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Pauli Cloning of a Quantum Bit
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A family of asymmetric quantum cloning machines is introduced that produce two approximate copies
of a single quantum bit, each copy emerging from a Pauli channel. A no-cloning inequality is derived,
describing the balance between the quality of the copies. The Pauli cloning machine is also shown to
put a limit on the quantum capacity of Pauli channels.
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A remarkable consequence of the linearity of quantum
mechanics is that an unknown quantum state cannot be du-
plicated, as recognized after the seminal papers by Dieks
[1] and Wootters and Zurek [2]. This so-called no-cloning
theorem implies that there exists no physical process that
produces perfect copies of a quantum bit (qubit) that is ini-
tially in an arbitrary state jc� � aj0� 1 bj1�. Recently,
it has been shown by Buzek and Hillery [3] that it is never-
theless possible to construct a cloning machine that yields
two approximate copies of a qubit. Specifically, a univer-
sal cloning machine (UCM) can be defined that creates two
copies each characterized by the same density operator r

from a single qubit in state jc�, the fidelity of cloning be-
ing f � �cjrjc� � 5�6. The UCM was later proved to be
optimal by Bruss et al. [4] and Gisin and Massar [5]. This
cloning machine is universal in the sense that the copies
are state independent [both output qubits emerge from a de-
polarizing channel of probability p � �1 2 f�3�2 � 1�4;
that is, the Bloch vector characterizing the input jc� is
shrunk by a factor of 2�3 regardless its orientation]. A
great deal of effort has been devoted recently to quan-
tum cloners because of their use in the context of quantum
communication and cryptography (see, e.g., [4,6]). For ex-
ample, an interesting application of the UCM is that it can
be used to establish a limit on the quantum capacity Q of
a depolarizing channel, namely, Q � 0 at p � 1�4 [4].

In this Letter, I introduce a family of asymmetric cloning
machines that produce two (not necessarily identical) out-
put qubits, each emerging from a Pauli channel (defined
below). This family of cloners, which I call Pauli cloning
machines (PCM), relies on a parametrization of 4-qubit
wave functions for which all qubit pairs are in a mixture
of Bell states. Using these PCMs, I derive a no-cloning
inequality governing the tradeoff between the quality of
the two copies (this has been later shown to be a tight in-
equality for any cloning machine whose errors are isotropic
[7]). I then consider a subclass of symmetric PCMs in or-
der to express an upper limit on the quantum capacity Q
of a Pauli channel of probabilities px , py , and pz: I show
that Q vanishes if �ppx ,

p
py ,

p
pz� lies on some ellipsoid
0031-9007�00�84(19)�4497(4)$15.00
whose pole coincides with the depolarizing channel that
underlies the UCM.

A Pauli channel acts on a qubit in an arbitrary pure
state jc� by either rotating it by one of the Pauli matri-
ces or leaving it unchanged. Specifically, the input qubit
undergoes a phase flip (sz), a bit flip (sx), or their combi-
nation (sy) with respective probabilities pz , px , and py .
A depolarizing channel corresponds to the special case
px � py � pz . An alternate description of the Pauli chan-
nel relies on an input qubit X that is initially in a maximally
entangled state with a reference qubit R, say, in the Bell
state jF1�. Then, the joint state of R and the output Y is a
mixture of the four Bell states jF6� � 221�2�j00� 6 j11��
and jC6� � 221�2�j01� 6 j10��,

rRY � �1 2 p� jF1� �F1j 1 pzjF
2� �F2j

1 pxjC
1� �C1j1 pyjC

2� �C2j , (1)

with p � px 1 py 1 pz . The weights in Eq. (1) uni-
quely characterize the Pauli channel.

I define a Pauli cloning machine as a unitary transfor-
mation acting on an input qubit X along with two auxil-
iary qubits, which may be viewed as the blank copy and
an ancilla (or the cloning machine itself). The operation
of a PCM is then described by considering a 4-qubit sys-
tem (see Fig. 1): qubits R and X, which are initially in
the entangled state jF1�, and the two auxiliary qubits that
are in a prescribed state j0�. The PCM admits two out-
puts, Y1 and Y2, which are required to emerge from (dis-
tinct) Pauli channels; equivalently, the density operators
rRY1 and rRY2 must be mixtures of Bell states. An addi-
tional (or third) output Y3 must be introduced for the fol-
lowing reason. Assume that the Bell-diagonal state rRY1

results from the partial trace of a pure state in an extended
Hilbert space. By Schmidt decomposition [8], this implies
that a four-dimensional additional space is necessary to ac-
commodate the four eigenvalues of rRY1 , so that the two-
dimensional space of Y2 is insufficient for this purpose. In
what follows, I restrict myself to the minimal case of a
two-dimensional ancilla (the qubit Y3).
© 2000 The American Physical Society 4497
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FIG. 1. Pauli cloning machine of input X and outputs Y1
and Y2. The additional output Y3 refers to an ancilla (or the
cloning machine). The three outputs emerge from (distinct) Pauli
channels.

More specifically, a PCM is specified by the 4-qubit
wave function underlying the entanglement of the three
outputs with the reference. After cloning, the four qubits
are in state jC�RY1Y2Y3 for which rRY1 and rRY2 must be
Bell mixtures. I also make the additional requirement that
the state of every qubit pair is a Bell mixture (in particular,
the third output Y3 also emerges from a Pauli channel).
Let us find in general the 4-qubit wave functions jC�abcd

that satisfy this requirement. Making use of the Schmidt
decomposition for the bipartite partition ab vs cd, jC�abcd

can be written as a superposition of double Bell states

jC�abcd � �yjF1� jF1� 1 zjF2� jF2�

1 xjC1� jC1� 1 yjC2� jC2��ab;cd , (2)

where x, y, z, and y are complex amplitudes (jxj2 1

jyj2 1 jzj2 1 jyj2 � 1). The qubit pairs ab and cd are
then Bell mixtures; that is, rab � rcd is of the form of
Eq. (1) with px � jxj2, py � jyj2, pz � jzj2, and 1 2

p � jyj2. Remarkably, these double Bell states for the
partition ab vs cd transform into superpositions of double
Bell states for the two other possible partitions (ac vs bd,
ad vs bc), e.g.,

jF1�abjF
1�cd �

1
2

�jF1� jF1� 1 jF2� jF2�

1 jC1� jC1� 1 jC2� jC2��ac;bd .

(3)

This implies that jC�abcd is also a superposition of double
Bell states (albeit with different amplitudes) for these two
4498
other partitions, which, therefore, also yield Bell mixtures
when tracing over half of the system. Table I summarizes
the amplitudes of jC�abcd for the three partitions of abcd
into two pairs, starting from Eq. (2). Identifying a with the
reference qubit (entangled with the input), b and c with the
two outputs, and d with the ancilla, Table I characterizes
the entire family of PCMs.

Let us first investigate the complementarity between
the two copies produced by a PCM. If output b
is characterized by the parameters y, z, x, and y,
then output c has y0 � �y 1 z 1 x 1 y��2, z0 �
�y 1 z 2 x 2 y��2, x0 � �y 2 z 1 x 2 y��2, and
y0 � �y 2 z 2 x 1 y��2 [9]. Consider an asymmetric
PCM whose two outputs b and c emerge from depolariz-
ing channels. In other words, the PCM is required to yield
two copies of a qubit that suffer isotropic (but different)
errors, jxj � j yj � jzj and jx0j � j y0j � jz0j; that is,
the vector characterizing the input state jc� in the Bloch
sphere undergoes a (different) shrinking at each output
regardless of its orientation. A simple analysis shows that
this implies x � y � z, and therefore

x0 � y0 � z0 � �y 2 x��2 . (4)

Thus, if output b emerges from a depolarizing channel of
probability p � 3jxj2, then output c necessarily emerges
from a depolarizing channel of probability p0 � 3jx0j2 �
3
4 jy 2 xj2. Using Eq. (4) and the normalization condition
jyj2 1 3jxj2 � 1, the relation between x and x0 can be
written as

jxj2 1 Re�x�x0� 1 jx0j2 � 1�4 . (5)

The best cloning (minimum jxj and jx0j) is achieved when
the cross term is largest in magnitude, that is, when x and
x0 have the same (or opposite) phases. We may thus take
x and x0 real and positive without loss of generality. As a
consequence, the tradeoff between the quality of the two
copies of an isotropic PCM can be characterized by the
no-cloning inequality

x2 1 xx0 1 x02 $ 1�4 , (6)

where the copying error is measured by the depolariz-
ing probability of the channel underlying each output,
i.e., p � 3x2 and p0 � 3x02. In view of the restrictions
imposed on the PCM (two-dimensional ancilla, and the
requirement that all qubit pairs are Bell diagonal), this
TABLE I. Amplitudes of jC�abcd in terms of the double Bell states for the three possible partitions of the four qubits abcd into
two pairs.

jC�abcd jF1� jF1� jF2� jF2� jC1� jC1� jC2� jC2�

ab vs cd v z x y
ac vs bd 1

2 �y 1 z 1 x 1 y� 1
2 �y 1 z 2 x 2 y� 1

2 �y 2 z 1 x 2 y� 1
2 �y 2 z 2 x 1 y�

ad vs bc 1
2 �y 1 z 1 x 2 y� 1

2 �y 1 z 2 x 1 y� 1
2 �y 2 z 1 x 1 y� 1

2 �y 2 z 2 x 2 y�
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no-cloning inequality applies only to a restricted set of all
the cloners that produce two copies with isotropic errors.
Nevertheless, since it is known that a single ancillary qubit
is sufficient for the optimal UCM [3,4], I conjectured in a
previous version of this paper that Eq. (6) is the tightest
no-cloning bound that can be written for the asymmetric
cloning of a qubit, and that it is saturated for those PCMs
having a phase difference of 0 (or p) between x and x0.
After completion of this paper, independent work by Niu
and Griffiths [7] was pointed out to me, where this opti-
mality of the PCM is rigorously proven.

Equation (6) corresponds to the domain in the �x, x0�
space located outside an ellipse whose semiminor axis
b � 1�

p
6 is oriented in the direction �1, 1�, as shown

in Fig. 2. The semimajor axis is a � 1�
p

2. The origin
in this space corresponds to a (nonexisting) cloner whose
two outputs would be perfect p � p0 � 0. The ellipse
characterizes the ensemble of values for p and p0 that
can be achieved with a PCM. It intercepts its minor axis
at �1�

p
12, 1�

p
12�, which corresponds to the UCM, i.e.,

p � p0 � 1�4. This point is the closest to the origin and
characterizes in this sense the best possible cloner (i.e.,
with minimum p 1 p0). Note that the underlying 4-qubit
wave function

jC�abcd �

s
3
4
jF1�abjF

1�cd

1

s
1
12

�jF2� jF2� 1 jC1� jC1�

1 jC2� jC2��ab;cd (7)

�

s
1
3

�jF1� jF1� 1 jF2� jF2�

1 jC1� jC1��ad;bc (8)

is symmetric under the interchange of a and d (or b and
c), and maximizes the entropy of ad or bc (or minimizes

FIG. 2. Ellipse relating the two outputs of an (optimal)
isotropic PCM that emerge from depolarizing channels of proba-
bility p � 3x2 and p0 � 3x02 (only the quadrant x, x0 $ 0 is
of interest here). Any close-to-perfect cloning characterized by
a point inside the ellipse is forbidden.
the mutual entropy between the two outputs). The ellipse
crosses the x axis at �1�2, 0�, which describes the situation
where the first output emerges from a 100%-depolarizing
channel (p � 3�4) while the second emerges from a per-
fect channel (p0 � 0). Of course, �0, 1�2� corresponds
to the symmetric situation. The domain inside the el-
lipse corresponds to the values for p and p0 that cannot
be achieved simultaneously, reflecting the impossibility of
close-to-perfect cloning imposed by quantum mechanics.

Consider now a class of symmetric PCMs that have both
outputs emerging from the same Pauli channel, i.e., rab �
rac. The corresponding set of conditions jxj � jx0j, j yj �
j y0j, and jzj � jz0j admits the solution

y � x 1 y 1 z . (9)

(It also has an uninteresting solution x � y � z � 2y �
1�2 that characterizes a PCM whose two outputs are fully
depolarizing.) Equation (9), together with the normaliza-
tion condition, describes a surface in a space where each
point �x, y, z� represents a Pauli channel of parameters
px � x2, py � y2, and pz � z2 (x, y, and z are assumed
to be real). This surface,

x2 1 y2 1 z2 1 xy 1 xz 1 yz �
1
2

, (10)

is an oblate ellipsoid E with symmetry axis along the di-
rection �1, 1, 1�, as shown in Fig. 3. The semiminor axis
(or polar radius) is a � 1�2, while the semimajor axis
(or equatorial radius) is b � 1. In this representation,
the distance to the origin is px 1 py 1 pz , so that the
pole �1�

p
12, 1�

p
12, 1�

p
12� of this ellipsoid—the clos-

est point to the origin—corresponds to the special case of
a depolarizing channel of probability p � 1�4. Thus, this
particular PCM coincides with the UCM. This simply il-
lustrates that the requirement of having an optimal cloning

FIG. 3. Ellipsoid representing the class of symmetric PCMs
whose two outputs emerge from the same Pauli channel of
parameters px � x2, py � y2, and pz � z2 (only the octant
x, y, z $ 0 is considered here). The capacity of a Pauli channel
that lies on this ellipsoid must be vanishing.
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(minimum px 1 py 1 pz) implies that the cloner is state
independent (px � py � pz).

The class of symmetric PCMs characterized by Eq. (10)
can be used in order to put a limit on the quantum capac-
ity Q [10] of a Pauli channel, thereby extending the result
of Bruss et al. [4]. Indeed, applying an error-correcting
scheme separately on outputs b and c of the PCM (oblivi-
ously of the other output) would lead to a violation of the
no-cloning theorem if the capacity Q of the channel X !
Y1 (or X ! Y2) was nonzero. Since Q is a nonincreasing
function of px , py , and pz for px,y,z # 1�2 (adding noise
to a channel cannot increase its capacity), I conclude that
Q�px , py , pz� � 0 for any Pauli channel �x, y, z� that lies
on (or outside) the ellipsoid E. In particular, Eq. (10) im-
plies that the quantum capacity vanishes for (i) a depolariz-
ing channel with p � 1�4 (px � py � pz � 1�12) [4];
(ii) a “2-Pauli” channel with p � 1�3 (px � pz � 1�6,
py � 0); and (iii) a dephasing channel with p � 1�2
(px � py � 0, pz � 1�2). Furthermore, using the fact
that Q cannot be superadditive for a convex combination
of a perfect and a noisy channel [10], an upper bound on
Q can be written using a linear interpolation between the
perfect channel �0, 0, 0� and any Pauli channel lying on E:

Q # 1 2 2�x2 1 y2 1 z2 1 xy 1 xz 1 yz� . (11)

It must be emphasized that the validity of this
bound actually depends on the reasonable—but un-
proven—conjecture that Q is a continuous function
of px,y,z , for the proof in Ref. [10] is not valid at the
limit of a noisy channel of vanishing capacity, which
happens to be the case on E. Note that another class of
symmetric PCMs can be found by requiring rab � rad ,
which implies y � x 2 y 1 z rather than Eq. (9). This
requirement gives rise to the reflection of E with respect
to the xz plane, i.e., y ! 2y. It does not change the
above bound on Q because this class of PCMs has noisier
outputs in the octant x, y, z $ 0.

Let us now turn to the fully symmetric PCMs that have
three outputs emerging from the same Pauli channel, which
corresponds to a family of (nonoptimal) quantum trip-
licating machines. The requirement rab � rac � rad

implies �y � x 1 z� ^ � y � 0�. Incidentally, we notice
that if all pairs are required to be in the same mixture
of Bell states, this mixture cannot have a singlet jC2�
component. The outputs of the corresponding triplicators
emerge therefore from a “2-Pauli” channel (py � 0), so
that these triplicators are state dependent, in contrast with
the one considered in Ref. [5]. (For describing a state-
independent triplicator, a 6-qubit wave function should be
used.) These triplicators are represented by the intersec-
tion of E with the xz plane, that is, the ellipse
4500
x2 1 z2 1 xz �
1
2

, (12)

with semiminor axis b � 1�
p

3 [oriented along the direc-
tion �1, 1�] and semimajor axis a � 1. The intersection
of this ellipse with its minor axis (x � z � 1�

p
6) corre-

sponds to the 4-qubit wave function

jC�abcd �
2
p

6
jF1� jF1� 1

1
p

6
jF2� jF2�

1
1
p

6
jC1� jC1� , (13)

which is symmetric under the interchange of any two
qubits and maximizes the 2-bit entropy. Equation (13)
thus characterizes the best triplicator of this ensemble,
whose three outputs emerge from a “2-Pauli” channel with
p � 1�3 (px � pz � 1�6). Equivalently, the operation
of this triplicator on an arbitrary pure state jc� can be writ-
ten as

jc� !
1
2
jc� �cj 1

1
6
jc�� �c�j 1

1
3

�'�2� , (14)

which coincides with the triplicator that is considered in
Ref. [11]. If jc� is real, the copies are the same as those
yielded by the UCM.

I have introduced an asymmetric Pauli cloning machine
which allowed me to derive a no-cloning inequality for
quantum bits, quantifying the impossibility of copying due
to quantum mechanics. Furthermore, I have established a
limit on the quantum capacity of the Pauli channel, relying
on a class of symmetric PCMs.
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