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Cloning of Continuous Quantum Variables
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The cloning of quantum variables with continuous spectra is analyzed. A Gaussian quantum cloning
machine is exhibited that copies equally well the states of two conjugate variables such as position and
momentum. It also duplicates all coherent states with a fidelity of 2�3. More generally, the copies are
shown to obey a no-cloning Heisenberg-like uncertainty relation.
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Most of the concepts of quantum computation have been
initially developed for discrete quantum variables, in par-
ticular, binary quantum variables (quantum bits or qubits).
Recently, however, a lot of attention has been devoted to
the study of continuous quantum variables in informational
or computational processes, as they might be intrinsically
easier to manipulate than their discrete counterparts. Vari-
ables with a continuous spectrum such as the position of a
particle or the amplitude of an electromagnetic field have
been shown to be useful to perform quantum teleportation
[1], quantum error correction [2], or, even more generally,
quantum computation [3]. Also, quantum cryptographic
schemes relying on continuous variables have been pro-
posed [4], while the concept of entanglement purification
has been extended to continuous variables [5]. In this
context, a promising feature of quantum computation over
continuous variables is that it can be carried out in quan-
tum optics experiments by manipulating squeezed states
with linear optics elements such as beam splitters [6].

In this Letter, the problem of copying the state of a
system with continuous spectrum is investigated, and it
is shown that a particular unitary transformation, called
cloning, can be found that copies the position and momen-
tum states equally well. Let us first state the problem in
physical terms. Consider, as an example of a continuous
variable, the position x of a particle in a one-dimensional
space, and its canonically conjugate variable p. If the wave
function is a Dirac delta function—the particle is fully lo-
calized in position space, then x can be measured exactly,
and several perfect copies of the system can be prepared.
However, such a cloning process fails to exactly copy non-
localized states, e.g., momentum states. Conversely, if the
wave function is a plane wave with momentum p —the
particle is localized in momentum space, then p can be
measured exactly and one can again prepare perfect copies
of this plane wave. However, such a “plane-wave cloner”
is then unable to copy position states exactly. In short, it
is impossible to copy perfectly the eigenstates of two con-
jugate variables such as position and momentum, or the
quadrature amplitudes of an electromagnetic field. This is
the content of the famous no-cloning theorem [7].
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In what follows, it is shown that a unitary cloning trans-
formation can, nevertheless, be found that provides two
copies of a system with a continuous spectrum, but at the
price of a nonunity cloning fidelity. More specifically, we
define a class of cloning machines that yield two imper-
fect copies of a continuous variable, say x, the underlying
cloning transformation being displacement covariant. By
this, we mean that any two input states that are related by
a displacement [or translation in phase space �x, p�] re-
sult in copies that are related in the same way. Hence, the
resulting cloning fidelity is invariant under displacements
in phase space. Moreover, the qualities of the two copies
obey a no-cloning uncertainty relation akin to the Heisen-
berg relation, implying that the product of the x-error vari-
ance on the first copy times the p-error variance on the
second one remains bounded by �h̄�2�2 —it cannot be zero.
Within this class, a symmetric rotation-covariant cloner
can be found that provides two identical copies of a con-
tinuous system with the same error distribution for position
and momentum states. This cloner is named “Gaussian”
as it effects Gaussian-distributed position and momentum
errors on the input variable. It can be viewed as the con-
tinuous counterpart of the universal qubit cloner [8], as its
cloning fidelity is invariant under rotations in phase space.
In fact, it also duplicates in a same manner the eigenstates
of linear combinations of x̂ and p̂, such as Gaussian wave
packets or coherent states. The latter states are shown to
be cloned with a fidelity that is equal to 2�3.

In the following, we shall work in position basis, whose
states jx� are normalized according to �xjx0� � d�x 2 x0�.
We assume h̄ � 1, so that the momentum eigenstates are
given by jp� � �2p�21�2

R
dxeipxjx�. We define the maxi-

mally entangled states of two continuous variables,

jc�x, p�� �
1

p
2p

Z `

2`
dx0eipx0

jx0�1jx
0 1 x�2 , (1)

where 1 and 2 denote the two variables, while x and p
are two real parameters. Equation (1) is akin to the origi-
nal Einstein-Podolsky-Rosen (EPR) state [9], but parame-
trized by the center-of-mass position and momentum. It
is easy to check that jc�x, p�� is maximally entangled as
© 2000 The American Physical Society
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Tr1�jc� �cj� � Tr2�jc� �cj� � '��2p� for all values of x
and p, with Tr1,2 denoting partial traces with respect to
variables 1 and 2, respectively. The states jc� are orthonor-
mal, i.e., �c�x0, p0�jc�x, p�� � d�x 2 x0�d� p 2 p0�, and
satisfy a closure relation

ZZ `

2`
dx dp jc�x, p�� �c�x, p�j � '1 ≠ '2 (2)

so they form an orthonormal basis of the joint Hilbert space
of variables 1 and 2. Interestingly, applying some unitary
operator on one of these two entangled variables makes
it possible to transform the EPR states into each other.
Specifically, let us define the set of displacement operators
D̂ parametrized by x and p,

D̂�x, p� � e2ixp̂eipx̂ �
Z `

2`
dx0 eipx0

jx0 1 x� �x0j , (3)

which form a continuous Heisenberg group. Physically,
D̂�x, p� denotes a momentum shift of p followed by a
position shift of x. If D̂�x, p� acts on, say, variable 2, then

'1 ≠ D̂2�x, p� jc�0, 0�� � jc�x, p�� . (4)

This will be useful to specify the errors induced by the
continuous cloning machines considered later on. Assume
that the input variable of a cloner is initially entangled
with another (so-called reference) variable, so that their
joint state is jc�0, 0��. If cloning induces, say, a position-
shift error of x on the copy, then the joint state of the
reference and copy variables will be jc�x, 0�� as a result of
Eq. (4). Similarly, a momentum-shift error of p will result
in jc�0, p��. More generally, if these x and p errors occur
according to the probability distribution P�x, p�, then the
joint state will be the mixture

ZZ `

2`
dx dp P�x, p� jc�x, p�� �c�x, p�j . (5)

Consider now a cloning machine defined as the unitary
transformation Û acting on three continuous variables: the
input variable (variable 2) supplemented with two auxil-
iary variables, the blank copy (variable 3), and an ancilla
(variable 4). A reference variable (variable 1) maximally
entangled with the cloner input is also introduced in order
to simplify the analysis. We assume that the reference and
input variables are in the joint state jc�0, 0��1,2, while the
auxiliary variables 3 and 4 are initially prepared in the state

jx�3,4 �
ZZ `

2`
dx dp f�x, p� jc�x, 2p��3,4 , (6)

where f�x, p� is an (arbitrary) complex amplitude func-
tion. After applying Û , variables 2 and 3 are taken as
the two outputs of the cloner, while variable 4 (the an-
cilla) is simply traced over. The goal will be to find a
transformation Û such that the joint state of the refer-
ence, the two copies, and the ancilla after cloning, i.e.,
jF�1,2,3,4 � '1 ≠ Û2,3,4 jc�0, 0��1,2 jx�3,4, is given by
jF� �
ZZ `

2`
dx dp f�x, p� jc�x, p��1,2jc�x, 2p��3,4.

(7)

This is a very peculiar state in that it can be reexpressed in
a similar form by exchanging variables 2 and 3, namely

jF� �
ZZ `

2`
dx dp g�x, p� jc�x, p��1,3jc�x, 2p��2,4

(8)

with

g�x, p� �
1

2p

ZZ `

2`
dx0dp0ei� px02xp0�f�x0, p0� . (9)

Thus, interchanging the two cloner outputs amounts to
substitute the function f with its two-dimensional Fourier
transform g [10]. This property is crucial as it ensures that
the two copies suffer from complementary position and
momentum errors. Indeed, using Eq. (7) and tracing over
variables 3 and 4, we see that the joint state of the reference
and the first output is given by Eq. (5), with j fj2 playing
the role of P. Hence, the first copy (called copy a later on)
is imperfect in that the input variable gets a random posi-
tion- and momentum-shift error drawn from the probabil-
ity distribution Pa�x, p� � j f�x, p�j2. Similarly, tracing
the state (8) over variables 2 and 4 implies that the second
copy (or copy b) is affected by a position- and momentum-
shift error distributed as Pb�x, p� � jg�x, p�j2. The trade-
off between the quality of the two copies originates from
the Fourier relation between the amplitude functions f and
g, in close analogy with discrete quantum cloners [11].

Interestingly, it turns out that the cloning transformation
that effects Eq. (7) can be written as

Û2,3,4 � e2i�x̂42x̂3�p̂2e2ix̂2� p̂31p̂4� , (10)

where x̂k ( p̂k) is the position (momentum) operator for
variable k. This can be interpreted as a sequence of four
continuous controlled-NOT (CNOT) gates, defined as the
unitary transformation e2ix̂k p̂l with k (l) referring to the
control (target) variable [2]. Remarkably, Eq. (10) coin-
cides with the discrete CNOT gate sequence that achieves
the qubit cloning transformation [8], up to a sign ambigu-
ity originating from the fact that a continuous CNOT gate
is not equal to its inverse [2]. This discrete-to-continuous
correspondence thus suggests that the above cloning trans-
formation is truly “universal.”

Now, let us apply the cloning transformation Û on an
input position state jx0�. We simply need to project the
reference variable onto state jx0�. Indeed, applied to the
initial joint state of the reference and the input jc�0, 0��1,2,
the projection operator jx0� �x0j ≠ ' yields jx0�1jx0�2 up to
a normalization, so the input is projected onto the desired
state. Applying this projector to the state jF� as given by
Eq. (7) results in the state

ZZ `

2`
dx dp f�x, p�eipx0 jx0 1 x�2 jc�x, 2p��3,4 (11)
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for the remaining variables 2, 3, and 4. The state of copy
a (or variable 2) is then obtained by tracing over variables
3 and 4,

ra �
Z `

2`
dx Pa�x� jx0 1 x� �x0 1 xj , (12)

where Pa�x� �
R`

2` dp Pa�x, p� is the position-error
(marginal) distribution affecting copy a. Hence, the first
copy undergoes a position error distributed as Pa�x�. Simi-
larly, applying the projector to the alternate expression for
jF�, Eq. (8), and tracing over variables 2 and 4 results
in a state of the second copy rb akin to Eq. (12) with
Pb�x� �

R
`
2` dp Pb�x, p�. The result of cloning an input

momentum state jp0� can also be easily determined by
projecting the reference variable onto j2p0�, so that the
initial joint state of the reference and the input is projected
on j2p0�1jp0�2. Using Eqs. (7) and (8), we obtain the
analogous expressions for the state of copies a and b,

ra�b� �
Z `

2`
dp Pa�b�� p� jp0 1 p� � p0 1 pj , (13)

where Pa�b�� p� �
R`

2` dx Pa�b��x, p�. Consequently, the
two copies undergo a momentum error distributed as
Pa�b�� p�. The tradeoff between the quality of the copies
can be expressed by relating the variances of Pa�x, p� and
Pb�x, p�.

Let us analyze this no-cloning complementary by apply-
ing the Heisenberg uncertainty relation to the state

jz �1,2 �
ZZ `

2`
dx dp f�x, p� jx�1jp�2

�
ZZ `

2`
dx dp g�2x, 2p� jp�1jx�2 . (14)

The two pairs of canonically conjugate operators �x̂1, p̂1�
and � p̂2, x̂2� give rise, respectively, to the no-cloning un-
certainty relations

�Dxa�2�Dpb�2 $ 1�4 ,

�Dxb�2�Dpa�2 $ 1�4 ,
(15)

where �Dxa�2 and �Dxb�2 denote the variance of Pa�x� and
Pb�x�, respectively, while the same notation holds for the
momentum-shift variances. Consequently, if the cloning
process induces a small position (momentum) error on the
first copy, then the second copy is necessarily affected by
a large momentum (position) error.

We now turn to a particular symmetric cloner that is
rotation covariant in phase space and saturates the above
no-cloning uncertainty relations. We restrict ourselves
to solutions of the form f�x, p� � q�x�Q�2p� where
Q� p� � �2p�21�2

R`
2` dx e2ipxq�x� is the Fourier trans-

form of q�x�. This choice satisfies the symmetry re-
quirement jg�x, p�j2 � j f�x, p�j2 (even though it is not
unique). For the cloner to act equally on position and
momentum states, q�x� must be equal (in magnitude)
to its Fourier transform, so that we choose f�x, p� �
1756
e2�x21p2��2�
p

p. Hence, Pa�b��x, p� � e2�x21p2��p is
simply a bivariate Gaussian of variance 1�2 on x and p
axis. The two auxiliary variables must then be prepared
in the state

jx� �
1

p
p

ZZ `

2`
dy dz e2� y21z2��2j y� j y 1 z� . (16)

The resulting transformation effected by this Gaussian
cloner on an input position state jx� is given by

jx� jx� !
1

p
p

ZZ `

2`
dy dz e2� y21z2��2

3 jx 1 y� jx 1 z� jx 1 y 1 z� , (17)

where the three variables denote the two copies and the an-
cilla, respectively. It is easy to check that Eq. (17) implies
Eq. (12) and its counterpart for copy b, with Pa�x� �
Pb�x� � exp�2x2��

p
p , so that both copies are affected

by a Gaussian-distributed position error of variance
1�2. The choice �Dxa�2 � �Dxb�2 � �Dpa�2 � �Dpb�2

ensures that position and momentum states are copied
with the same error variance, while the value 1�2 implies
that the cloner is optimal among the class considered here,
in view of Eq. (15). Furthermore, the rotation invariance
of j f�x, p�j2 implies that this cloner copies the eigenstates
of any operator of the form cx̂ 1 dp̂ with the same error
distribution, as we will show.

Let us first determine the operation of this Gaussian
cloner on an arbitrary state jj� expressed in position ba-
sis as

R`
2` dx j�x� jx�. For this, we project the reference

variable onto state jj��, i.e., the state obtained by changing
j�x� into its complex conjugate. Applying jj�� �j�j ≠ '
on the initial state jc�0, 0��1,2 yields the state jj��1jj�2, up
to a normalization, so the input is indeed projected onto
jj�. Now, applying this projector to the state jF� after
cloning implies that the remaining three variables are left
in the state

ZZ `

2`
dx dp f�x, p� jj�x, p��2jc�x, 2p��3,4 , (18)

where jj�x, p�� � D̂�x, p� jj� �
R`

2` dx0j�x0�eipx0

jx0 1 x� is the input state jj� affected by a momentum
shift of p followed by a position shift of x. This yields

ra�b� �
ZZ `

2`
dx dp Pa�b��x, p� jj�x, p�� �j�x, p�j (19)

so the two outputs are mixtures of shifted states jj�x, p��,
with x and p distributed according to Pa�b��x, p�. Ex-
pressed in terms of Wigner distributions, Eq. (19) implies
that Wout�x, p� � Win�x, p� ± P�x, p� with ± denoting
convolution. In particular, the Gaussian cloner simply
effects a spreading out of the input Wigner function by a
bivariate Gaussian of variance 1�2.

These considerations can be easily generalized to any
pair of canonically conjugate variables in a rotated phase
space. First note that, using the Baker-Hausdorff formula
and �x̂, p̂� � i, the displacement operator can be rewritten
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as D̂�x, p� � e2ixp�2ei� px̂2xp̂�. Consider now any pair
of observables û and ŷ satisfying the commutation rule
�û, ŷ� � i. Let û � cx̂ 1 dp̂ and ŷ � 2dx̂ 1 cp̂,
where c and d are real and satisfy c2 1 d2 � 1. It is easy
to check that yû 2 uŷ � px̂ 2 xp̂, where the variables
u and y are defined just as û and ŷ, so that D̂ takes a simi-
lar form in terms of û and ŷ (up to an irrelevant phase).
Therefore, as a consequence of the rotation invariance of
the Gaussian j f�x, p�j2, the eigenstates ju� of the observ-
able û undergo a random shift of u that is distributed as
exp�2u2��

p
p. (The position and momentum states are

just two special cases of this.) We can also treat the
cloning of coherent states (Gaussian wave packets) by
considering the complex rotation that defines the anni-
hilation and creation operators â � �x̂ 1 ip̂��

p
2 and

ây � �x̂ 2 ip̂��
p

2. The displacement operator can
then be written (up to an irrelevant phase) in the usual
form D̂�a� � eaây2a�â, where a � �x 1 ip��

p
2 is a

c number that characterizes the position and momentum
shift. In the coherent state representation, where ja0�
denotes the eigenstate of â with eigenvalue a0, this opera-
tor effects the transformation D̂�a� ja0� � eiuja0 1 a�,
with u � Im�a a

�
0�. Thus, if the input of the cloner is

a coherent state ja0�, its two outputs are a mixture of
coherent states characterized by

r �
Z

d2a G�a� ja0 1 a� �a0 1 aj , (20)

where the integral is over the complex plane, and G�a� �
2 exp�22jaj2��p is a Gaussian distribution in a space.
Then, using j�aja0�j2 � exp�2ja 2 a0j2�, it is easy to
calculate the fidelity of the Gaussian cloner:

f � �a0jrja0� �
2
p

Z
d2a e23jaj2 �

2
3

. (21)

This fidelity does not depend on a0, so it is invariant for
all coherent states.

Finally, consider the cloning of quadrature squeezed
states, defined as the eigenstates of b̂ � �x̂�s 1

isp̂��
p

2, where s is a real parameter. These states
can be denoted as jb�, where b � �x�s 1 isp��

p
2 is

a c number. We have again D̂�b� � ebb̂y2b�b̂ , so that
D̂�b�jb0� � jb0 1 b� up to a phase. In order to keep the
fidelity maximum, however, we must use here a modified
cloner defined by

f�x, p� �
1

p
p

e2�x2�s21s2p2��2. (22)

Both copies yielded by this cloner are affected by an x
error of variance s2�2 and a p error of variance 1��2s2�,
which implies that the output density operator has the same
form as Eq. (20) with G�b� � 2 exp�22jbj2��p. As a
consequence, there exists a specific s-dependent cloning
machine that copies all squeezed states corresponding to
each value of s with a fidelity of 2�3. In contrast, cloning
these states using the rotation-covariant cloner above gives
a fidelity that decreases as squeezing increases.

We have shown that a Gaussian cloning machine
for continuous quantum variables can be defined that
transforms position (momentum) states into a Gaussian-
distributed mixture of position (momentum) states with
an error variance of 1�2. It is translation and rotation
covariant in phase space, as the eigenstates of any linear
combination of x̂ and p̂ are copied with the same error
distribution. In particular, it duplicates all coherent states
with a fidelity of 2�3. We conjecture that this cloning
fidelity is optimal. An experimental realization of this
cloner could be envisaged based on the manipulation
of modes of the electromagnetic field. The cloning
transformation Û would then couple two auxiliary modes
to an input mode. Since Û amounts to a sequence of con-
tinuous CNOT gates, it could be implemented by pairwise
quantum nondemolition (QND) coupling between these
three modes [2]. As a final remark, it is worth noting
that the two auxiliary modes must be prepared in state
(16), which is simply the product vacuum state j0�3j0�4
processed by a CNOT gate e2ix̂3p̂4 . This suggests that the
noise that inevitably arises when cloning the input mode
is intrinsically linked to the vacuum fluctuations of the
auxiliary modes. It also corroborates the suggestion that
the physical mechanism that prevents perfect cloning is
spontaneous emission [12].
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Note added.—The optimality of the Gaussian cloner has
been proven after completion of this paper [13].
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