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Optimal N-to-M cloning of conjugate quantum variables
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The cloning of conjugate continuous quantum variables is analyzed based on the concept of Gaussian
cloning machines, i.e., transformations that yield copies that are Gaussian mixtures centered on the state to be
copied. The optimality of Gaussian cloning machines that transformN identical input states intoM output
states is investigated, and bounds on the fidelity of the process are derived via a connection with quantum
estimation theory. In particular, the optimalN-to-M cloning fidelity for coherent states is found to be equal to
MN/(MN1M2N).

PACS number~s!: 03.67.2a, 03.65.Bz, 42.50.2p, 89.70.1c
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Cloning denotes an operation by which the unknown s
of a system is copied. For reasons rooted in the linearity
quantum mechanics, it turns out that when the system to
copied is quantum mechanical, cloning cannot be perform
exactly @1#. Then, a natural question that arises is ‘‘to wh
extent can the copies resemble the original, in accorda
with quantum mechanics?’’@2#. This is the problem of opti-
mal quantum cloning, which has now been extensively st
ied for quantum bits@3–7#, and, more generally, ford-level
systems@8–10#. The present paper investigates the quest
of optimal cloning for continuousquantum variables. Ex
amples of continuous variables include the position and m
mentum of a particle, or the two quadratures of a quanti
electromagnetic field. We will consider a quantum syst
described in terms of two canonically conjugate operat
with continuous spectra~referred to asx̂ and p̂, with eigen-
valuesx andp, respectively!. Precisely because they are co
jugate,x̂ and p̂ cannot both be copied exactly. Neverthele
approximate cloning can be achieved if the copies are
required to be exact. Then, the issue of optimal clon
amounts to find the best tradeoff between the position
momentum errors induced by cloning.

In this paper, we shall considerN→M symmetric Gauss-
ian cloners~SGCs!, defined as linear completely positiv
mapsCN,M transformingN identical replicas of an unknown
quantum stateuc& belonging to an infinite-dimensional Hil
bert spaceH into M>N imperfect clones. The joint state o
these clonesrM5CN,M(uc ^ N&^c ^ Nu) is required to be sup
ported on the symmetric subspace ofH ^ M, and is such that
the partial trace over all outputs except one is the bivar
Gaussian mixture

r15 TrM21~rM !

5
1

psN,M
2 E d2be2ubu2/sN,M

2
D~b!uc&^cuD†~b!, ~1!

where the integral is performed over all values ofb5(x
1 ip)/A2 in the complex plane (\51), and the operato
D(b)5exp(bâ†2b* â) achieves a displacement ofx in posi-
tion andp in momentum, withâ andâ† denoting the destruc
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tion and creation operators, respectively@11#. Thus, the cop-
ies yielded by a SGC are affected by an equal Gaussian n
sx

25sp
25sN,M

2 on the conjugate variablesx and p. It will
turn out that the resulting cloning fidelityf 5^cur1uc& is
then invariant for all coherent states ofx̂ andp̂. The symme-
try of the cloner also obviously implies that theM copies are
characterized each by the same density operatorr1.

The issue of the duplication (N51, M52) of quantum
information carried by a continuous variable has been trea
in a previous paper@12#, where an explicit Gaussian 1→2
cloning transformation was proposed. It was shown that
noise variance induced by this cloner iss1,2

2 51/2, so that the
resulting cloning fidelity for coherent states isf 1,252/3. This
fidelity is invariant under translations and rotations in pha
space, so that this Gaussian cloner can be thought of as
analogue for coherent states of the universal cloning mac
for quantum bits@2#. The present work investigates the op
mality of this 1→2 cloner, and extends these consideratio
to N→M continuous cloners. More specifically, we addre
the question of ‘‘how close’’ the output state@Eq. ~1!# can be
from the input stateuc&. We find that a lower bound on th
noise variancesN,M

2 is given by

s̄N,M
2 5

M2N

MN
, ~2!

implying in turn that theoptimal N→M cloning fidelity for
coherent states is bounded by

f N,M5
MN

MN1M2N
. ~3!

First, let us demonstrate that the bound~2! is achieved
with the 1→2 SGC derived in@12#, so that the latter is
optimal for coherent states~optimality was only conjectured
in @12#!. Our proof is directly connected to the problem
simultaneously measuring a pair of conjugate observable
a single quantum system. It is known that such a joint m
surement obeys an inequality akin to the Heisenberg un
tainty relation but with an extra contribution to the minimu
©2000 The American Physical Society01-1
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variance~see, e.g.,@13#!. Specifically, any attempt to mea
sure x̂ and p̂ simultaneously on a quantum system is co
strained by the inequality

sx
2~1!sp

2~1!>1, ~4!

where sx
2(N) and sp

2(N) denote the variance of the me

sured values ofx̂ andp̂, respectively, whenN replicas of the
state are available.~The case whereN.1 will be considered
later on.! So, the best possible simultaneous measuremen
x̂ and p̂ with a same precision satisfiessx

2(1)5sp
2(1)51.

Compared with the intrinsic noise of a minimum-uncertain
wave packetsx

25sp
251/2, we see that the joint measur

ment of x̂ and p̂ effects an additional noise of minimum
variance 1/2@13#. Now, let a coherent stateua& be processed
by a 1→2 SGC, and letx̂ be measured at one output of th
cloner while p̂ is measured at the other output. As cloni
should obey inequality~4!, we must have

D x̂2D p̂2>1, ~5!

whereD x̂2 (D p̂2) refers to the usual variance of observab
x̂ ( p̂) measured onr1. Using Eq.~1!, this gives

~d x̂21s1,2
2 !~d p̂21s1,2

2 !>1, ~6!

whered x̂2 (d p̂2) is the intrinsic variance ofx̂ ( p̂) measured
on the input state, whiles1,2

2 is the noise variance induced b

the cloner. Now, using the uncertainty principled x̂2d p̂2

>1/4 and the inequalitya21b2>2Aa2b2, we conclude that
the noise variance is constrained by

s1,2
2 >s̄1,2

2 51/2, ~7!

implying that the cloner presented in@12# is optimal.
Let us now consider the general problem of optimalN

→M Gaussian cloning. Our proof is connected to quant
state estimation theory similarly to what was done for qu
tum bits in @14#, the key idea being that cloning should n
be a way of circumventing the noise limitation encounte
in any measuring process. More specifically, our bound
lies on the fact that cascading anN→M cloner with anM
→L cloner results in anN→L cloner that cannot be bette
that theoptimal N→L cloner. We make use of the proper
that cascading two SGCs results in a single SGC whose v
ance is simply the sum of the variances of the two com
nent SGCs~see the Appendix!. Hence, the variances̄N,L

2 of

the optimal N→L SGC must satisfys̄N,L
2 <sN,M

2 1sM ,L
2 . In

particular, if theM→L cloner is itself optimal andL→`,

s̄N,`
2 <sN,M

2 1s̄M ,`
2 . ~8!

Since the limit ofCN,M with M→` corresponds to a mea
surement@3#, Eq. ~8! implies that cloning theN replicas of a
system before measuring theM resulting clones does no
provide a means to enhance the accuracy of a direct m
surement of theN replicas.
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Let us now estimates̄N,`
2 , that is, the variance of an

optimal joint measurement ofx̂ and p̂ on N replicas of a
system. From quantum estimation theory@15#, we know that
the variances of the measured values ofx̂ and p̂ on a single
system, respectivelysx

2(1) andsp
2(1), areconstrained by

gxsx
2~1!1gpsp

2~1!>gxd x̂21gpd p̂21Agxgp ~9!

for all values of the constantsgx ,gp.0. Note that, for each
value ofgx andgp , a specific positive-operator-valued me
sure ~POVM! based on a resolution of identity in terms
squeezed states~whose squeezing parameterr is a function
of gx and gp) achieves this bound~see @15#!. Moreover,
when a measurement is performed onN independent and
identical systems, the right-hand side~rhs! of Eq. ~9! is re-
duced by a factorN21, as in classical statistics@16#. So,
applying the optimal single-system POVMN times is the
best joint measurement whenN replicas are available, sinc
it yields sx

2(N)5N21sx
2(1) andsp

2(N)5N21sp
2(1). Hence,

using Eq.~9! for a coherent state (d x̂25d p̂251/2) and re-
quiring sx

2(N)5sp
2(N), the tightest bound is obtained fo

gx5gp . It yields s̄N,`
2 51/N, which, combined with Eq.~8!,

gives the minimum noise variance induced by cloning, E
~2!.

It is now easy to compute the fidelity of the optimalN
→M SGC when a coherent stateua& is copied. Using Eq.~1!
and the identityu^aua8&u25exp(2ua2a8u2), we obtain

f N,M5^aur1ua&5
1

11s̄N,M
2

, ~10!

which simply results in Eq.~3!. As expected, all coheren
states are copied with the same fidelity.~Note, however, that
this property does not extend to all states ofH.! Equations
~2! and ~3! are consistent with the known result for a 1→2
continuous cloner, i.e.,s̄1,2

2 51/2 andf 1,252/3 @12#. In addi-

tion, they yield the obvious results̄N,N
2 50 andf N,N51, con-

firming that the optimalN→N cloning map is just the iden
tity. Furthermore, they fulfill the natural requirement that t
cloning fidelity increases with the number of input replica
For instance, considering akN→kM SGC with k.0, we
find that s̄2}1/k, so that] f /]k.0. At the limit N→`, we
havef→1, ;M , that is, perfect classical copying is allowe
Finally, for M→`, that is, for an optimal measurement, w
get f→N/(N11). In particular, it implies that the best s
multaneous measurement ofx̂ andp̂ on a single system give
a fidelity of 1/2, a well-known result.

It is worth noting that optimally cloning squeezed stat
requires a variant of these SGCs, just as in@12#. Let us con-
sider, for instance, a family of quadrature squeezed st
with squeezing parameterr. For such a family, the best sym
metric cloner must have the form of Eq.~1!, but using the
definition b5(x/s1 isp)/A2 with s5exp(r). These clon-
1-2
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ers naturally generalize the SGCs and give the same clo
fidelity, Eq. ~3!, for those squeezed states.

In conclusion, we have established a link between
optimality of N→M symmetric Gaussian cloners and t
impossibility of simultaneously measuring two conjugate o
servablesx̂ andp̂. This results in a lower bound on the nois
induced by cloning. The optimal cloning fidelity for cohere
states was then derived, and was found to be independe
which coherent state is to be copied. The optimal cloning
squeezed states was also found to be equivalent to tha
coherent states, as expected, since the former can alwa
obtained by applying a canonical transformation on the
ter. It is unknown whether a cloner specifically devised
other classes of states might yield a fidelity exceeding
~3!. However, since minimum-uncertainty states are the c
est to classical states, we conjecture that SGCs achieve
bestpossible fidelity if we require the cloner to be covaria
under rotations and translations in the phase space. Fin
even though the explicit transformation achieving the 1→2
optimal SGC is known@12#, finding the N→M cloning
transformation that attains the maximum fidelity is still
open question.

APPENDIX

We now prove that the variances of two cascaded clon
add. Consider anN→M SGC, followed by anM→L SGC.
Let r be an arbitrary density operator supported onH ^ M.
Since it is self-adjoint and compact,r has a denumerabl
spectrum: it can be expanded asr5( i 51

` l i uj i&^j i u with
^j i uj j&5d i j , l i>0 and ( i 51

` l i51. Note that;e.0, 'd
such thatu( i 51

d l i21u,e. Therefore, the output of the firs
cloner can be decomposed asrM5rd1edBd , where rd

5( i 51
d l i uj i&^j i u is supported on ad-dimensional subspac

of H ^ M, Bd is a bounded operator, and limd→`ed50. Since
rM belongs to the symmetric subspace ofH ^ M, so will rd .
Hence, we know that we can writerd in the form of a
c-
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pseudomixture of pure product states rd

5( i 51
d a i uf i

^ M&^f i
^ Mu where the coefficientsa i are not nec-

essarily positive but satisfy( i 51
d a i51 ~see @8# or @14#!.

Thus, when cloning a stateuc ^ N&, we have

CN,M~ uc ^ N&^c ^ Nu!5(
i 51

d

a i uf i
^ M&^f i

^ Mu1edBd .

~A1!

Then, since the cloning mapCN,M is linear, cascading the
two cloners yields

CM ,LCN,M~ uc ^ N&^c ^ Nu!5(
i

a iCM ,L~ uf i
^ M&^f i

^ Mu!

1edCM ,L~Bd!. ~A2!

As this expression is a density operator~thus bounded! and
the first term of its rhs is positive,CML(Bd) must be
bounded. Thus, the second term of the rhs of Eq.~A2! be-
comes negligible whend→`. Now, using Eq.~1!, we have

TrL21 CM ,LCN,M~ uc ^ N&^c ^ Nu!

5
1

p2sM ,L
2 sN,M

2 E d2gd2be2ugu2/sM ,L
2

2ubu2/sN,M
2

3D~g1b!uc&^cuD†~g1b!1O~hd!, ~A3!

with limd→`hd50. A little algebra then shows that this la
expression is a Gaussian mixture centered on the orig
state whose variance issM ,L

2 1sN,M
2 .
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