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The cloning of conjugate continuous quantum variables is analyzed based on the concept of Gaussian
cloning machines, i.e., transformations that yield copies that are Gaussian mixtures centered on the state to be
copied. The optimality of Gaussian cloning machines that transféridentical input states intd1 output
states is investigated, and bounds on the fidelity of the process are derived via a connection with quantum
estimation theory. In particular, the optimaito-M cloning fidelity for coherent states is found to be equal to
MN/(MN+M —N).

PACS numbdss): 03.67—a, 03.65.Bz, 42.50-p, 89.70+c

Cloning denotes an operation by which the unknown staté¢ion and creation operators, respectivglt]. Thus, the cop-
of a system is copied. For reasons rooted in the linearity ofes yielded by a SGC are affected by an equal Gaussian noise
quantum mechanics, it turns out that when the system to be;=o>= 07, on the conjugate variables and p. It will
copied is quantum mechanical, cloning cannot be performeeurn out that the resulting cloning fidelitf=(|p4|#) is
exactly[1]. Then, a natural question that arises is “to Whathen jnvariant for all coherent statesoindp. The symme-
extent can the copies resemble the original, in accordanq‘ay of the cloner also obviously implies that tMecopies are
with quantum mechanics?2]. This is the problem of opti-  -n5racterized each by the same density opegator
mal guantum cloni_ng, which has now been extensively stud- The issue of the duplicatiolN(=1, M=2) of quantum
ied for quantum bit§3-7], and, more generally, fat-level  jytormation carried by a continuous variable has been treated
systemg8-10]. The present paper investigates the question, 5 previous papef12], where an explicit Gaussian-12
of optimal cloning forcontinuousquantum variables. EX-  joning transformation was proposed. It was shown that the

amples of continuous variables include the position and MO gise variance induced by this cloneroi§2= 1/2, so that the

g}gg&%:f r?ef‘ar?dl?j’ (z/:/the .tl‘lNo qugéjratures of a quantlze‘?esulting cloning fidelity for coherent statesfis,= 2/3. This
omagnetic field. We will consider a quantum SyStemfidelity is invariant under translations and rotations in phase
described in terms of two canonlcally corjjugate Operator%pace, so that this Gaussian cloner can be thought of as the
with continuous spectrereferred to asc andp, with eigen-  analogue for coherent states of the universal cloning machine
valuesx andp, respectively. Precisely because they are con-for quantum bitg2]. The present work investigates the opti-
jugate,x andp cannot both be copied exactly. Nevertheless mality of this 1—2 cloner, and extends these considerations
approximate cloning can be achieved if the copies are naio N— M continuous cloners. More specifically, we address
required to be exact. Then, the issue of optimal cloninghe question of “how close” the output stgtéq. (1)] can be
amounts to find the best tradeoff between the position anéom the input statéy). We find that a lower bound on the

momentum errors induced by cloning. noise variancerﬁ, v IS given by
In this paper, we shall considél—M symmetric Gauss- '
ian cloners(SGCg, defined as linear completely positive M—N
mapsCy v transformingN identical replicas of an unknown ;EI,M:W* 2

quantum statéy) belonging to an infinite-dimensional Hil-

bert space into M=N imperfect clones. The joint state of

these clone$»M=CN,M(|¢//®N)<¢®N|) is required to be sup- implying in turn that theoptimal N—M cloning fidelity for

ported on the symmetric subspace?f™, and is such that coherent states is bounded by

the partial trace over all outputs except one is the bivariate

Gaussian mixture MN
M= MNTM N’ @

p1= Try—1(pm)

1 2 e |12 : First, let us demonstrate that the bou(®l is achieved
=— Jd pe~PTonmD(B) ) (¢ID'(B), (1) with the 1-2 SGC derived in[12], so that the latter is
TIN,M optimal for coherent statgeptimality was only conjectured
: . in [12]). Our proof is directly connected to the problem of
where thg integral is performed over all values ®# (x simultaneously measuring a pair of conjugate observables on
+ip)/\2 in Ehe coAmpIex planef{=1), and the operator a single quantum system. It is known that such a joint mea-
D(B)=exp(ga'-p*a) achieves a displacementoin posi-  surement obeys an inequality akin to the Heisenberg uncer-
tion andp in momentum, witta anda’ denoting the destruc- tainty relation but with an extra contribution to the minimum
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variance(see, e.g.[13]). Specifically, any attempt to mea- | et us now estimatery, ., that is, the variance of an
surex and p simultaneously on a quantum system is con-gptimal joint measurement of and p on N replicas of a
strained by the inequality system. From quantum estimation thept], we know that
Uﬁ(l)ag(l)al, ) the variances of_ the gneasured 2values«a;fndp ona single
system, respectively;(1) andop(1), areconstrained by
where o(N) and o5(N) denote the variance of the mea-
sured values ok andp, respectively, wheiN replicas of the 2 2 &2 5
, . . + = + +v
state are availabléThe case wherdl>1 will be considered 9x0%(1)+ Gpop(1)=0x X"+ g 5p 99p ©
later on) So, the best possible simultaneous measurement of
X and p with a same precision satisfie§(1)=a§(1)=l. for all values of the constanty,g,>0. Note that, for each
Compared with the intrinsic noise of a minimum-uncertaintyvalue ofg, andg,, a specific positive-operator-valued mea-
wave packeta)z(zaf,zllz, we see that the joint measure- sure(POVM) based on a resolution of identity in terms of
ment of X and p effects an additional noise of minimum Sdueezed statgsvhose squeezing parameteis a function
variance 1/413]. Now, let a coherent stater) be processed ©f 9x and gp) achieves this boundsee[15]). Moreover,
- when a measurement is performed WNnindependent and
by a 1—-2 SGC, and lek be measured at one output of the . . . . .
T  identical systems, the right-hand si¢ttls) of Eq. (9) is re-
cloner whilep is measured at the other output. As cloning qced by a factoN~?, as in classical statistickl6]. So,

should obey inequality4), we must have applying the optimal single-system POVM times is the
caNra best joint measurement whéhreplicas are available, since
AX*ApT=1, ® ityields e2(N)=N"02(1) anda(N)=N"1?(1). Hence,

using Eq.(9) for a coherent statesk?= sp?=1/2) and re-
quiring o(N)=o2(N), the tightest bound is obtained for
gx=0p. It yields;ﬁ,wzllN, which, combined with Eq(8),
(5>A<Z+Uiz)(5f32+ffiz)>11 (6) ?Zi\)/es the minimum noise variance induced by cloning, Eq.

It is now easy to compute the fidelity of the optimsl
—M SGC when a coherent stdte) is copied. Using Eq(1)
and the identity( | a’)|?=exp(—|a—a'[?), we obtain

whereAx? (Ap?) refers to the usual variance of observable
X (p) measured om,. Using Eq.(1), this gives

where 8x? (8p?) is the intrinsic variance ok (p) measured
on the input state, Whilei2 is the noise variance induced by
the cloner. Now, using the uncertainty principlx?sp?
=1/4 and the inequalitp?+ b?=2./a’b?, we conclude that

the noise variance is constrained by sl ) 1
fam=(alpile)= —=—, (10)
o2 202 =112, (7) Honm

implying that the cloner presented [i6i2] is optimal. which simply results in Eq(3). As expected, all coherent

Let us now consider the general problem of optimal states are copied with the same fidelitMote, however, that

—M Gagsgqn cloning. Qu_r proof is connected to quantumy ;e property does not extend to all statesHd) Equations
state estimation theory similarly to what was done for quan—(z) and (3) are consistent with the known result for a2

tum bits in[14], the key idea being that cloning should not _ = B .
be a way of circumventing the noise limitation encounteregcontinuous cloner, i.eq’,=1/2 andf, ,=2/3[12]. In addi-

in any measuring process. More specifically, our bound retion, they yield the obvious resuit =0 andfy y=1, con-
lies on the fact that cascading &M cloner with anM  firming that the optimaN— N cloning map is just the iden-
—L cloner results in aiN—L cloner that cannot be better tity. Furthermore, they fulfill the natural requirement that the
that theoptimal N—L cloner. We make use of the property cloning fidelity increases with the number of input replicas.
that cascading two SGCs results in a single SGC whose varfor instance, considering leN—kM SGC with k>0, we
ance is simply the sum of the variances of the two compofind that o>« 1/, so thatgf/dk>0. At the limit N—oe, we
nent SGCqsee the Appendix Hence, the variancg,%’L of havef—1, VM, thatis, perfect classical copying is allowed.
the optimal N—L SGC must satisfy? | <oZ y+ 03 .. In Finally, for M —cc, that is, for an optimal measurement, we
particular, if theM —L cloner is itself optimal and.— o, getf—N/(N+1). In particular, it implies that the best si-
multaneous measurementofindp on a single system gives
3,2“ <0 M+;§A .. (8)  afidelity of 1/2, a well-known result.

' ' ’ It is worth noting that optimally cloning squeezed states
Since the limit ofCy y with M—2 corresponds to a mea- requires a variant of these SGCs, just aglig. Let us con-
suremenf3], Eq. (8) implies that cloning thé\ replicas of a  sider, for instance, a family of quadrature squeezed states
system before measuring thé resulting clones does not with squeezing parameter For such a family, the best sym-
provide a means to enhance the accuracy of a direct meanetric cloner must have the form of E(L), but using the
surement of theN replicas. definition 8= (x/o+iop)/\2 with c=exp(). These clon-
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ers naturally generalize the SGCs and give the same cloningseudomixture of pure product states pqy

fidelity, Eq. (3), for those squeezed states. =33 ol p"M)(pZM| where the coefficients; are not nec-
In conclusion, we have established a link between thessarily positive but satisfE®,a;=1 (see[8] or [14]).

optimality of N—M symmetric Gaussian cloners and the Thus, when cloning a statey®N), we have

impossibility of simultaneously measuring two conjugate ob-

servablesc andp. This results in a lower bound on the noise SNy eN d VY

induced by cloning. The optimal cloning fidelity for coherent Crm (| ) DZ; ail i) (b | + egBy.
states was then derived, and was found to be independent of (A1)
which coherent state is to be copied. The optimal cloning of

squeezed states was also found to be equivalent to that @hen, since the cloning maPy y is linear, cascading the
coherent states, as expected, since the former can always f¢o cloners yields

obtained by applying a canonical transformation on the lat-

ter. It is unknown whether a cloner specifically devised for

other classes of states might yield a fidelity exceeding Eg. CMVLCN,M(|‘/’®N><‘/’®N|):Z aiCM,L(|¢f®M><¢i®M|)
(3). However, since minimum-uncertainty states are the clos-

est to classical states, we conjecture that SGCs achieve the +€4Cwm L(By). (A2)
bestpossible fidelity if we require the cloner to be covariant

under rotations and translations in the phase space. Finallf\S this expression is a density operatirus boundetand
even though the explicit transformation achieving thea  the first term of its rhs is positiveCy (Bg) must be
optimal SGC is known[12], finding the N—M cloning  Pbounded. Thus, the second term of the rhs of @®) be-
transformation that attains the maximum fidelity is still an comes negligible whed—-c. Now, using Eq(1), we have

open question.
Tri 1 Cw . Crym( PN

APPENDIX
:;f dZYdZIBe—\VIZ/UfA,L—\B\Z/UﬁM
We now prove that the variances of two cascaded cloners Y
add. Consider all—M SGC, followed by arM —L SGC. T
Let p be an arbitrary density operator supportedgfi™. XD(y+B)|){(¢|DT(y+B)+O(7q), (A3)

Since it is self-adjoint and compags, has a denumerable = ) )

spectrum: it can be expanded as=S7 ,\|&)(&| with with limy_.74=0. A little algebra then shows that this last

(&]€)=8;, \;=0 and>”_,\;=1. Note that¥e>0, 3d expression is a Gaussian mixture centered on the original
i1Sj ijr N =1 . ’

such thafS% ,\,— 1|<e. Therefore, the output of the first State whose variance i, o

cloner can be decomposed ag=pq+€4By, Where py

=Ei":1)\i|§i><§i| is supported on al-dimensional subspace We are grateful to Serge Massar for very helpful discus-
of H®M, By is a bounded operator, and lim..e4=0. Since  sions concerning quantum estimation theory. S.I. acknowl-
pm belongs to the symmetric subspacerof™, so will py. edges support from the Fondation Universitaire Van Buuren
Hence, we know that we can writgy in the form of a  at the UniversiteLibre de Bruxelles.
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