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Generalized quantum search with parallelism

Robert M. Gingricht Colin P. Williams? and Nicolas J. Ceff?3
lw. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125
2Information and Computing Technologies Research Section, Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California 91109
SEcole Polytechnique, Universitebre de Bruxelles, B-1050 Brussels, Belgium
(Received 3 November 1999; published 19 April 2D00

We generalize Grover’s unstructured quantum search algorithm to enable it to work with arbitrary starting
superpositions and arbitrary unitary operators. We show that the generalized quantum search algorithm, when
cast in a special orthonormal basis, can be understood as performiggetrotation of a starting superpo-
sition into a target superposition. We derive a formula for the success probability of the generalized quantum
search algorithm aftam rounds of amplitude amplification. We then use this formula to determine the optimal
strategy for gounctuatedjuantum search algorithm, i.e., one in which the amplitude amplified state is observed
before the point of maximum success probability. On average, the optimal strategy is about 12% better than the
naive use of Grover’s algorithm. The speedup obtained is not dramatic but it illustrates that a hybrid use of
guantum computing and classical computing techniques can yield a performance that is better than either alone.
In addition, we show that a punctuated quantum algorithm that takes the same average computation time as
Grover’s standard algorithm only requires half the coherence time. We then extend the analysis to the case of
a society ofk quantum searches acting in parallel. We derive an analytic formula that connects the degree of
parallelism with the expected computation time kgparallel quantum search. The resulting parallel speedup
scales a@(\/ﬁ), while the minimum number of agents needed to ensure sudcets;reases as the inverse of
the squareof the achievable coherence time. This result has practical significance for the design of rudimentary
guantum computers that are likely to have a limited coherence time.

PACS numbegps): 03.67.Lx, 89.70+c

[. INTRODUCTION shown how Grover’s algorithm can be nested to exploit such
a problem structurgl3]. This is significant because NP-hard
The field of quantum computing has undergone a rapigroblems, which are among the most challenging computa-
growth over the past few years. Simple quantum computational problems that arise in practice, possess exactly this
tions have already been performed using nuclear magnetkind of problem structure.
resonanc¢l—6] and nonlinear optics technologigs 8]. Re- In order to appreciate the full versatility of Grover’s algo-
cently, proposals for specialized devices that rely on quanrithm it is important to examine all the ways in which it
tum computing have also been madd. Such devices are might be generalized. For example, whereas the original
far from being general-purpose computers; nevertheless, theyrover algorithm was started from an equally weighted su-
constitute significant milestones along the road to practicaperposition of eigenstates representing all the indices of the
guantum computing. items in the database, a natural generalization would be to
In tandem with these hardware developments, there hasonsider how it performs when started from an arbitrary ini-
been a parallel development of new quantum algorithmstial superposition instead. This refinement is important, be-
Several important quantum algorithms are now kngd@—  cause if Grover’s algorithm is used within some larger quan-
15]. Of particular importance is the quantum algorithm for tum computation, it is likely to have to work on an arbitrary
performing an unstructured quantum search discovered bstarting superposition rather than a specific starting eigen-
Lov Grover in 1996 12]. Further analysis of this algorithm state. Similarly, the original Grover algorithm uses a particu-
is given by Jozsf16] and an optical implimentation is given lar unitary operator, the Walsh-Hadamard operator, as the
by Kwiat [17]. Grover's algorithm is able to find a marked basis for a sequence of unitary operations that systematically
item in a virtual “database” containing) items in O(\/N) amplifies the amplitude in the target state at the expense of
computational steps. In contrast, the best classical algorithrthe amplitude in the nontarget states. However, it is now
requiresO(N/2) steps on average, ar@(N) steps in the known that this is not the best choice if there is partial infor-
worst case. Thus Grover’'s algorithm exhibits a quadrationation as to the likely location of the target item in the
speedup over the best classical counterpart. database. In such a situation a different unitary operator is
Although Grover’s algorithm exhibits only a polynomial desirable[19]. Hence, it is equally important to understand
speedup, it appears to be much more versatile than the othkow Grover’s algorithm performs when using an arbitrary
guantum algorithms. Indeed, Grover has shown how his alunitary operator instead of the Walsh-Hadamard operator.
gorithm can be used to speed up almost any other quantum Each of these refinements have been analyzed in detall
algorithm[18]. More surprisingly, even search problems thatseparately Biham et al. have considered the case of an ar-
contain “structure” in the form of correlations between the bitrary starting superpositiof20], while Grover considered
items searched over, often reduce to an exhaustive seartie case of an arbitrary unitary operaf@®]. In this paper,
amongst a reduced set of possibilities. Recently, it wasve present the analysis of the fully generalized Grover algo-
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rithm in which we incorporate both of these effects simulta- r
neously. Our goal is to determine the exact analytic formula 1—22 [ti)(ti], 5)
for the probability of the fully generalized Grover algorithm =1

succeeding aftam iterations when there argargets amongst thoudh i b hasized that thi . b
N candidates. Having obtained this formula, we will recoverdithough it must be emphasized that this operation can be

the Bihamet al. and Grover results as special cases. We willPerformed without knowing the target statity explicitly

then show that the optimal strategy, on average, for using thBUt only through the knowledge 6{x).

fully generalized Grover algorithm consists of measuring the . N€Xt, we construct the operatQ defined as the product

memory register after about 12% fewer iterations than ar@' the above operator and an inversion operator with respect

needed to obtain the maximum probability of success. Thid0 the statda), that is

result confirms a more restricted case reported2it]. Fi- ;

nally, we show how to boost the success probability and _

reduce the required coherence time by running a socieky of Q= —(1—2|a)(a|)( 1_22‘1 |ti><t‘|) ' C)

guantum searches independently in parallel. In particular, we

derive an explicit formula connecting the degree of parallelDifferent choices ofa) give rise to different unitary opera-

ism, i.e.,k to the optimal number of iterationdor each tors for performing amplitude amplification. In the original

agent in the sociefythat minimizes the expected search costGrover algorithm, the stat@) was chosen to be

overall. We then derive the expected cost of an optimal

k-parallel quantum search. 1

lay=—= 2 [x) )
\/N Xe X

IIl. GROVER'S ALGORITHM

The problem we have to solve is the following. Given aand was obtained by applying the Walsh-Hadamard operator

function f(x;) on a set¥ of input states such that U to a starting statgs)=|00- - -), i.e.,[a)=U]s). Hence, the
operation 2a)(a|—1, which Grover referred to as “inver-

1 if x isa targetelement sion about the average,” is equivalent toUI U™, with U

f(x)= 0 otherwise. @) being the Walsh-Hadamard operator ard being 1

—2|s)(s|. As we shall see, Grover's algorithm is based on
How do we find a target element by using the least numbe@pplying Q for a certain number of iterations. By knowing
of calls to the functionf(x;)? In general, there might be  more about the structure of the problem we can choose other
target elements, in which case any one will suffice as theectors|a) that will allow us to find a target state faster.
answer. (Techniques for doing this are given [ia8].)

To solve the problem using Grover’s algorithm we first  In order to understand what action the operafoper-
form a Hilbert space with an orthonormal basis element fofforms, let us defindt) as the normalized projection ¢&)
each inpuix; € X. In this paper, we refer to the basis of input onto the space of target states, that is
eigenstates as the measurement basisNket] be the car- ) )
dinality of X. Without loss of generality, we will write the 1 .
target states aft;) (with i=1,...r), and the nontarget ty= o ;1 (tila)[t))  with 02:|<t|a>|2:i21 Ktila)l.

states afl;) (withi=1, ... N—r). The function call is to be (8)
implemented by a unitary operator that acts as follows:
We can then rewrit&) as
1Y) =[xy F(x)). @
r N—r
wherely) is either|0) or |1). By acting on Q:E 1)t — 2 11|+ 2|a)(al - 4v[a)(t], (9)
N—r r =1 =1
1
( 241 |i||i>+;1 kj|tj>)ﬁ(|0>_|1>) () implying thatQ only acts nontrivially on the space spanned
by |a) and|t). Let us reexpress this by using the stdtes
with this operator we construct the state and|l) as anorthonormalbasis for this subspace, where we
have defined
N—r r 1
L) — 20 kilt)) |—=(|0)—1|1)), 4 1
2, i) =2, K J>)ﬁ<| )=11) 4 10

1) r02(|61> v[t)).
where ther measurement basis statg$ are the target states
and theN—r measurement basis state$ are the nontarget The vector|l) is just the normalized projection ¢&) onto
states. If we now disregard the state\(2J(|0)—|1)) then  the space of nontarget statés|()=0). The rest of the space
all we have done is tinvert the phase of the target states. (i.e., the space orthogonal to) and|l)) can be broken up
Hence, the operator we have achieved is equivalent to thiato the space of target stateS; and nontarget states).
inversion operator Using|a)=y1—0v?[l)+v|t), we can now writeQ as
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Q=cosa([t)(t|+[1)I])+sina(|)(I[—[{th+1+—-1_, g 1 -
T g(n)= —5— + 5 |a?+ g2, (17
where It=2{_,|t;)(t;| = [t)(t] and I.=={{]1) ([ =[1){I| " In practice, the optimai must be an integer and typically the

are the identity operators ofiy and S, respectively, and  n;’s are not integers. However, singén) can be written as

¢=arccofl—2v?]. From this we can see th& is just a '

simple rotation matrix on the two-dimensional space spanned g(n; =) =g(n)) — p?|a?+ p%??|5°+0(5%) (19

by |I) and|t), and acts trivially on the rest of the space. Note ] . .

that the operato has been independently shown by Jozsa@roundn; and most interesting problems will have<1 and

[16] to be an exact rotation in the special case of one solutioR€nce¢=2v <1, simply roundingn; to the nearest integer

and with|a) given by Eq.(7). will not significantly change the final probability of success.
An arbitrary starting superpositiojs) for the algorithm S0, we have

can be written as 2 2

a’tpm 1, i 2
P(Nmax,N) = 2 +§|a +pBe” |+<St|St>_O(U )

(19

|s)=a|t)+Be®|l)+[s) +]s), (12)

where the statefs;) and|s;) (which must have a norm less
than one if the statks) is to be properly normalized overall
are the components g6) in (S;) and (S;), respectively.
Also, «,B, andb are positive real numbers. Afterapplica-

as the probability of measuring a target state afigg, ap-
plications ofQ.

tions of Q on an arbitrary starting superpositifs), we have IIl. RECOVERING THE SPECIAL CASES
_ , As a check on our fully generalized formula for the prob-
_ b b
Q"[s)=[a cogn¢)+ Besin(ng)]|t)+[Be cogne) ability of success aften iterations, we attempt to recover the
—asinng) ]| +|s)+(—1)"s). (13  corresponding formulas obtained in the analyses of Biham

et al. (for a fixed unitary operator and an arbitrary starting
If we measure this state our probability of succéss, mea-  Superposition[20] and Grover(for an arbitrary unitary op-
suring a target statewill be given by two terms. The first erator and a fixed starting superpositi¢h9]. _
term is the squared magnitude @F|s) projected into the In the case of Bihanet al, the starting state is arbitrary
spaceS;. It is equal to(ss,) and is unchanged b@. The  but the averaging stafe) is given by
second term is the squared magnitude of the component of

S 1
|ty which is given by lay=— > |x). (20)
N xex

g(m=KtQ"s)* |
=|a cogne)+ Be® sin(ne)|? In this case

r
_a2+ﬂ2 a2_IBZ U:\/%;

5 + 5 cog2n¢) + aB cogb)sin(2n¢)

h=—= 2 [t), (21)
2 2 1 ) i=
o ;'B —§|a2+ﬂ2e2'b|cos(2n¢+ W), (14 V=
1 N—r
where y=arcco§(B%— a?l|a®+ B?e*P|]. This is the term = IN=T1 .21 1)

that is affected byQ, and is the term we wish to maximize.
The probability of success afteriterations ofQ acting on | the analysis of20] they usek(0) andl(0) to represent
|s) is thus the average amplitudes, is), of the target and nontarget
states, respectively, ang, and o, to represent the standard
p(n,r,N)=(si|sp) +g(n). (159  deviations of those amplitudes. With some algebra one can

. ) ] ) _see that the following relationships connect our notation to
Assuming thatn is continuous(an assumption that we will theirs:

justify shortly) the maxima ofg(n), and hence the maxima
of the probability of success of Grover’s algorithm, are given a—k(0)\r, BeP—1(0)YyN—T,
by the following:
sy—rog, (sl|s)—(N-r)o?,
—gtr(142))m Co1s 6 (silse) ko (silsn—( )0 )
N2 T $—o, Y—2REH],

The value ofg(n) at these maxima is given by n—t, ng—T.
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FIG. 1. Plot of the probability of success of Grover’s algorithm

after n iterations of amplitude amplification when there arsolu-
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though the speedup we obtain is not dramatic, it is worth
making the point that it is possible at all as Zalka has proved,
correctly, that Grover’'s algorithm is exactly optim2].
Many people have assumed, therefore, that it is impossible to
beat Grover’s algorithm. However, by combining techniques
of quantum computing with those of classical computing, we
show that it is possible to do a little bit better than Grover’'s
algorithm on average. The result we report was apparently
discovered previously by Boyet al.[21] and later by Zalka
[23] in the case wherga) is a uniform superpositiofas in
Eq. (7)]. It is shown here to persist for the more general case
of an arbitrary|a) =|s), which is the case treated [a9].

We consider a punctuated quantum search algorithm that
works as follows:

Algorithm: Punctuated Quantum Search

(1) Run the quantum search algorithm foiterations.

(2) Read the memory register.

(3) If the result is a target state halt; else, reset the register
to the starting superposition and return to st&p

The average tim& ,,4(n) it will take to find a target state

tions amongstN=64 possibilities. White regions correspond to if we stop the generalized quantum search algorithm after
probability 1, black regions correspond to probability 0. Note thatiterations ofQ is
the success probability is periodic in the number of amplitude am-

plification iterations for a fixed number of solutions.

By substituting these relationships into E¢$4), (16), and
(19), one reproduces the results[@0].
The second special case, in whitd) (with respect to

which inversion is doneis an unknown normalized vector,

while |s) is given by

|sy=|a)y=v1—0v?|l)+o]t),

was considered by Grover. Hence=v,8=1—0v? andb
=0. Also, |s;)=|s/)=0. These substitutions lead tb= ¢.
Plugging this into Eqs(16) and(19), we get

(23

7 1_ T 1 wv O(p2 24
Mma=55 52y 2 24" (v9) (29)

and
p(nmax):]-_o(vz) (25

which agree with the results §19]. If we examine Eq(15)
in this case, we get

B 1-cog(1+2n)¢)]

p(n)= 5 =sirf[(1+2n)$/2] (26)

as the probability of measuring a target state aftiéerations
of Q [see Fig. 1 for a plot op(n) in the case of the Had-
amard transformatidn

IV. APPLICATION OF THE FORMULA FOR P(N)

n

Taug(n)=i§1 [1—p(n)]~p(n)i n=——ro

iy 27

B 2n
~1-cod(1+2n)¢]°

We can find the optimal strategy, i.e., the best number of
iterations to use before we attempt to measure the register,
by minimizing the expected running tinig,, ;. To do this,
we set the derivative off,,4 to zero and solve fom

=Nopt,
dTayg 2—2c0$(1+2n)p]—4ngsin(1+2n)e] o
no {(1-cog (1+2n)¢]}2 s

(28)

Typically, n will be much larger than one, so we can make
the approximation (% 2n)(4/2)=n¢$=x, so that we obtain

1—cos X =2xsin 2Xx,

2 sirfx=4 x sinx cosx, (29

2X=tanx,

which gives x,,;=1.1656 as the lowest positive solution.
This solution corresponds to the minimum of the function.
Hence the optimal value of is

Xopt  1.1656

nO ptz ¢ ¢ (30)

Next, we show how to apply our analytic formula for the This value ofn gives a probability of success of

probability of success aften iterations, P(n), to slightly

speed up the quantum unstructured search algorithm. Al-

P(Nopt) = SIN Xopr=0.8446 (31)
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at each measurement, and corresponds to an average numbék independent agents, succeeds after each agent has un-

of iterations of dergonen iterations is given by
—1—_[1— k
S Xopt  1.3801 @) Pe(N)=1—[1-p(m)]*. (34)
Nopt) = — = ,
WOV & i Xopt ¢ Thus the expected cosijg;)g, of performing ak-parallel

guantum search is given by
This must be compared t0/2¢=1.57084 iterations if we
run Grover’s algorithm until the probability is maximal.
Thus, we get a 12% reduction of the average computation
time by making use of a punctuated algorithm.

n
pr(n)

Tog(m =2, PmIL-pym] Y=

It is interesting to note that, if we restrict the analysis _ n
; . o = . (35
some more to the case wheee is a uniform superposition . ¢
and where there is only one target state, then we have 1-cos (1+2n)=

=2/N, s0 thatT,,q(Nep) =0.6900/N. This is faster than

the lower bounds if21,24,25, and[22], but we are using a As in Eq. (27) we can find the value af that minimizes
somewhat different model. They are looking at the minimumthe expected cost. To find the mimimum, we find where
time it would take without measuring to find a solution with gT{);(n)/an is equal to zero. This derivative is given by
certainty up to errors from roundingy,,, to the nearest in-

teger. Instead, the model we use here allows for punctuated [?Tg;)g(n)

measurements and resets of the quantum search algorithm.” gq

Nevertheless, the punctuated quantum search algorithm is

faster on average. Note that we have assumed that the time it ¢ ¢
takes to measu%e, check if a solution was reached, and reset 1—co§"( (1+2n)§ 1+2k nqbtar( (1+2n)§”
the algorithm is negligible. This is reasonable as checking a = K
solution only requires one function call. 1—cog¥| (1+2n) = }

The punctuated quantum search algorithm has another ad- 2
vantage in that it is less sensitive to decoherence. If we wait (36)
until we have the maximal probability of measuring a target
state, then we must maintain coherence for 1.53G8éps as For r/N<1, i.e.,, when there are very few solutions

compared to only 1.1658/steps for the fastest measure andamongst the items searched over, we hae arccos(1
restart method. This is because we do not need to maintain 2r/N)~2r/N. As before, substitutingx=n¢=(1
coherence through the measurement stage of this method. th2n) ¢/2 and realizing thab>1, we obtain

fact, the punctuated search that takes the same number of

K
steps on average as the standard or maximal probability 9Tgv)g(n) _ 1-cos¥(x)[1+ 2kxtan(x)] 37
method(i.e., m/2¢=1.57084 step$ need only maintain co- an [1—cos¥(x)]?

herence forr/4¢=0.78544) steps at a time. This represents . o
only 50% of the coherence time required in the standard !n order to find the minimum, we thus have to solve the
Grover method, and corresponds to waiting for a 50% prob{ranscendental equation

ability of success and then measuring.

1—cog¥(x) =2k x co¥(x)tan x). (39
V. K-PARALLEL QUANTUM SEARCH The variablex<1 providedn<3(/N/r—1). We know

's algorith il further | that we can solve the problem with near certainty if we iter-
A way to speed up Grover's algorithm still further is to ate Grover’s algorithm to the maximum probability state in

have a society ok computational agents all running Grov- O[ (m/4)JNIr] iterations. Hence, for a large enough number

ers algorithm independently at t_he_ same time. This is Prom-y parallel search agentk, there is a reasonable chance that
ising because the standard deviation

the optimum number of iterations,,(r,N,k) at which the
0 expected search cost is minimized, satisfies the criterion that
- 1—n(m1 x<1. We therefore expand E¢37) as a series approxima-
p(n) [1=pm)] 33 tion in x aboutx=0. Actually, it appears that scales as
O(1//k), so it tends to 0 ak& tends to infinity. If we make
in the computation time of punctuated quantum search iguch an expansion up to ordet, we get
fairly large, and hence having multiple searches running may

oT

give a considerable speed up. JTE(n) 1 3k—1 _, 5k*-1
- — = 1+ X2+ x*+0(x% |.
Suppose that we know that there are exactlolutions an Kx2 6 20
amongstN candidates. Givemp(n,r,N), the probability of (39

success for a single agent afteiterations, we can boost the
success probability by using agents acting in parallel. In As &Tgkv)g(n)/an=0 is a second-order equation XA, it can
particular, the probability that at least one agent, in a societye solved analytically. Three of the roots are nonphysical but
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Roptimal
Xopt 1
® = — —_—
600 S fopt ¢ O((ﬁ\/i). 9
500
® ™
400 e We can then estimate the expected cost for an optimal
LN Tle k-parallel quantum search
e, ~~e
300 o~ e e
Shle el xi““f-»__‘
200 ‘~3~:\:;§“\:? ‘‘‘‘‘ o~ 4 e 1 .
B STEH Shivety TN SL el R ° () _ op
—————  Shnly R Tavg(nr,N)= — ———. (44)
100 gy s ¢ 1—co(Xopy)
k
2 4 6 8

FIG. 2. Plot of th iimal ber of iterat ‘ __Again, using the series expansion arouxe 0, that is,
. 2. ot o e optimal number of Iterations to use In X/[l—COSZk(X)]:]./(kX)+O(X), we get

k-parallel quantum search as a function of the degree of parallelism
k for r=1 tor=5 solutions(top to bottom in the figurefor the
case of a database of sike=22°. The dashed curves correspond to
the optima as predicted by our approximate formula for (K) 1

Nope(r,N,K). The points correspond to the exact optima obtained by Tayg(n,r,N)= b kxoptzo m : (45)
numerical methods.

one corresponds to an approximation to the true minimum o
T (n). Specifically, we find thaff{% (n) is minimized

avg : - avg
whenx is given by

Eemembering thath~ \r/N, we conclude thal ,,, scales
as O(yN/rk). Thus, usingk agents in parallel simply
amounts to having each of them performing a search in a
restricted space of siZé/k, so that the gain in computation
\/5_ 15K+ \/E\/_31_ 30k + 225 time is of orderO(/k). Interestingly, this gain is not as good
Xopt™ — 3+ 15k2 . (40 as when parallelizing a classical algorithrccordingly, the
cumulative timeT ¢, my=KTa,q, i-€., the sum of the time that
We note thak< 1 for all k=2, so that the derivation of the 2l @gents spend on quantum searchingeasedy a factor
optimum formula is self-consistent. This expressionxgs, ~ O(VK) with respect to the case of a single aget-(1).
can be expanded in Y2, giving Our results have implications for the design of prototypi-
cal quantum computers. If it is possible to maintain coher-
1 ence indefinitely, for example, by building fault tolerance
_) (42) into the computer and by using quantum error correction
k> schemes, our analysis suggests that it is better to use a single
agent quantum search. This strategy minimizes the net com-
Using ¢=2v=2r/N and Eq.(41), one gets the corre- putational resources expended in solving the problem. How-
sponding expression far,,= X,/ ¢, i.€., the predicted op- ever, if coherence timis limited, as it most likely will be in
timal number of iterations for each & quantum searches prototypical quantum computers, then a parallel punctuated
acting independently in parallel. In Fig. 2, this formula is quantum search strategy becomes necessary, with the degree
shown to be in very good agreement with the exact resultf parallelism set by the desired computation time and de-

1 1
Xop=1.11187; +0.0829 7 +0

obtained by numerical optimization. sired probability of success. The computational time can be
made small by making the degree of parallelism sufficiently
Scaling of the parallel quantum search for largeN and k large but, of course, at the expense of greater net computa-

tional resources being expended on solving the problem.

Now, if we are only interested in the scalingfihandk of Let us now consider the situation where the coherence

time, it is enough to consider the expansionsdt,(n)/an

i > the value ofN andr. The number of agents must then of
[Eq. (39)] up to orderO(1). This simply yields

the order ofO(N/r 72) for the parallel time not to exceed the

5 1 coherence time. This is an interesting result as it implies that
—/— =0 — 42 the number of agents decreasgmdraticallyfor an increas-
Xopt — . (42
3k—1 VK
This formula is only valid at the limit of largk, whenx,,  in the latter case, a computation time of or@&N/r) is ideally
tends to zero. The corresponding expression for the optimakduced taO(N/rk) by usingk agents in parallel, so that one has a
number of amplitude amplification iterations is speedup of orde®(k).
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ing 7. The classical counterpart would be a linear law dnly. finds a solution. We find that the optimiparallel punctu-
On the other hand, the bad result comes if we reexpress traged quantum search strategy is different from that of single
cumulative computation time fde agents with this value of agent punctuated quantum search strategy. In general, the
k: higher the degree of classical parallelism the lgsralle)
time is needed to perform the quantum computation. This
intuition is captured in Eq(41), which gives the explicit
Teumu=KTgyg=K7= O(r_) . (46) connection between the optimal number of amplitude ampli-
T fication iterations, ,;= X,/ ¢ and the degree of parallelism
k. This result is of practical utility to experimental realization
: ¢ %t a quantum search algorithm. In particular, in any physical
er's algorithm(i.e., Teymy does not scale agN) whenever  embodiment of a quantum search, there will be some natural
the coherence time is fixed. In order to exploit Grover'scoherence time beyond which the Computation becomes un-
quantum speedup, the coherence timmust necessarily in-  reliable. Of course, quantum error correction and fault-
crease ag/N, i.e., as the square root of the size of the searcholerant computation allow this time to be extended greatly,
space. arguably indefinitively, if the individual error probability per
gate operation can be made sufficiently small. Nevertheless,
VI. CONCLUSIONS in practice, this might be extraordinarily difficult to achieve.
Instead, if we can predict the degree of parallelism needed so
In this paper we have shown how to generalize the analythat the quantum search has a good chance of completing
sis of an unstructured quantum search to incorporate the ewithin the natural coherence time of the physical system be-
fects of an arbitrary starting superposition and an arbitraryng used as the quantum computer, then the strategy of mas-
unitary operatofor, equivalently, arbitrary stat@)) simul-  sive parallelism might provide a realistic alternative to rely-
taneously We have also shown that, rather than iterating theing solely on quantum error correction. Thus, we see the
amplitude amplification operator until the maximum prob- classical parallelism as an adjunct to quantum error correc-
ability of success is attained, i.e., afte(0.785398/N) it- tion rather than a replacement for it. Our results in Sec. V
erations, it is better to measure after omjo_(sgoq/ﬁ) it- expose precisely the space/time tradeoff between quantum
erations(when the probability of success is only 84%his  coherent computing and classical parallelism, at least in the
punctuated strategy is approximately 12% faster than Groveontext of unstructured quantum search.
er's algorithm on average, and requires a shorter coherence Note Some of the results obtained in this paper have been
time. derived independently by Zalka in a revis¢éahd unpub-
Moreover, an even better quantum search algorithm cahshed[23]) version of Ref[22].
be obtained by runningg independent quantum searches in
parallel, stopping as soon as any of the quantum searches ACKNOWLEDGMENTS
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