm is a standard qu
tum search for the secondary variablesB in the subspace o
the ‘‘descendants’’ of the could-be solutions that have be
singled out in stage~i!. As before, we can use the sear
operatorH that connects extended could-be solutionsuc,s8&
to the actual solutions or target statesut,t8& in the joint Hil-
bert space:
3-7
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CERF, GROVER, AND WILLIAMS PHYSICAL REVIEW A61 032303
^t,t8u~1^ H !uc,s8&5^tuc& ^t8uHus8&56dc,t /AdB.
~25!

Note that, this matrix element is non-vanishing only f
could-be statesuc& that lead to an actual solution. Define th
operatorR52(1^ HI s8H)I t , with

I s85exp~ ipus8&^s8u!, ~26!

I t5expS ip (
(t,t8)PT

ut,t8&^t,t8u D , ~27!

whereT is the set of solutionsut,t8& at the bottom of the tree
and #(T)5nAB , i.e., the problem admitsnAB solutions. We
can apply the operatorR sequentially in order to amplify a
target stateut,t8&, namely,

^t,t8uRm~1^ H !uc,s8&.H m ^t,t8u~1^ H !uc,s8& if c5t

^t,t8u~1^ H !uc,s8& if cÞt
~28!

for a small rotation angle. Note that, for a could-be stateuc&
that does not lead to a solution (cÞt), we have I tuc,x&
lg

t
e
to

e

03230
5uc,x& for all x, so thatRm(1^ H)uc,s8&5(21^ HI s8H)m(1
^ H)uc,s8&5(1^ H)uc,s8&, and the matrix element is no
amplified bym compared to the casec5t. In other words, no
amplification occurs in the space of descendants of could
partial solutions that do not lead to an actual solution. Th
Eq. ~28! results in

^t,t8uRm~1^ H !uc,s8&.
m

AdB

dc,t . ~29!

Assuming that, among the descendants of each could-be
lution uc,s8&, there is either zero or one solution, we need
iterateR of the order of

m.AdB ~30!

times in order to maximally amplify each solution. We the
obtain a superposition of the solution statesut,t8&, each with
an amplitude of order 1/AnA. This can also be seen by com
bining Eqs.~24! and~29!, and using the resolution of identit
15(x,yux,y&^x,yu:
~31!
to
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Thus, applying the operatorQn followed by the operatorRm

connects the starting stateus,s8& to each of the solutions
ut,t8& of the problem with a matrix element of order 1/AnA.

~iii ! The third stage consists of using the operatorU
[Rm(1^ H)(Q^ 1)n(H ^ 1) resulting from steps~i! and ~ii !
as a search operator for a higher-level quantum search a
rithm, in order to further amplify the superposition ofnAB
target~or solution! statesut,t8&. The goal is thus to construc
such a superposition where each solution has an amplitud
order 1/AnAB. As before, we can make use of the opera
S52U(I s^ I s8)U

†I t where I s , I s8 , and I t are defined in
Eqs. ~20!, ~26!, and ~27!, in order to perform amplification
according to the relation

^t,t8uSrUus,s8&.r ^t,t8uUus,s8&.r /AnA ~32!

for a small rotation angle. The number of iterations ofS
required to maximally amplify the solutions is thus of th
order of
o-

of
r

r .A nA

nAB
. ~33!

This completes the algorithm. At this point, it is sufficient
perform a measurement of the amplified superposition of
lutions. This yields one solutionut,t8& with a probability of
order 1.

In Fig. 3, the quantum network that implements th
nested quantum search algorithm is illustrated. Clearly, a
quence of two quantum search circuits~a search in theA
space followed by a search in theB space! is nestedinto a
global search circuit in the whole Hilbert spaceHAB . This
can be interpreted as a ‘‘dynamical’’ choice of the sea
operatorU that is used in the global quantum search. T
quantum nesting is distinct from a procedure where o
would try to choose an optimumU before running the quan
tum search by making use of the structureclassically~i.e., by
making several classical queries to the oracle in order
speedup the resulting quantum search!. Here no measure
ment is involved, and structure is used at the quantum le
3-8
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FIG. 3. Circuit implementing the nested quantum search algorithm~with a single level of nesting!. The upper set of quantum variable
initially in stateus&, corresponds to the primary variablesA. The lower set of quantum variables, initially in statesus8&, is associated with the
secondary variablesB. The quantum circuit makes use of controlled-phase gatesI s5exp(ipus&^su), I s85exp(ipus8&^s8u), I c

5exp(ip(cPCuc&^cu), andI t5exp(ip((t,t8)PTut,t8&^t,t8u), and Walsh-Hadamard gatesH. The entire operation ofU ~exhibited inside the dashe
box! is repeatedr times. Note thatU215U† corresponds to same the circuit asU but read from right to left.
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B. Quantum average-case complexity

Let us estimate the total number of iterations, or mo
precisely the number of times that a controlled-phase op
tor (I t , which flips the phase of a solution, orI c , which flips
the phase of a could-be partial solution! is used. Since we
need to repeatr times the operationS, which itself requires
applyingn timesQ andm timesR, for the quantum compu
tation time we obtain

Tq.r ~n1m!.
AdA1AnAdB

AnAB

. ~34!

This expression is the quantum counterpart of Eq.~6!, and
has the following interpretation. The first term in the n
merator corresponds to a quantum search for the coul
partial solutions in space of sizedA . The second term is
associated with a quantum search of actual solutions in
space of all the descendants of thenA could-be solutions
~each of them has a subspace of descendants of sizedB). The
denominator accounts for the fact that the total number
iterations decreases with the square root of the numbe
solutions of the problemnAB , as in the standard quantum
search algorithm.

Let us now estimate the scaling of the computation ti
required by this quantum nested algorithm for a large sea
space. Remember thatm@1 is the number of variable
~number of nodes for the graph coloring problem!, andb is
the number of values~colors! per variable. As before, if we
‘‘cut’’ the tree at leveli ~i.e., assigning a value toi variables
out of m defines a partial solution!, we havedA5bi anddB
5bm2 i . Also, we have nA.p( i )bi , and nAB.p(m)bm,
wherep( i ) is the probability of having a partial solution a
level i that is ‘‘good’’ in a tree of heightm. @The quantity
p(m) is thus the probability of having a solution in the tot
search space.# We can reexpress the computation time a
function of i,

Tq~ i !.
Abi1Ap~ i !bm

Ap~m!bm
, ~35!
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which is the quantum counterpart of Eq.~7!. In order to
determine the scaling ofTq , we use the estimate ofp( i ) that
is derived in Appendix A, namely,

p~ i !.b2m(b/bc)( i /m)k
, ~36!

wherebc5bk ln(b), andk is the size of the constraint~i.e.,
number of variables involved in a constraint!. Equation~36!
is a good approximation ofp( i ) when the dimension of the
problem~or the number of variablesm) is large. Remember
that, in order to keep the difficulty constant when increas
the size of the problem, we need to choose the numbe
constraintsj5bm for increasingm. For the graph coloring
problem, sincej5eb ~wheree being the number of edge
and b the number of colors!, this simply implies that the
number of edges must grow linearly with the number
nodes for a fixed number of colors in order to preserve
difficulty, or, in other words, that the average connectiv
must remain constant. In general, the constantb corresponds
roughly to the average number of constraintsper variable,
and is a measure of the difficulty of the problem.

To understand this, note thatp(m).b2m(b/bc), so that the
number of solutions at the bottom of the tree isn(m)
.bm(12b/bc). This implies that, ifb.bc , we havep(m)
.b2m, so that the problem admits of the order of one so
tion. It is therefore reasonable to consider that the hard
problems are found in the region whereb is close to the
critical valuebc , where one is searching for a single solutio
in the entire search space.~This is not rigorously true@18#,
but is a good enough characterization of hard problems
the purpose of this paper.! Whenb,bc , however, there are
less constraints and the problem admits more than one s
tion, on average. Ifb.bc , the problem is overconstrained
and it typically becomes easier to check the nonexistenc
a solution. Thus, in both cases, the difficulty of the avera
problem instances is lower.

Now, plugging Eq.~36! into Eq. ~35!, for the quantum
computation time we obtain

Tq~ i !.
Abi1Abm2m(b/bc)( i /m)k

Abm2m(b/bc)
. ~37!
3-9
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Defining thereducedlevel on the tree asx5 i /m, i.e., the
fraction of the height of the tree at which we exploit th
structure of the problem, we have

Tq~x!.
ax1a12(b/bc)xk

a12b/bc
, ~38!

where a[Abm. Now, we want to find the value ofx that
minimizes the computation timeTq(x), so we have to solve

~b/bc! kxk215a(b/bc)xk1x21. ~39!

For largem ~or largea), this equation approximately reduce
to

~b/bc! xk1x2150. ~40!

The solutionx ~with 0<x<1) therefore corresponds to th
reduced level for whichTq(x) grows asymptotically (m
→`) with the smallest power inb. Note that this optimumx
is such that both terms in the numerator of Eq.~37! grow
with the same power inb ~for large m). This reflects that
there is a particular fractionx of the height of the tree wher
it is optimal to ‘‘cut,’’ i.e., to look at partial solutions. The
optimum computation time can then be written as

Tq.
2aa

a12b/bc
.

Abam

Abm(12b/bc)
, ~41!

where the constanta,1 is defined as the solutionx of Eq.
~40!. ~We may ignore the prefactor 2 as it only yields
additive constant in the logarithm of the computation tim!
Note that, for a search with several nesting levels, the c
stanta,x, as shown in Appendix C. In fact,a can be shown
to decrease with an increasing nesting depth~i.e., an increas-
ing number of nesting levels!.

Equation ~41! implies that the scaling of the quantu
search in a space of dimensiond5bm is essentiallyO(da/2)
modulo the denominator~which simply accounts for the
number of solutions!. In contrast, the standardunstructured
quantum search algorithm applied to this problem cor
sponds toa5x51, with a computation time scaling a
Tq(a51)5O(d1/2). This means that exploiting the structu
in the quantum algorithm results in a decrease of the po
in b by a coefficienta: the power 1/2 of the standard qua
tum search is reduced toa/2 for this nested quantum searc
algorithm. Consider this result atb5bc , i.e., when the dif-
ficulty of the problem is maximum for a given sizem. Then
the nested algorithm essentially scales as

Tq.da/25Abam, ~42!

wherea5x,1 with x being the solution ofxk1x2150,
andd5bm is the dimension of the search space. This rep
sents a significant improvement over the scaling of the
structured quantum search algorithm,O(d1/2). Nevertheless,
it must be emphasized that the speedup with respect to
computation timeO(da) of the classical nested algorithm
presented in Sec. II is exactly a square root~cf. Appendix B!.
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This shows that our nested quantum search algorithm is
precise counterpart of this particular classical nondeterm
istic algorithm.

Consider the regime whereb,bc , i.e., there are fewer
constraints and therefore more than one solution on aver
so that the problem becomes easier to solve. For a givek,
the solutionx of Eq. ~40! increases whenb decreases, and
tends to 1 forb→0. This means that we recover theunstruc-
tured quantum search algorithm in the limit whereb→0.
The denominator in Eq.~41! increases, and it is easy t
check that the computation time

Tq.Abm(a211b/bc) ~43!

decreases whenb decreases. As expected, the computat
time of the nested algorithm approachesO(Adb/bc) as b
tends to 0~or x→1); that is, it reduces to the time of th
standard unstructured quantum search algorithm at the l
b→0.

As an illustration of the scaling of our quantum algorithm
consider an average hard instance (b5bc) of the graph col-
oring problem (k52). We must solve the linear equation o
second orderx21x2150, which yields x5(211A5)/2
50.6180. ~When k.2, the solution forx increases, and
tends to 1 for largek.! This means that the level on the tre
where it is optimal to use the structure is at about 62% of
total height of the tree, i.e., when assigning values to ab
62% of them variables. In this case, the computation time
the quantum nested search algorithm scales asO(d 0.31),
which is clearly an important computational gain compar
to O(d 0.5).

Finally, it is worth comparing the scaling of our quantu
algorithm with that of the best-known classical algorithm
For this comparison, here we consider another constraint
isfaction problem, the satisfiability problem of Boolean fo
mulas in conjunctive normal form, ork-SAT problem. In this
problem, one has to decide whether a given formula mad
k clauses is satisfiable.~This problem is known to be NP
complete fork>3.! The best known classical algorithm fo
3-SAT has a worst-case running time that scales
O(20.446m) @28#. Applying our quantum nested search alg
rithm to it (b52, k53), we obtaina5x50.68, so that the
expected computation time scales asO(20.34m) for hard
problem instances. This is compatible with our algorith
being better than~or comparable to! this best classical algo
rithm.

V. CONCLUSION

There is considerable interest in the possibility of usi
quantum computers to speedup the solution of NP-comp
problems given the importance of these problems in co
plexity theory and their ubiquity among practical compu
tional applications. This paper presents an attempt in
direction by showing that nesting the standard quant
search algorithm results in a faster quantum algorithm
structured search problems such as the constraint satisfa
problem than heretofore known. The key innovation is
cast the construction of solutions of the problem as a qu
3-10
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tum search through a tree of partial solutions, which narro
a subsequent quantum search at the next level in the se
tree. The corresponding computation time scales expon
tially with the problem size, but with a reduced coefficie
that depends on the number of nesting levels and on
problem. The speedup that is achieved is asquare rootover
the computation time of a corresponding classical nes
search algorithm, therefore which represents the approp
benchmark. Nevertheless, it is anexponentialimprovement
with respect to the time needed to solve the problem by
of the standard unstructured quantum search algorit
Moreover, for the 3-SAT problem, the computation time
the nested quantum search algorithm scales comparab
the worst-case running time of the best-known classical
gorithm today. More generally, our result opens the possi
ity that a square-root quantum improvement could
achieved for any classical search method.
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APPENDIX A: PROBABILITY OF A NODE
IN A SEARCH TREE TO BE GOOD

Let us derive an approximate functional form forp( i ), the
probability that a node at leveli in the search tree is ‘‘good.’’
The derivation is complicated by the fact that the same pr
lem instance can be easy or hard depending on theorder in
which the variables are assigned values. This is because
possible that the constraints are such that a particular v
able can only take one possible value. If this variable
examined early in the search process, the recognition tha
value is highly constrained would permit a large fraction
the search space to be avoided. Conversely, if this variab
examined late in the search process, much of the tree m
already have been developed, resulting in relatively li
gain. However, the algorithm described in Sec. II is a na
algorithm that doesnot optimize the order in which the vari
ables are assigned values. Thus we can compute the p
ability p( i ) for an average tree having arandom variable
ordering.

The simplest way to do this is to consider alattice of
partial solutions rather than atree of partial solutions, be-
cause a lattice of partial solutions effectively encodes all p
sible variable orderings. In particular, thei th level of a lattice
of partial solutions represents all possible subsets ofi vari-
ables out ofm variables, assigned values in all possible co
binations. Thus in a lattice there are (i

m)bi nodes at leveli
rather than thebi nodes in a tree. So each level of the latti
encodes the information contained in (i

m) different trees. As
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each constraint involves exactlyk variables, and each vari
able can be assigned any one of itsb allowed values, there
are exactlybk ‘‘ground instances’’ of each constraint. More
over, as each constraint involves a different combination ok
out of a possiblem variables, there can be at most (k

m) con-
straints. Each ground instance of a constraint may
‘‘good’’ or ‘‘nogood,’’ so the number of ground instance
that are nogood,j, must be such that 0<j<bk(k

m). If j is
small the problem typically has many solutions. Ifj is large
the problem typically has few, or perhaps no, solutions. T
exact placement of thej nogood ground instances is, o
course, important in determining their ultimate prunin
power.

Thus to estimatep( i ) in anaveragetree, we calculate the
corresponding probability that a node in the lattice~which
implicitly incorporatesall trees! is nogood, conditional on
there beingj nogood nodes at levelk. For a node at leveli of
the lattice to be good it must not sit above any of thej
nogood nodes at levelk. A node at leveli of the lattice sits
above (k

i ) nodes at levelk. Thus, out of a total possible poo
of bk(k

m) nodes at levelk, we must exclude (k
i ) of them.

However, we can pick thej nogood nodes from amongst th
remaining nodes in any way whatsoever. Hence the proba
ity that a node is good at leveli, given that there arej
nogood nodes at levelk, is given by the ratio of the numbe
of ways to pick the nogood nodes such that a particular n
at level i is good, to the total number of ways of picking th
j nogood nodes. As a consequence, the probability fo
partial solution to be good at leveli in a tree of heightm, and
branching ratiob can be approximated as@16,17,19#

p~ i !5

S bk~k
m!2~k

i !

j
D

S bk~k
m!

j
D , ~A1!

where k is the size of the constraint~i.e., the number of
variables involved in a constraint!, and j is the number of
nogood ground instances~or number of constraints!. This
approximation essentially relies on the assumption that
nogood ground instances at levelk prune independently, so
that the nogood partial solutions at leveli are uncorrelated.
In reality, the structure of the partial solution lattice implie
that there are correlations among the nodes pruned b
given set of nogood nodes at levelk.

Now we are interested in obtaining an approximate
pression forp( i ) for large problems, i.e., when the numb
of variablesm is large. Recall that to scale a constraint s
isfaction problem up, however, it is not sufficient to increa
only m. In addition, we also ought to increase the number
constraints so as to preserve the ‘‘constrainedness per
able’’ b5j/m. Thus, when we consider scaling our pro
lems up, as we must do to assess the asymptotic behavi
the classical and quantum structured search algorithms
havem→` and scalej5bm, keepingb, b andk constant.
For graph coloring, this scaling corresponds to adding m
edges to the graph as we allow the number of nodes to
crease, while simultaneously keeping the average conne
ity ~number of edges per node! and the number of colors
3-11
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fixed. We now make the assumption thatj!bk(k
m) and

j!bk(k
m)2(k

i ), which is justified in the asymptotic regime
Using the Stirling formula, we have

S M
K D

S N
K D .

~M2K !K

~N2K !K .S M

N D K

~A2!

for largeM andN, provided thatK!M ,N. This allows us to
reexpress Eq.~A1! as

p~ i !5S 12b2k
~k

i !

~k
m!

D j

. ~A3!

Now, assuming thatk! i and k!m, and reusing Eq.~A2!,
we have

p~ i !5X12b2kS i

m D kCj

~A4!

for largei andm. Finally, assuming for simplicity thatbk@1
and (i /m)k!1, we obtain

p~ i !5b2m(b/bc) ~ i /m!k
, ~A5!

where the parameterb5j/m measures the difficulty of the
problem andbc5bkln(b) is the critical value of this param
eter.

Note that forb5bc , we havep(m)5b2m, that is, the
problem admits a single solution on average.~This is actu-
ally how the critical pointbc is defined.! It is therefore rea-
sonable to consider thatbc approximately characterizes th
region of hard problems, as observed empirically.

APPENDIX B: AVERAGE-CASE COMPLEXITY
OF THE CLASSICAL SEARCH

Plugging Eq.~A5! into Eq.~7!, we obtain an approximate
expression of the classical computation time needed to s
an average instance with fixedb,

Tc~ i !.
bi1bm2m(b/bc)( i /m)k

bm2m(b/bc)
, ~B1!

where the denominator is simply the expected number
solutions. Let us now find the leveli where it is optimum to
‘‘cut’’ the tree. The value ofi which minimizesTc( i ) corre-
sponds, for largem, to the situation where both terms in th
numerator grow with the same power ofb, i.e., the solution
of the equationi 5m2m(b/bc)( i /m)k. Then one can show
that the computation time approximately scales as

Tc.
2bam

bm2m(b/bc)
, ~B2!

where the scaling coefficienta5x with x5 i /m, the fraction
of the height at which one cuts the tree, being the solution
03230
ve

f

f

Eq. ~40! such that 0<x<1. For hard problems, i.e., prob
lems which admit a single solution on average (b5bc), the
classical time thus scales as

Tc.
2da

d12b/bc
5O~da! ~B3!

for a search space of dimensiond5bm. This represents a
significant improvement over a classical search that does
exploit the structure, i.e.,Tc5O(d).

APPENDIX C: QUANTUM SEARCH WITH SEVERAL
LEVELS OF NESTING

The quantum algorithm described in Sec. IV A relies on
single level of nesting. Indeed, the search at the bottom
the tree~level m) is speeded up by making use of a search
level i which determines the partial solutions which a
‘‘good.’’ Only the candidate solutions which are descenda
of these partial solutions are examined in the search at l
m. It should be realized that these good partial solutions
level i are selected, themselves, by anaivesearch: stage~i!
indeed amounts to use the standard unstructured se
based onH. In the corresponding classical nested algorith
this amounts to select a random partial solution at leveli and
check whether it is good.

It is natural that both the classical and the quantum al
rithms could be improved further if the search for good p
tial solutions at leveli itself was made faster by making us
of the structure of the upper part of the tree~by examining
partial solutions at levelj, with j , i , and considering only
the descendants of the good ones!. This leads to the notion o
a search with several levels of nesting~i.e., a nesting depth
larger than 1!.

In order to analyze the scaling achieved by several lev
of nesting, let us consider a search at leveli which corre-
sponds to thenth nesting level. We suppose that this sear
relies itself on a search at levelj, where j , i ,m, which
corresponds therefore to the (n11)th nesting level. Leti
5xnm and j 5xn11m, wherexn andxn11 denote the reduced
level on the tree at thenth and (n11)th nesting level, re-
spectively. Assume that the quantum computation cos
level j is given by

t~ j !.
Aban11 j

Ap~ j !bj
, ~C1!

wherean11 is the scaling coefficient at the (n11)th level of
nesting~level j in the tree!. Using the structure at levelj, the
quantum computation cost at leveli can be written as

t~ i !.
Ap~ j !bj@ t~ j !1Abi 2 j #

Ap~ i !bi
,

5
Aban11 j1Ap~ j !bi

Ap~ i !bi
. ~C2!
3-12
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By optimizing j so thatt( i ) is minimum, as before, we obtai
j 5xn11m, wherexn11 is a solution of

~b/bc! xn11
k 1an11 xn112xn50, ~C3!

with 0<xn11<1. Defining the scaling coefficientan by

anxn5an11xn11 , ~C4!

we see that the corresponding computation cost at leveli is
given by

t~ i !.
Aban i

Ap~ i !bi
. ~C5!

Thus, to determine the cost of the global algorithm, we n
to solve the set of recurrence equations~C3! and ~C4! for
n50,1, . . . ,N21, whereN is the nesting depth (N51 cor-
responds to the algorithm described in Sec. IV A!. The
boundary conditions arex051 ~the upper level is a searc
for solutions at the bottom of the tree, i.e., at levelm) and
aN51 ~the innermost search at theNth level of nesting is
supposed to be a naive search!. These two conditions, to
gether with the 2N recurrence relations, uniquely determin
the variables (x0 ,x1 , . . .xN) and (a0 ,a1 , . . . ,aN). The
overall scaling of the quantum search algorithm
O(Aba0m), i.e., it is governed bya0 ~the constant that wa
denoted asa in Sec. IV B!. Note that this entire calculation
is also valid for a classical nested search with several le
of nesting, except for the square root. Thus the speedu
on
r

m

r

n
.

-
.

03230
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the multinested quantum search algorithm remains a sq
root if compared with the corresponding multinested clas
cal search algorithm.

In Table I we show the values of thexn’s andan’s for an
average instance of maximum difficulty (b5bc) of the
graph coloring problem (k52). The scaling coefficienta0

decreases with an increasing nesting depthN, implying that
the speedup over an unstructured search improves by ad
further nesting levels. It should be emphasized, however,
the formalism used to estimate the scaling throughout
paper cannot be used for a large nesting depthN. Indeed, the
derivation of p( i ) essentially neglects the correlations b
tween partial solutions at any level in the tree which ar
because of their sharing a same ancestor. Thus our cost
mate for the multinested algorithm is only valid provide
thatN!m ~the fact thata0→0 whenN→` is meaningless!.

TABLE I. Reduced levelxn on the tree and corresponding sca
ing coefficientan at thenth level of nesting for the graph coloring
problem (k52) at b5bc . The variableN denotes the nesting
depth, anda0 governs the scaling of the overall quantum~or clas-
sical! algorithm.

N x0 a0 x1 a1 x2 a2 x3 a3

1 1.000 0.618 0.618 1.000 - - - -
2 1.000 0.484 0.718 0.674 0.484 1.000 - -
3 1.000 0.416 0.764 0.545 0.590 0.706 0.416 1.0
u-

i-

-

-

-
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