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Generalized quantum search with parallelism
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We generalize Grover’s unstructured quantum search algorithm to enable it to work with arbitrary starting
superpositions and arbitrary unitary operators. We show that the generalized quantum search algorithm, when
cast in a special orthonormal basis, can be understood as performing anexactrotation of a starting superpo-
sition into a target superposition. We derive a formula for the success probability of the generalized quantum
search algorithm aftern rounds of amplitude amplification. We then use this formula to determine the optimal
strategy for apunctuatedquantum search algorithm, i.e., one in which the amplitude amplified state is observed
before the point of maximum success probability. On average, the optimal strategy is about 12% better than the
naive use of Grover’s algorithm. The speedup obtained is not dramatic but it illustrates that a hybrid use of
quantum computing and classical computing techniques can yield a performance that is better than either alone.
In addition, we show that a punctuated quantum algorithm that takes the same average computation time as
Grover’s standard algorithm only requires half the coherence time. We then extend the analysis to the case of
a society ofk quantum searches acting in parallel. We derive an analytic formula that connects the degree of
parallelism with the expected computation time fork-parallel quantum search. The resulting parallel speedup
scales asO(Ak), while the minimum number of agents needed to ensure success,k, decreases as the inverse of
thesquareof the achievable coherence time. This result has practical significance for the design of rudimentary
quantum computers that are likely to have a limited coherence time.

PACS number~s!: 03.67.Lx, 89.70.1c
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I. INTRODUCTION

The field of quantum computing has undergone a ra
growth over the past few years. Simple quantum compu
tions have already been performed using nuclear magn
resonance@1–6# and nonlinear optics technologies@7,8#. Re-
cently, proposals for specialized devices that rely on qu
tum computing have also been made@9#. Such devices are
far from being general-purpose computers; nevertheless,
constitute significant milestones along the road to pract
quantum computing.

In tandem with these hardware developments, there
been a parallel development of new quantum algorith
Several important quantum algorithms are now known@10–
15#. Of particular importance is the quantum algorithm f
performing an unstructured quantum search discovered
Lov Grover in 1996@12#. Further analysis of this algorithm
is given by Jozsa@16# and an optical implimentation is give
by Kwiat @17#. Grover’s algorithm is able to find a marke
item in a virtual ‘‘database’’ containingN items in O(AN)
computational steps. In contrast, the best classical algor
requiresO(N/2) steps on average, andO(N) steps in the
worst case. Thus Grover’s algorithm exhibits a quadra
speedup over the best classical counterpart.

Although Grover’s algorithm exhibits only a polynomia
speedup, it appears to be much more versatile than the o
quantum algorithms. Indeed, Grover has shown how his
gorithm can be used to speed up almost any other quan
algorithm@18#. More surprisingly, even search problems th
contain ‘‘structure’’ in the form of correlations between th
items searched over, often reduce to an exhaustive se
amongst a reduced set of possibilities. Recently, it w
1050-2947/2000/61~5!/052313~8!/$15.00 61 0523
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shown how Grover’s algorithm can be nested to exploit su
a problem structure@13#. This is significant because NP-har
problems, which are among the most challenging compu
tional problems that arise in practice, possess exactly
kind of problem structure.

In order to appreciate the full versatility of Grover’s alg
rithm it is important to examine all the ways in which
might be generalized. For example, whereas the orig
Grover algorithm was started from an equally weighted
perposition of eigenstates representing all the indices of
items in the database, a natural generalization would b
consider how it performs when started from an arbitrary i
tial superposition instead. This refinement is important,
cause if Grover’s algorithm is used within some larger qu
tum computation, it is likely to have to work on an arbitra
starting superposition rather than a specific starting eig
state. Similarly, the original Grover algorithm uses a partic
lar unitary operator, the Walsh-Hadamard operator, as
basis for a sequence of unitary operations that systematic
amplifies the amplitude in the target state at the expens
the amplitude in the nontarget states. However, it is n
known that this is not the best choice if there is partial info
mation as to the likely location of the target item in th
database. In such a situation a different unitary operato
desirable@19#. Hence, it is equally important to understan
how Grover’s algorithm performs when using an arbitra
unitary operator instead of the Walsh-Hadamard operato

Each of these refinements have been analyzed in d
separately: Biham et al. have considered the case of an a
bitrary starting superposition@20#, while Grover considered
the case of an arbitrary unitary operator@19#. In this paper,
we present the analysis of the fully generalized Grover al
©2000 The American Physical Society13-1
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rithm in which we incorporate both of these effects simul
neously. Our goal is to determine the exact analytic form
for the probability of the fully generalized Grover algorith
succeeding aftern iterations when there arer targets amongs
N candidates. Having obtained this formula, we will recov
the Bihamet al. and Grover results as special cases. We w
then show that the optimal strategy, on average, for using
fully generalized Grover algorithm consists of measuring
memory register after about 12% fewer iterations than
needed to obtain the maximum probability of success. T
result confirms a more restricted case reported in@21#. Fi-
nally, we show how to boost the success probability a
reduce the required coherence time by running a societyk
quantum searches independently in parallel. In particular,
derive an explicit formula connecting the degree of paral
ism, i.e., k, to the optimal number of iterations~for each
agent in the society! that minimizes the expected search co
overall. We then derive the expected cost of an optim
k-parallel quantum search.

II. GROVER’S ALGORITHM

The problem we have to solve is the following. Given
function f (xi) on a setX of input states such that

f ~xi !5H 1 if xi is a target element

0 otherwise.
~1!

How do we find a target element by using the least num
of calls to the functionf (xi)? In general, there might ber
target elements, in which case any one will suffice as
answer.

To solve the problem using Grover’s algorithm we fir
form a Hilbert space with an orthonormal basis element
each inputxiPX. In this paper, we refer to the basis of inp
eigenstates as the measurement basis. LetN5uXu be the car-
dinality of X. Without loss of generality, we will write the
target states asut i& ~with i 51, . . . ,r ), and the nontarge
states asu l i& ~with i 51, . . . ,N2r ). The function call is to be
implemented by a unitary operator that acts as follows:

uxi&uy&→uxi&uy% f ~xi !&, ~2!

whereuy& is eitheru0& or u1&. By acting on

S (
i 51

N2r

l i u l i&1(
j 51

r

kj ut j& D 1

A2
~ u0&2u1&) ~3!

with this operator we construct the state

S (
i 51

N2r

l i u l i&2(
j 51

r

kj ut j& D 1

A2
~ u0&2u1&), ~4!

where ther measurement basis statesut i& are the target state
and theN2r measurement basis statesu l i& are the nontarge
states. If we now disregard the state (1/A2)(u0&2u1&) then
all we have done is toinvert the phase of the target state
Hence, the operator we have achieved is equivalent to
inversion operator
05231
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i 51

r

ut i&^t i u, ~5!

although it must be emphasized that this operation can
performed without knowing the target statesut i& explicitly
but only through the knowledge off (x).

Next, we construct the operatorQ defined as the produc
of the above operator and an inversion operator with resp
to the stateua&, that is

Q52~122ua&^au!S 122(
i 51

r

ut i&^t i u D . ~6!

Different choices ofua& give rise to different unitary opera
tors for performing amplitude amplification. In the origin
Grover algorithm, the stateua& was chosen to be

ua&5
1

AN
(
xPX

ux& ~7!

and was obtained by applying the Walsh-Hadamard oper
U to a starting stateus&5u00•••&, i.e., ua&5Uus&. Hence, the
operation 2ua&^au21, which Grover referred to as ‘‘inver
sion about the average,’’ is equivalent to2UI sU

†, with U
being the Walsh-Hadamard operator andI s being 1
22us&^su. As we shall see, Grover’s algorithm is based
applying Q for a certain number of iterations. By knowin
more about the structure of the problem we can choose o
vectors ua& that will allow us to find a target state faste
~Techniques for doing this are given in@18#.!

In order to understand what action the operatorQ per-
forms, let us defineut& as the normalized projection ofua&
onto the space of target states, that is

ut&5
1

v (
i 51

r

^t i ua&ut i& with v25 z^tua& z25(
i 51

r

z^t i ua& z2.

~8!

We can then rewriteQ as

Q5(
i 51

r

ut i&^t i u2 (
j 51

N2r

u l j&^ l j u12ua&^au24vua&^tu, ~9!

implying thatQ only acts nontrivially on the space spann
by ua& and ut&. Let us reexpress this by using the statesut&
and u l & as anorthonormalbasis for this subspace, where w
have defined

u l &5
1

A12v2
~ ua&2vut&). ~10!

The vectoru l & is just the normalized projection ofua& onto
the space of nontarget states (^tu l &50). The rest of the space
~i.e., the space orthogonal tout& and u l &) can be broken up
into the space of target states (ST) and nontarget states (SL).
Using ua&5A12v2u l &1vut&, we can now writeQ as
3-2
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GENERALIZED QUANTUM SEARCH WITH PARALLELISM PHYSICAL REVIEW A61 052313
Q5cosf~ ut&^tu1u l &^ l u!1sinf~ ut&^ l u2u l &^tu!1I T2I L ,
~11!

where I T5( i 51
r ut i&^t i u2ut&^tu and I L5( j 51

N2r u l j&^ l j u2u l &^ l u
are the identity operators onST and SL , respectively, and
f[arccos@122v2#. From this we can see thatQ is just a
simple rotation matrix on the two-dimensional space span
by u l & andut&, and acts trivially on the rest of the space. No
that the operatorQ has been independently shown by Joz
@16# to be an exact rotation in the special case of one solu
and with ua& given by Eq.~7!.

An arbitrary starting superpositionus& for the algorithm
can be written as

us&5aut&1beibu l &1ust&1usl&, ~12!

where the statesust& and usl& ~which must have a norm les
than one if the stateus& is to be properly normalized overal!
are the components ofus& in (ST) and (SL), respectively.
Also, a,b, andb are positive real numbers. Aftern applica-
tions ofQ on an arbitrary starting superpositionus&, we have

Qnus&5@a cos~nf!1beibsin~nf!#ut&1@beibcos~nf!

2a sin~nf!#u l &1ust&1~21!nusl&. ~13!

If we measure this state our probability of success~i.e., mea-
suring a target state! will be given by two terms. The firs
term is the squared magnitude ofQnus& projected into the
spaceST . It is equal to^stust& and is unchanged byQ. The
second term is the squared magnitude of the componen
ut& which is given by

g~n![ z^tuQnus& z2

5ua cos~nf!1beib sin~nf!u2

5
a21b2

2
1

a22b2

2
cos~2nf!1ab cos~b!sin~2nf!

5
a21b2

2
2

1

2
ua21b2e2ibucos~2nf1c!, ~14!

where c[arccos@(b22a2/ua21b2e2ibu#. This is the term
that is affected byQ, and is the term we wish to maximize
The probability of success aftern iterations ofQ acting on
us& is thus

p~n,r ,N!5^stust&1g~n!. ~15!

Assuming thatn is continuous~an assumption that we wil
justify shortly! the maxima ofg(n), and hence the maxim
of the probability of success of Grover’s algorithm, are giv
by the following:

nj5
2c1~112 j !p

2f
, j 50,1,2, . . . . ~16!

The value ofg(n) at these maxima is given by
05231
d
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g~nj !5
a21b2

2
1

1

2
ua21b2e2ibu. ~17!

In practice, the optimaln must be an integer and typically th
nj ’s are not integers. However, sinceg(n) can be written as

g~nj6d!5g~nj !2f2ua21b2e2ibud21O~d4! ~18!

aroundnj and most interesting problems will havev!1 and
hencef.2v!1, simply roundingnj to the nearest intege
will not significantly change the final probability of succes
So, we have

p~nmax,r ,N!5
a21b2

2
1

1

2
ua21b2e2ibu1^stust&2O~v2!

~19!

as the probability of measuring a target state afternmax ap-
plications ofQ.

III. RECOVERING THE SPECIAL CASES

As a check on our fully generalized formula for the pro
ability of success aftern iterations, we attempt to recover th
corresponding formulas obtained in the analyses of Bih
et al. ~for a fixed unitary operator and an arbitrary starti
superposition! @20# and Grover~for an arbitrary unitary op-
erator and a fixed starting superposition! @19#.

In the case of Bihamet al., the starting state is arbitrar
but the averaging stateua& is given by

ua&5
1

AN
(
xPX

ux&. ~20!

In this case

v5A r

N
,

ut&5
1

Ar
(
i 51

r

ut i&, ~21!

u l &5
1

AN2r
(
i 51

N2r

u l i&.

In the analysis of@20# they usek̄(0) and l̄ (0) to represent
the average amplitudes, inus&, of the target and nontarge
states, respectively, andsk ands l to represent the standar
deviations of those amplitudes. With some algebra one
see that the following relationships connect our notation
theirs:

a→ k̄~0!Ar , beib→ l̄ ~0!AN2r ,

^stust&→rsk
2 , ^sl usl&→~N2r !s l

2 ,
~22!

f→v, c→2 Re@f#,

n→t, n0→T.
3-3



r,

-

e

A

rth
ed,

e to
es
we
r’s
ntly

se

that

ster

r

of
ster,

ke

n.
n.

m

to
ha
m

GINGRICH, WILLIAMS, AND CERF PHYSICAL REVIEW A 61 052313
By substituting these relationships into Eqs.~14!, ~16!, and
~19!, one reproduces the results of@20#.

The second special case, in whichua& ~with respect to
which inversion is done! is an unknown normalized vecto
while us& is given by

us&5ua&5A12v2u l &1vut&, ~23!

was considered by Grover. Hence,a5v,b5A12v2 andb
50. Also, ust&5usl&50. These substitutions lead toc5f.
Plugging this into Eqs.~16! and ~19!, we get

nmax5
p

2f
2

1

2
5

p

4v
2

1

2
2

pv
24

1O~v2! ~24!

and

p~nmax!512O~v2! ~25!

which agree with the results of@19#. If we examine Eq.~15!
in this case, we get

p~n!5
12cos@~112n!f!]

2
5sin2@~112n!f/2# ~26!

as the probability of measuring a target state aftern iterations
of Q @see Fig. 1 for a plot ofp(n) in the case of the Had
amard transformation#.

IV. APPLICATION OF THE FORMULA FOR P„N…

Next, we show how to apply our analytic formula for th
probability of success aftern iterations, P(n), to slightly
speed up the quantum unstructured search algorithm.

FIG. 1. Plot of the probability of success of Grover’s algorith
after n iterations of amplitude amplification when there arer solu-
tions amongstN564 possibilities. White regions correspond
probability 1, black regions correspond to probability 0. Note t
the success probability is periodic in the number of amplitude a
plification iterations for a fixed number of solutions.
05231
l-

though the speedup we obtain is not dramatic, it is wo
making the point that it is possible at all as Zalka has prov
correctly, that Grover’s algorithm is exactly optimal@22#.
Many people have assumed, therefore, that it is impossibl
beat Grover’s algorithm. However, by combining techniqu
of quantum computing with those of classical computing,
show that it is possible to do a little bit better than Grove
algorithm on average. The result we report was appare
discovered previously by Boyeret al. @21# and later by Zalka
@23# in the case whereua& is a uniform superposition@as in
Eq. ~7!#. It is shown here to persist for the more general ca
of an arbitraryua&5us&, which is the case treated in@19#.

We consider a punctuated quantum search algorithm
works as follows:

Algorithm: Punctuated Quantum Search
~1! Run the quantum search algorithm forn iterations.
~2! Read the memory register.
~3! If the result is a target state halt; else, reset the regi

to the starting superposition and return to step~1!.

The average timeTavg(n) it will take to find a target state
if we stop the generalized quantum search algorithm aften
iterations ofQ is

Tavg~n!5(
i 51

`

@12p~n!# i 21p~n!i n5
n

p~n!
~27!

5
2n

12cos@~112n!f#
.

We can find the optimal strategy, i.e., the best number
iterations to use before we attempt to measure the regi
by minimizing the expected running timeTavg . To do this,
we set the derivative ofTavg to zero and solve forn
5nopt ,

]Tavg

]n
5

222 cos@~112n!f#24nf sin@~112n!f#

$~12cos@~112n!f#%2
50.

~28!

Typically, n will be much larger than one, so we can ma
the approximation (112n)(f/2).nf[x, so that we obtain

12cos 2x52x sin 2x,

2 sin2x54 x sinx cosx, ~29!

2x5tanx,

which gives xopt51.1656 as the lowest positive solutio
This solution corresponds to the minimum of the functio
Hence the optimal value ofn is

nopt.
xopt

f
5

1.1656

f
. ~30!

This value ofn gives a probability of success of

p~nopt!5sin2 xopt50.8446 ~31!

t
-

3-4
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GENERALIZED QUANTUM SEARCH WITH PARALLELISM PHYSICAL REVIEW A61 052313
at each measurement, and corresponds to an average nu
of iterations of

Tavg~nopt!.
1

f

xopt

sin2 xopt

5
1.3801

f
. ~32!

This must be compared top/2f51.5708/f iterations if we
run Grover’s algorithm until the probability is maxima
Thus, we get a 12% reduction of the average computa
time by making use of a punctuated algorithm.

It is interesting to note that, if we restrict the analys
some more to the case whereua& is a uniform superposition
and where there is only one target state, then we havf
52/AN, so thatTavg(nopt).0.6900AN. This is faster than
the lower bounds in@21,24,25#, and@22#, but we are using a
somewhat different model. They are looking at the minimu
time it would take without measuring to find a solution wi
certainty up to errors from roundingnmax to the nearest in-
teger. Instead, the model we use here allows for punctu
measurements and resets of the quantum search algor
Nevertheless, the punctuated quantum search algorithm
faster on average. Note that we have assumed that the tim
takes to measure, check if a solution was reached, and
the algorithm is negligible. This is reasonable as checkin
solution only requires one function call.

The punctuated quantum search algorithm has anothe
vantage in that it is less sensitive to decoherence. If we w
until we have the maximal probability of measuring a targ
state, then we must maintain coherence for 1.5708/f steps as
compared to only 1.1655/f steps for the fastest measure a
restart method. This is because we do not need to main
coherence through the measurement stage of this metho
fact, the punctuated search that takes the same numb
steps on average as the standard or maximal probab
method~i.e., p/2f51.5708/f steps! need only maintain co-
herence forp/4f50.7854/f steps at a time. This represen
only 50% of the coherence time required in the stand
Grover method, and corresponds to waiting for a 50% pr
ability of success and then measuring.

V. K-PARALLEL QUANTUM SEARCH

A way to speed up Grover’s algorithm still further is
have a society ofk computational agents all running Grov
er’s algorithm independently at the same time. This is pro
ising because the standard deviation

sT5
n

p~n!
A@12p~n!# ~33!

in the computation time of punctuated quantum search
fairly large, and hence having multiple searches running m
give a considerable speed up.

Suppose that we know that there are exactlyr solutions
amongstN candidates. Givenp(n,r ,N), the probability of
success for a single agent aftern iterations, we can boost th
success probability by usingk agents acting in parallel. In
particular, the probability that at least one agent, in a soc
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of k independent agents, succeeds after each agent ha
dergonen iterations is given by

pk~n!512@12p~n!#k. ~34!

Thus the expected cost,Tavg
(k) , of performing ak-parallel

quantum search is given by

Tavg
(k) ~n!5(

j 51

`

pk~n!@12pk~n!# j 21 jn5
n

pk~n!

5
n

12cos2kS ~112n!
f

2 D . ~35!

As in Eq. ~27! we can find the value ofn that minimizes
the expected cost. To find the mimimum, we find whe
]Tavg

(k) (n)/]n is equal to zero. This derivative is given by

]Tavg
(k) ~n!

]n

5

12cos2kS ~112n!
f

2 D F112k nf tanS ~112n!
f

2 D G
F12cos2kS ~112n!

f

2 D G2 .

~36!

For r /N!1, i.e., when there are very few solution
amongst the items searched over, we havef5arccos(1
22r /N)'2Ar /N. As before, substituting x[nf.(1
12n)f/2 and realizing thatn@1, we obtain

]Tavg
(k) ~n!

]n
'

12cos2k~x!@112kx tan~x!#

@12cos2k~x!#2 . ~37!

In order to find the minimum, we thus have to solve t
transcendental equation

12cos2k~x!52k x cos2k~x!tan~x!. ~38!

The variablex,1 providedn, 1
2 (AN/r 21). We know

that we can solve the problem with near certainty if we it
ate Grover’s algorithm to the maximum probability state
O@(p/4)AN/r # iterations. Hence, for a large enough numb
of parallel search agents,k, there is a reasonable chance th
the optimum number of iterations,nopt(r ,N,k) at which the
expected search cost is minimized, satisfies the criterion
x,1. We therefore expand Eq.~37! as a series approxima
tion in x about x50. Actually, it appears thatx scales as
O(1/Ak), so it tends to 0 ask tends to infinity. If we make
such an expansion up to orderx2, we get

]Tavg
(k) ~n!

]n
.

1

kx2 S 211
3k21

6
x21

5k221

20
x41O~x6! D .

~39!

As ]Tavg
(k) (n)/]n50 is a second-order equation inx2, it can

be solved analytically. Three of the roots are nonphysical
3-5
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GINGRICH, WILLIAMS, AND CERF PHYSICAL REVIEW A 61 052313
one corresponds to an approximation to the true minimum
Tavg

(k) (n). Specifically, we find thatTavg
(k) (n) is minimized

whenx is given by

xopt.A5215k1A5A231230k1225k2

23115k2 . ~40!

We note thatx,1 for all k>2, so that the derivation of the
optimum formula is self-consistent. This expression forxopt
can be expanded in 1/k1/2, giving

xopt.1.1118
1

k1/2
10.0829

1

k3/2
1OS 1

k5/2D . ~41!

Using f.2v52Ar /N and Eq. ~41!, one gets the corre
sponding expression fornopt5xopt /f, i.e., the predicted op
timal number of iterations for each ofk quantum searche
acting independently in parallel. In Fig. 2, this formula
shown to be in very good agreement with the exact res
obtained by numerical optimization.

Scaling of the parallel quantum search for largeN and k

Now, if we are only interested in the scaling inN andk of
the optimal number of iterations and expected computa
time, it is enough to consider the expansion of]Tavg

(k) (n)/]n
@Eq. ~39!# up to orderO(1). This simply yields

xopt.A 6

3k21
.OS 1

Ak
D . ~42!

This formula is only valid at the limit of largek, whenxopt
tends to zero. The corresponding expression for the opti
number of amplitude amplification iterations is

FIG. 2. Plot of the optimal number of iterations to use
k-parallel quantum search as a function of the degree of paralle
k for r 51 to r 55 solutions~top to bottom in the figure! for the
case of a database of sizeN5220. The dashed curves correspond
the optima as predicted by our approximate formula
nopt(r ,N,k). The points correspond to the exact optima obtained
numerical methods.
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We can then estimate the expected cost for an opti
k-parallel quantum search

Tavg
(k) ~n,r ,N!5

1

f

xopt

12cos2k~xopt!
. ~44!

Again, using the series expansion aroundx50, that is,
x/@12cos2k(x)#51/(kx)1O(x), we get

Tavg
(k) ~n,r ,N!.

1

f

1

kxopt
.OS 1

fAk
D . ~45!

Remembering thatf'Ar /N, we conclude thatTavg scales
as O(AN/rk). Thus, using k agents in parallel simply
amounts to having each of them performing a search i
restricted space of sizeN/k, so that the gain in computatio
time is of orderO(Ak). Interestingly, this gain is not as goo
as when parallelizing a classical algorithm.1 Accordingly, the
cumulative timeTcumul5kTavg , i.e., the sum of the time tha
all agents spend on quantum search, isincreasedby a factor
O(Ak) with respect to the case of a single agent (k51).

Our results have implications for the design of prototy
cal quantum computers. If it is possible to maintain coh
ence indefinitely, for example, by building fault toleran
into the computer and by using quantum error correct
schemes, our analysis suggests that it is better to use a s
agent quantum search. This strategy minimizes the net c
putational resources expended in solving the problem. H
ever, if coherence timeis limited, as it most likely will be in
prototypical quantum computers, then a parallel punctua
quantum search strategy becomes necessary, with the de
of parallelism set by the desired computation time and
sired probability of success. The computational time can
made small by making the degree of parallelism sufficien
large but, of course, at the expense of greater net comp
tional resources being expended on solving the problem

Let us now consider the situation where the cohere
time t is fixed by some practical considerations, regardl
the value ofN and r. The number of agentsk must then of
the order ofO(N/r t2) for the parallel time not to exceed th
coherence time. This is an interesting result as it implies t
the number of agents decreasesquadraticallyfor an increas-

1In the latter case, a computation time of orderO(N/r ) is ideally
reduced toO(N/rk) by usingk agents in parallel, so that one has
speedup of orderO(k).
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ing t. The classical counterpart would be a linear law onl2

On the other hand, the bad result comes if we reexpress
cumulative computation time fork agents with this value o
k:

Tcumul5kTavg5kt5OS N

r t D . ~46!

This means that we loose the square root speedup of G
er’s algorithm~i.e., Tcumul does not scale asAN) whenever
the coherence time is fixed. In order to exploit Grove
quantum speedup, the coherence timet must necessarily in-
crease asAN, i.e., as the square root of the size of the sea
space.

VI. CONCLUSIONS

In this paper we have shown how to generalize the an
sis of an unstructured quantum search to incorporate the
fects of an arbitrary starting superposition and an arbitr
unitary operator~or, equivalently, arbitrary stateua&) simul-
taneously. We have also shown that, rather than iterating
amplitude amplification operator until the maximum pro
ability of success is attained, i.e., afterO(0.785398AN) it-
erations, it is better to measure after onlyO(0.6900AN) it-
erations~when the probability of success is only 84%!. This
punctuated strategy is approximately 12% faster than G
er’s algorithm on average, and requires a shorter cohere
time.

Moreover, an even better quantum search algorithm
be obtained by runningk independent quantum searches
parallel, stopping as soon as any of the quantum sear

2Classically, if the parallel computation time for each agent
restricted to t, then the number of agentsk should scale as
O(N/r t).
g
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finds a solution. We find that the optimalk-parallel punctu-
ated quantum search strategy is different from that of sin
agent punctuated quantum search strategy. In general
higher the degree of classical parallelism the less~parallel!
time is needed to perform the quantum computation. T
intuition is captured in Eq.~41!, which gives the explicit
connection between the optimal number of amplitude am
fication iterationsnopt5xopt /f and the degree of parallelism
k. This result is of practical utility to experimental realizatio
of a quantum search algorithm. In particular, in any physi
embodiment of a quantum search, there will be some nat
coherence time beyond which the computation becomes
reliable. Of course, quantum error correction and fau
tolerant computation allow this time to be extended grea
arguably indefinitively, if the individual error probability pe
gate operation can be made sufficiently small. Neverthel
in practice, this might be extraordinarily difficult to achiev
Instead, if we can predict the degree of parallelism neede
that the quantum search has a good chance of comple
within the natural coherence time of the physical system
ing used as the quantum computer, then the strategy of m
sive parallelism might provide a realistic alternative to re
ing solely on quantum error correction. Thus, we see
classical parallelism as an adjunct to quantum error cor
tion rather than a replacement for it. Our results in Sec
expose precisely the space/time tradeoff between quan
coherent computing and classical parallelism, at least in
context of unstructured quantum search.

Note. Some of the results obtained in this paper have b
derived independently by Zalka in a revised~and unpub-
lished @23#! version of Ref.@22#.
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