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Abstract

Background: The genetic code is known to be efficient in limiting the effect of mistranslation
errors. A misread codon often codes for the same amino acid or one with similar biochemical
properties, so the structure and function of the coded protein remain relatively unaltered.
Previous studies have attempted to address this question quantitatively, by estimating the fraction
of randomly generated codes that do better than the genetic code in respect of overall robustness.
We extended these results by investigating the role of amino-acid frequencies in the optimality of
the genetic code.

Results: We found that taking the amino-acid frequency into account decreases the fraction of
random codes that beat the natural code. This effect is particularly pronounced when more
refined measures of the amino-acid substitution cost are used than hydrophobicity. To show this,
we devised a new cost function by evaluating in silico the change in folding free energy caused by all
possible point mutations in a set of protein structures. With this function, which measures protein
stability while being unrelated to the code’s structure, we estimated that around two random
codes in a billion (10%) are fitter than the natural code. When alternative codes are restricted to
those that interchange biosynthetically related amino acids, the genetic code appears even more
optimal.
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Conclusions: These results lead us to discuss the role of amino-acid frequencies and other parameters
in the genetic code’s evolution, in an attempt to propose a tentative picture of primitive life.

recently been found (see [2] for a review). These variations

Background

One of the tantalizing questions raised by molecular biology
is whether the basic structures of life as we know them arose
through a Darwinian evolutionary process and, if so, what
were the evolutionary pressures acting on them? One such
structure that could have changed during evolution is the
genetic code. The genetic code was initially believed to be
universal throughout all living things [1], even though some
variations in both nuclear and mitochondrial systems have

are, however, limited and correspond essentially to the reas-
signment of one or a few codons to another amino acid. The
genetic code may thus be considered as fairly universal.

The idea that the genetic code could have evolved to its
present form has been repeatedly suggested [3]. For
instance, it has been proposed that early codes were simpler,
in that they coded for only a few amino acids, and that the
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number of amino acids coded in the genetic code increased
as the code evolved [4-7]. Several hypotheses have been put
forward to explain the evolution of the genetic code to its
present form, and to find out what the genetic code is opti-
mized for [6,8-17]. One possible scenario is that the genetic
code evolved so as to minimize the consequence of errors
during transcription and translation [9,10-13,18]. To test
this hypothesis, some researchers have tried to estimate the
percentage of optimal achievement of the natural code by
quantifying the cost of single-base changes [19-21].

More recently, Haig and Hurst [22] and Freeland and Hurst
[23] improved that approach by comparing the natural code
with random codes. To this end, they defined a fitness func-
tion, @, that measures the efficiency of the code in limiting
the consequences of transcription and translation errors.
This function ® supposedly evolved towards a minimum
through evolution. To measure how close the natural code is
to the actual minimum of ®, they generated random genetic
codes, and computed the fraction of those that are better -
that is, have a smaller value of @ - than the natural code.
They found that only a very small fraction of the random
codes are better than the natural code, and concluded that
the natural code is therefore optimal in that it minimizes the
effect of translation and transcription errors.

Haig and Hurst [22] tested several fitness functions, @,
based on different physicochemical parameters, and found
that single-base changes in the natural code had the smallest
average effect when using, as a cost measure, the change in
polarity or hydropathy between the corresponding amino
acids. These parameters, although not unique, are clearly
biologically relevant, as they are related to hydrophobicity, a
property known to be important in protein conformation
(see, for example, [24,25] for reviews). Changing, through a
transcription or a translation error, a nonpolar amino acid
into a polar one at some strategic position in the sequence of
a protein can have dramatic consequences on its conforma-
tion. Using these parameters, and assuming that all point
mutations occur with the same frequency, Haig and Hurst
[22] found that the fraction of random codes that beat the
natural code is of the order of 10-4.

It has been shown experimentally that individual translation
errors occur more frequently at the first and third codon
positions than at the second [10,26,27], and that there are
transition/transversion biases [28-31]. Taking this into
account, Freeland and Hurst [23] proposed a modified
fitness function ®, which models more accurately the proba-
bility of translation errors. They found that with this
improved modeling, the fraction of random genetic codes
that are better than the natural one decreases from 104 to
1076, They retrieved from their calculations a well known
property of the genetic code: single-base substitutions in the
first and third codon position are strongly conservative with
respect to changes in polarity [10,32]. Here, we highlight the

importance of another parameter in the optimization of the
genetic code, namely the frequency at which different amino
acids occur in proteins. This frequency differs from protein
to protein, and even from species to species, but there is a
general pattern that prevails (Table 1). In Figure 1, we have
plotted the number of codons coding for the same amino
acid (synonyms) versus the amino-acid frequency. The cor-
relation between these two quantities, first noted by King
and Jukes [33], led us to suspect that the amino-acid

Table |

The mean frequencies of the individual amino acids (p(a)) in the
genomes of living organisms

Amino p(a) p(a) p(a) p(a) (%)
acid Archaea (%) Bacteria (%) Eukaryotes (%)

Ala 7.85 (2.27) 8.08 (2.61) 6.48 (0.76) 7.80 (2.38)
Arg 5.92 (1.15) 4.99 (1.61) 5.24 (0.49) 5.23 (1.43)
Asp 5.47 (1.57) 5.06 (0.42) 5.31 (0.35) 5.19 (0.81)
Asn 3.40 (1.05) 4.63 (1.97) 4.76 (0.90) 4.37 (1.73)
Cys 0.89 (0.32) 1.00 (0.31) 1.86 (0.35) 1.10 (0.44)
Glu 7.79 (1.13) 6.35 (1.21) 6.64 (0.28) 6.72 (1.24)
Gln 1.90 (0.40) 3.89 (0.95) 4.28 (0.69) 3.45 (1.19)
Gly 7.49 (0.75) 6.70 (1.46) 5.88 (0.72) 6.77 (1.32)
His 1.70 (0.29) 2.07 (0.39) 241 (0.21) 2.03 (0.41)
lle 7.59 (2.19) 7.05 (2.26) 5.48 (0.92) 6.95 (2.16)
Leu 9.65 (1.00) 10.52 (0.66) 9.35 (0.42) 10.15 (0.86)
Lys 6.04 (2.75) 6.43 (2.78) 6.30 (0.69) 6.32 (2.53)
Met 2.49 (0.47) 2.19 (0.37) 2.33(0.21) 2.28 (0.39)
Phe 4.00 (0.74) 4.57 (0.97) 4.20 (0.59) 4.39 (0.89)
Pro 4.43 (0.92) 3.99 (1.00) 5.15 (0.75) 4.26 (1.01)
Ser 5.93 (I.11) 6.18 (0.77) 8.50 (0.47) 6.46 (1.17)
Thr 4.77 (0.89) 5.15 (0.63) 5.57 (0.32) 5.12 (0.69)
Trp 1.03 (0.20) 1.10 (0.28) 1.13(0.12) 1.09 (0.25)
Tyr 3.68 (0.66) 3.23 (0.64) 3.03 (0.26) 3.30 (0.63)
Val 7.97 (0.85) 6.87 (1.19) 6.09 (0.42) 7.01 (1.18)

The frequencies p(a) were computed as averages over the frequencies
observed in genomes of archaea (Aeropyrum pernix K1, Archaeoglobus
fulgidus, Halobacterium sp. NRC- I, Methanococcus jannaschii,
Methanobacterium thermoautotrophicum, Pyrococcus abyssi, Pyrococcus
horikoshi and Thermoplasma acidophilum), bacteria (Aquifex aeolicus, Bacillus
halodurans, Bacillus subtilis, Borrelia burgdorferi, Buchnera aphidicola,
Campylobacter jejuni, Chlamydia trachomatis, Deinococcus radiodurans,
Escherichia coli K-12, Haemophilus influenzae, Mycobacterium leprae,
Mycobacterium tuberculosis, Mycoplasma genitalium, Mycoplasma pneumoniae,
Pasteurella multocida, Pseudomonas aeruginosa, Rickettsia prowazekii,
Thermotoga maritima, Treponema pallidum, Ureaplasma parvum, Vibrio
cholerae and Xylella fastidiosa) and eukaryotes (Arabidopsis thaliana,
Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens and
Saccharomyces cerevisiae). The last column contains the average
frequencies p(a) computed from all these genomes. The standard
deviation of the distributions is given in parentheses.
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Figure |

The relative frequency p(a) (in %) of amino acid a (right-
hand column of Table 1), as a function of the number of
synonyms n(a) that code for it. The linear regression line is
indicated; the correlation coefficient is equal to 0.66.

frequency is an important parameter in the optimization of
the genetic code, which should also be taken into account in
the fitness function ®. Our calculations indeed confirm that
the genetic code is even more optimal with respect to trans-
lation errors if the amino-acid frequencies of Table 1 are
properly incorporated in ®.

In addition, we bring further improvements to ® by using
quantities other than polarity to measure the roles of the dif-
ferent amino acids in protein conformation and stability. It
should be stressed that the biological relevance of the para-
meters used in @ is crucial in the estimation of the relative
robustness of the natural code. Indeed, one can always con-
struct an artificial fitness function ® such that the natural
biological structure apparently lies at its minimum. Clearly,
the hydrophobicity parameters used by Haig and Hurst [22]
are biologically motivated, but we would like to do better by
refining our cost measure. In particular, we have devised a
mutation matrix describing the average cost of single amino-
acid substitutions in protein stability, obtained by computer
experiments. This mutation matrix combines many different
physicochemical properties of the amino acids. For instance,
it takes into account that mutating cysteine into any other
amino acid may be very costly as it may break a disulfide
bond. Such an effect would not be apparent if only a single
property, say hydrophobicity, was taken into account. We
show that, with a fitness function ® depending on this
mutation matrix and the amino-acid frequencies, only
about two out of 109 randomly generated codes are better
than the natural code. This suggests that the genetic code is
even better optimized to limit translation errors than was
previously thought.
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Results

Fitness of the genetic code with respect to translation

errors

Consider the natural genetic code. It is built out of 64
codons, each consisting of three consecutive DNA bases (A,
G, C, T) or RNA bases (A, G, C, U). These 64 codons are
divided into 21 sets of synonyms, which each code for one of
the 20 natural amino acids or correspond to a stop signal;
hence, to each codon, ¢, an amino acid (or stop signal) a is
assigned through a function a(c). Consider now an error
during transcription from DNA to RNA or during translation
from RNA to protein, in which codon c is mistaken for codon
c¢'. This error thus results in amino acid a(c) being replaced
by amino acid a’ = a(c’). The associated cost is estimated by
a function g(a,a’), which measures the difference between
the amino acids a and a’ with respect to their physicochemi-
cal properties or their role in (de)stabilizing protein struc-
tures; when a or a’ corresponds to a stop codon, we set
g(a,a’) = o. Different cost functions g will be discussed in the
next section. Following Freeland and Hurst [23], the fitness
® of a code is measured by the average of the cost g over all
codons c and all single-base errors ¢ — ¢’

OFH =

64
61 2 ple’le) gla(e),ale”)) (1)

HME\

where p(c’|c) is the probability of misreading codon ¢ as
codon ¢'. If one focuses on transcription errors only, as do
Haig and Hurst in [22], then all p(c’|c) values must be taken
as equal. But here we consider translation errors, as do Free-
land and Hurst in [23], and hence p(c’|c) changes according
to whether ¢ and ¢’ differ in the first, second or third base,
and lead to a transition or a transversion. A transition is the
substitution of a purine (A, G) into another purine, or a
pyrimidine (C, U/T) into another pyrimidine, whereas a
transversion interchanges purines and pyrimidines. On the
basis of experimental data indicating that transitions are
more common than transversions [28-31], and that errors on
the third base are more frequent than errors on the first base,
which are themselves more frequent than errors on the
second base [10,26,27], Freeland and Hurst [23] have chosen
the following values of p(c’|c) , which we also use here:

p(c’|c) =1/N

p(c'le)=1/N
cause a transition,

if ¢ and ¢’ differ in the 3rd base only,

if ¢ and ¢’ differ in the 1st base only and

p(c’|c) =0.5/N if ¢ and ¢’ differ in the 1st base only and
cause a transversion,

p(c’lc) =0.5/N if c and ¢’ differ in the 2nd base only and
cause a transition,

p(c’|c) =0.1/N if c and ¢’ differ in the 2nd base only and
cause a transversion,

p(clc)=0 if ¢ and ¢’ differ by more than 1 base.
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where N is a normalization factor ensuring that =, p(c’|c) = 1.
Obviously, these probabilities only roughly approximate the
true transition/transversion and base position biases.
However, the computed fitness of the genetic code has been
shown to be relatively insensitive to their precise values [34].

Incorporating amino-acid frequencies in the fitness
function

Let us now return to the correlations between the number of
codons coding for an amino acid and the frequency of this
amino acid (see Figure 1). King and Jukes [33], who first
noted this correlation, suggested that most of the amino
acids in genomes have arisen by random mutations that do
not affect the properties and function of the proteins. As a
consequence, the number of synonymous codons determines
the frequency of amino acids.

An alternative interpretation, assuming a very different
chain of causality, is that the amino-acid frequencies are
fixed by their physicochemical properties. For instance, tryp-
tophan would be a rare amino acid because its specific prop-
erties are seldom needed in proteins or because it is difficult
to synthesize. The correlation between the amino-acid fre-
quencies and number of synonymous codons (Figure 1)
would then be interpreted as being due to an adjustment of
the natural genetic code to the frequency of the amino acids.
The conclusions reached using these two opposite interpre-
tations are addressed in the Discussion.

Independent of the assumed chain of causality, it is natural
to expect that a codon error replacing a frequent amino-acid
type with another leads to more absolute errors and thus has
more consequences, at least on average, than an error affect-
ing a rare amino acid. The frequencies with which the differ-
ent amino acids occur in proteins, which are similar in
different organisms (Table 1), are only imperfectly taken into
account in the fitness function ®F# given by Equation (1),
because of the imperfect correlation between amino-acid fre-
quency and number of synonymous codons (Figure 1). To
account properly for the amino-acid frequencies, we propose
a modified fitness function @/aa:

64 pla(c) o4
Pfaa = 2 _ 2 p(C"|C) g(a(C),a(C')) (2)

c=1 n(c) ¢’'=1

where p(a) is the relative frequency of amino acid a, and
n(c) is the number of codons in the block to which ¢
belongs. In other words, n(c) is the number of synonyms
coding for the amino acid a(c) that ¢ codes for. Note that
Equation (2) supposes that there is no codon bias, that is,
the different synonyms of a given amino acid appear with
the same frequency.

To measure the effect of the amino-acid frequency on the
value of the fitness function @, we define, for the sake of

comparison, another fitness function ®¢af where all the
amino acids are supposed equally frequent, that is, p(a) =
1/20:

> plele) glate),aten) (3)

Cost of substituting an amino acid with another

The function g(a,a’) in Equations (1) and (2) measures the
cost - as far as protein stability and structure is concerned -
of substituting amino acid a by a'. This cost depends on
several physicochemical and energetic factors. Hydrophobic
interactions are known to constitute a dominating energetic
contribution to protein stability. Hence, a natural choice for
g consists of taking the squared difference in hydrophobicity
h of the amino acids a and a’:

ghydr‘o (a’a’) = (h(a)_h(a/))2 (4)

There exist various hydrophobicity scales for amino acids.
We have tested two of them. The first is the polarity scale
defined by Woese et al. [35], which is the one used by Haig
and Hurst [22] and Freeland and Hurst [23]. In the second
scale, h(a) is the average solvent accessibility of amino acid a
derived from a set of 141 well resolved and refined protein
structures with low sequence identity (see Methods); solvent
accessibilities are computed using SurVol [36]. We denote
the associated cost functions as gro! and gaceess, respectively.

Although hydrophobic forces dominate in proteins, other
types of interactions also contribute to protein stability (see
[24,25] for reviews). We therefore also attempted to devise a
better cost function g(a,a’), measuring more accurately the
difference between amino acids a and a’. This new function
is inspired by recent computations of the change in free
energy of a protein when a single amino acid is mutated
[37-39]. It is obtained by mutating in silico, in all proteins of
the aforementioned set of 141 protein structures and at all
positions, the wild-type amino acids into the 19 other possi-
ble ones, and evaluating the resulting changes in folding free
energy with mean force potentials derived from the same
structure dataset. The matrix elements M(a,a’) are obtained
as the average of all the computed folding free-energy
changes, which correspond to a substitution a — a’. Details
on the procedure and the value of the matrix elements
M(a,a’) are given in the Methods section. This matrix is
taken as a cost function:

gmutate(a,a’) = M(a,a’) (5)
For the purpose of comparing gmutate with a reference matrix
that exclusively reflects the structure of the genetic code, we

define the cost function:

gd(a,a’) =3 — Ala,a’) (6)



where A(a,a’) is zero when a and a’ coincide, and otherwise
equal to the minimum number of bases that must be
changed to transform a codon coding for a into a codon
coding for a'.

As alast cost function, used only for comparison with earlier
work [34,40], we consider the point accepted mutations 74-
100 (PAM7 4_100) substitution matrix [41], one of the most
commonly used matrices in the context of protein-sequence
alignment:

grM(a,a’) = PAM,,_,,.(a,a’) (7)

This matrix is derived from the pattern of amino-acid substi-
tution frequencies observed within naturally occurring pairs
of highly diverged homologous protein sequences. However,
the use of this matrix for measuring the genetic code’s
fitness [34,40] has been criticized [42], as matrices derived
from substitution patterns observed in homologous proteins
reflect not only the similarity between amino acids with
respect to their physicochemical and energetic properties,
but also the facility with which one amino acid is mutated
into another and thus their proximity in the genetic code.
However, as the PAM,, ,,, matrix is derived from highly
diverged protein sequences, this effect can be expected to be
relatively limited. This is indeed the case, as the linear corre-
lation coefficient between the nondiagonal entries of gPAM
and gcde is only 0.43. Nevertheless, the correlation coeffi-
cient between gmutate agnd geode is still much lower, namely
0.19, so that g™utate may in no way be suspected to include
information on proximity in the genetic code. Finally, note
that the correlation coefficient between g™utate and gPAM is
equal to 0.60; these matrices thus share common features
but contain also different information. This is not surprising
considering that their derivations use very different starting
points (protein three-dimensional structures in one case,
sequence similarity in the other).

The genetic code versus random codes

To evaluate the robustness of the natural genetic code with
respect to translation errors, we computed the fitness functions
®FH @eauif and @fa using Equations (1) to (3) for the natural
genetic code, and compared it to the corresponding fitnesses of
random codes. The random codes are obtained by maintaining
the codon block structure of the natural genetic code, where
each block corresponds to synonyms coding for the same
amino acid (or stop signal). When generating a random code,
the stop signal is kept assigned to the same block as in the
natural genetic code, whereas the different amino acids are
randomly interchanged among the 20 remaining blocks. Thus,
each random code is simply specified by a different function
a(c) in Equations (1) to (3). This is the procedure previously
used by Haig and Hurst [22] and Freeland and Hurst [23].

Thus, in a first stage, we computed the fitness functions
®equif and @faa for the natural genetic code and for 109
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randomly generated codes, using the three cost functions
gpol, gaccess and gmutate, We then calculated the fraction f of
random codes whose value of @ is lower than that of the
natural code. This fraction is supposedly a good estimate of
the relative merit of the natural genetic code comparative to
other codes. The results are given in Table 2. It appears that
this fraction fis always smaller for @@ than for ®ea¥/. This is
especially true for the cost function gmutate, where f is 300
times smaller. This result indicates that the natural code
appears to be better optimized with respect to translation
errors if the amino-acid frequencies are taken into account.

To investigate this further, we have analyzed which of the
cost functions grol, gaccess or gmutate the genetic code appears
to be best optimized for. We compared the fraction f of
better codes for each of the cost functions using the fitness
function @@, For the hydrophobicity functions gpo! and
gaceess the result is roughly the same: f is about 0.5-1.0 in
10. The relative statistical error on this value is of the order
of N*//2, where N is the number of random codes better than
the natural one that were found in our sample of 109 random
codes; thus, N is about 650-1,200, and the error is insignifi-
cant. For the mutational cost function gmutate, f is several
orders of magnitude lower, namely 2 in 109.

This result shows that the natural genetic code appears even
more optimal if the cost function gmuate is used than if
hydrophobicity-based cost functions are considered. As
gmutate has been computed from protein stability changes
effected by point mutations, we may conclude that the
genetic code is optimized in such a way as to limit the effect
of translation errors on the three-dimensional structure and
stability of the coded proteins. Note that the improvement
brought by the choice of gmutate results from the fact that it
probably better accounts for the cost of a mutation than a
mere difference of hydrophobicity; for example, glycine,
proline and cysteine have close neighbors in hydrophobicity,
whereas the cost of their mutation as accounted for by gmutate

Table 2

Fraction of random codes that are fitter than the genetic code

f OFfH dequif faa
gl 9.8 x 107 1.5x 10¢ 6.5x 107
gaccess 1.7 x 106 1.9x 10¢ 1.2x 10¢
geode 3.4 x 10-15* 5.1 x 10-16* 5.0 x 1017
ghAm 3.8x 10 2.2 x 106 2.0 x 10
gmutate 23 x 10 6.0 x 107 20x 10°

Fraction f of random codes that have a lower value of the fitness function
(OFH, @eavif or Pfa9) than the natural code, using each of the four cost
functions gbol, gaccess gcode gPAM and gmutate, Valyes marked with an asterisk
have been obtained by extrapolation as explained in text. The number of
randomly generated codes is equal to 10° and the amino-acid frequencies
used are the average ones listed in the right-hand column of Table I.
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is high. This is due to their special role in determining
protein structure: glycine and proline can adopt backbone
torsion angles essentially inaccessible to other amino acids,
and cysteine can form disulfide bonds.

To check the significance of this result, we have computed the
fraction f of random codes that beat the natural one for
random choices of the amino-acid frequencies, distinct from
the natural frequencies p(a). We have generated 102 sets of
random p(a) values, and, for each of them, estimated the frac-
tion f (out of a sample of 106 random codes). The percentage of
random amino-acid frequency sets that result in a lower frac-
tion f than the natural frequencies is shown in Table 3. We
find that a random assignment of the amino-acid frequencies
does not decrease fin most (at least 97%) of the cases, and this
tendency persists for all cost functions g. Thus, the probability
that the decrease of f, observed in Table 2, when passing from
@equif to @ae, was due to chance is quite limited. We may
therefore conclude that the genetic code is optimized so as to
take into account the natural amino-acid frequencies.

We also investigated whether the result that the natural code
is better optimized if amino-acid frequencies are taken into
account does not depend crucially on the amino-acid fre-
quencies used. For this purpose, we calculated the fraction f
of random codes with lower @/ value than the genetic code
for the four sets of amino-acid frequencies listed in Table 1,
which are computed from genomes of eukaryotes, archaea,
bacteria and from all these genomes together. The results
turn out to be essentially insensitive to the chosen frequency
set: the fractions f differ at most by a factor of two, which
leaves all conclusions unchanged.

We have also included in Table 2 the results based on the
fitness function ®FH, Tt can be argued that this function

Table 3

Percentage of random amino-acid frequency assignments
yielding lower fractions f than the natural one

%

gpol 3
gaccess <|
gPAM <|
gmutate <|

Percentage of the sets of random amino-acid frequency assignments for
which the fraction f of random codes that beat the natural code is lower
than the corresponding fraction computed with the natural frequency p(a)
values. This percentage is estimated for the four cost functions - gb?/,
gaceess, gmutate and gPAM - on the basis of 100 random frequencies and, for
each of them, 106 random codes. For all cost functions except gh’, we
were only able to give an upper bound (estimated to be equal to 1%),
because our sample of random codes is too small and we did not find any
random frequency set for which f'is lower than that obtained with the
natural frequencies.

partly takes, but imperfectly, the amino-acid frequencies
into account. Indeed, for this fitness function each codon is
assigned the same weight, which corresponds to each amino
acid being assigned a frequency proportional to the number
of synonyms n(a) coding for it. In the case of the natural
genetic code, this frequency corresponds approximately to
the amino-acid frequency as there is a correlation between
n(a) and p(a), as shown in Figure 1. But for random codes,
where the amino acids are randomly interchanged between
the codon blocks, this correspondence breaks down. Thus,
the way in which ®'H takes amino-acid frequencies into
account depends on the code considered. This explains why
the fraction f of random codes better than the natural one is
roughly of the same order using ®FH and ®¢a4/. Note that fis
always larger for ®FH than for @M, indicating again the
importance of the amino acid frequencies in the optimality
of the genetic code.

For sake of comparison, we have added in Table 2 the values

of the fraction f of random codes with a lower @@ value than
the natural one, using the cost functions gPAM and geode,
which include information about the structure of the genetic
code. With gPAM | the fraction f is the same as with gmutate,
whereas with geode, we did not find any random code better
than the natural one among the 109 random codes tested. To
estimate f without having to generate a larger ensemble, we
used the following procedure. We computed, from the values
of @faa for the 109 random codes, the probability function
n(®)aa to have a given value of @aa, We fitted log(n(d)) to
a polynomial of fourth degree, and extrapolated this curve
down to the value of @faa for the natural code. This provides
an estimate of the fraction f of random codes that have a
lower @faa value. Note that this estimate is essentially insen-
sitive to the degree of the polynomial. We found with this
procedure that f is of the order of 1077 with gcode, and thus
about 108 times smaller than with gPAM and gmutate,

It is not surprising that the fraction f of random codes that
does better than the natural code is extremely small for geode,
as this matrix exclusively reflects the proximity of amino
acids in the genetic code and renders the issue of the code’s
fitness tautologous. This has been suspected for the gPAM
cost function too [42]. It can indeed be argued that gPAM
contains information on the proximity of amino acids in the
genetic code, superimposed on the desired measure of their
similarity in preserving protein structure, because it is com-
puted from amino-acid substitutions in families of evolu-
tionarily related proteins, which are more frequent between
amino acids that are closer in the genetic code. The fact that
gPAM and gmutate yield similar f values (see Table 2) can be
taken to indicate that this is not the case, and thus that both
these cost functions can reliably be used to estimate the
code’s fitness against translation errors. This interpretation
supports previous analyses that used the g¢gPAM matrix
[34,40]. It could, however, also be argued that gPAM
describes protein structure less well than gmutate and includes



somewhat more information about the genetic code (as
monitored by correlation coefficients of 0.43 and 0.19 of
gPAM and gmutate with respect to geode). These two effects tend
to compensate each other, and could be expected to yield
similar f values for gPAM and gmutate, It therefore seems safer
to use gmutate 35 cost function, because, owing to its very defi-
nition, it seems to capture important structural information
and to be independent of the code’s structure.

We also investigated how optimal the genetic code is with
respect to amino-acid interchanges that do not affect codon
degeneracy. We exhaustively generated all alternative codes
that preserve the amino-acid degeneracy and computed the
fraction f of these codes that do better than the natural code
with respect to mistranslation. We found that f is of the
order of 106 for the three fitness functions @/, dequif and
®FH (Table 4). It is thus similar to the f value computed on
the unrestricted set of alternative codes for ®eauif and ®FH,
and much larger for @/, This result simply reflects the cor-
relation between the codon degeneracy and the amino-acid
frequency (Figure 1). Indeed, this correlation implies that a
much larger proportion of the better codes maintain the
degeneracy, if the frequency of the amino acids is taken
into account in the fitness function, as in @%@, In contrast,
in ®equif and ®FH the amino-acid frequency is not consid-
ered and f is of the same order with the restricted and
unrestricted sets.

It has been proposed that the genetic code has evolved
from a simpler ancestral code, encoding only a few amino
acids present at early times, and that new amino acids
appearing as biosynthetic derivatives of the original ones
were incorporated by subdivision and reassignment of
their synonymous codons [4-7]. This so-called coevolution
hypothesis is supported by the observation that biosyn-
thetically related amino acids are close within the genetic
code [6,43]. To investigate the optimality of the genetic
code in the coevolution framework, we computed the frac-
tion f of alternative codes that perform better than the
natural code against translation errors and that differ
from the natural code by shuffling amino acids belonging
to the same biosynthetic pathway [34,44]. The allowed
shufflings are given in the legend of Table 4. We found
that f is equal to 2.9 x 108, whereas it is equal to 2 x 1079
for the unrestricted set allowing all shufflings (Table 4).
This means that the fraction f of better codes is somewhat
larger in the biosynthesis-restricted set than in the com-
plete set, and thus that the optimality rate is slightly
lower. This result can also be viewed differently. When
considering the total number of codes in the two sets
(which are of the order of 108 and 10%8), it means that
there are only six codes that beat the natural code in the
restricted set, whereas there are 109 such codes in the
unrestricted set. This is particularly striking given that our
definitions of cost functions and sets of biosynthetically
related amino acids only constitute approximations [45].
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Table 4

Fraction f for different sets of allowed amino-acid interchanges
in the alternative codes

f OFH Dequif (Pfaa

Unrestricted set 23x 106 6.0x 107 20x 107(97%)

Biosynthesis-restricted set 6.1 x 106 1.9x10¢ 29 x 108(98%)

Degeneracy-restricted set 23x 106 2.1x10¢ 1.3x10%¢(97%)

Fraction f of random codes that have a lower value of the fitness function
(DFH, Deauif or ®fa9) than the natural code, using the cost function gmutate,
For the unrestricted set, the f values were estimated from 10° randomly
generated codes, where the only constraint is the preservation of the
code’s block structure (as in Table 2). For the biosynthesis-restricted set,
only permutations of amino acids sharing the same metabolic pathway
were considered, that is, interchanges of amino acids contained in one of
the four sets {F, S, Y, C, W}, {L, P, H, Q, R}, {I, M, T, N, K}, {V, A, D, E,
G} (single-letter amino-acid notation) [34]. As the number of alternative
codes is reasonable (207,360,000), they have not been randomly chosen,
but all have been tested. The degeneracy-restricted set contains results
obtained by shuffling only amino acids with the same degeneracy in the
natural code, corresponding to the sets {M, W}, {C, D, E, F, H, K, N, Q,
Y} {1} {A, G, P, T, V}, {L, R, S}. Here also, all 522,547,200 possible codes
have been systematically tested. The percentage of optimization of the
natural code compared to the optimal alternative ones, as defined in the
text, is given in parentheses for ®f@, For the two restricted sets, for
which all alternative codes were exhaustively generated, the ®f@ value of
the optimal code was computed exactly. For the unrestricted set, the
optimal ®f?value was taken as the best of the unrestricted and two
restricted sets.

We can thus conclude that the genetic code is quite robust
against mistranslation in the space of all alternative codes,
and is close to being fully optimal if historical biosynthetic
constraints are taken into account.

A complementary measure of the optimality of the genetic
code is its percentage of optimization, defined as 100%(®, 4,
- D)/ @peg = Prcan), Where @, is the fitness of the
genetic code, @, the fitness of the best of all possible codes
and @, the average fitness over all codes [20,21,46]. This
measure indicates how close the fitness value of the genetic
code is to the fitness value of the optimal code. Note however
that this optimality measure has no absolute meaning and
may not be compared among fitness functions @ defined on
the basis of different cost functions g; to illustrate this, con-
sider the following example: if ghvdro is defined by |h(a)-
h(a")| instead of (h(a)-h(a"))? (see Equation (4)), the fraction
f of better codes remains unchanged but the percentage of
optimality does change [34]. It is, however, meaningful to
compare the percentage of optimization of the genetic code
in the unrestricted and biosynthesis restricted sets with a
same g function. For @ we find that this percentage is
equal to 97% and 98% in the two sets, respectively. This
indicates that the fitness value of the genetic code is not very
far from that of the best possible code, whether focusing on
the subset of alternative codes preserving biosynthetic prox-
imities, or considering all possible codes.
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Discussion

Our results confirm and specify those of Freeland and Hurst
[22]: the genetic code seems structured so as to minimize the
consequences of translation errors on the three-dimensional
structure and stability of the coded proteins. We have shown
that, using the cost function gmutate, which best reflects the roles
of various amino acids in protein structures, and taking amino-
acid frequencies into account, about 2 out of 109 random codes
do better than the natural code. But we have to keep in mind
that there exist 20! ~ 2 x 108 possible codes preserving the
codon block structure, which means that we can expect about
109 better codes overall [47]. Moreover, if the codon block
structure is not preserved [46], the number of possible codes is
larger by orders of magnitude, and therefore the number of
codes better than the natural one will certainly be much larger.

However, if we preserved the block structure and in addition
restricted the space of alternative codes by interchanging only
amino acids belonging to the same biosynthetic pathway, we
found that there are only six codes performing better than the
natural code. The genetic code thus seems quite robust with
respect to mistranslation compared to alternative codes, and
almost fully optimal if the constraint is imposed that biosyn-
thetically related amino acids are encoded in codons that are
close within the genetic code. This does not prove, but is in
agreement with, the coevolution hypothesis, which assumes
that the genetic code has evolved from an simpler ancestral
code of only a few amino acids, by subdivision and reassign-
ment of synonymous codons [4-7], and that the present
genetic code has kept imprints of this evolution.

So we can assert from our analysis that the genetic code has
been optimized through evolution up to a certain point, even
though it is probably not fully optimal, at least with respect
to the parameters considered here [16], except perhaps if
historical, biosynthesis-related, constraints are imposed.
Our analysis does not, however, give us much information
about the mechanism of this evolution as there is unfortu-
nately no trace left of evolution of the code or amino-acid
frequencies in early times. For instance, we do not know
whether the relative frequency of occurrence of amino acids
in proteins adapted so as to increase the optimality of the
genetic code with respect to translation errors, or, on the
contrary, whether the genetic code evolved to take into
account pre-existing amino-acid frequencies. We can,
however, argue that if the amino-acid frequencies adapted to
the genetic code, as assumed by King and Jukes [33], a dis-
crepancy in amino-acid composition between frequently and
infrequently expressed genes might be detectable today
(unless the period during which evolution took place was
long enough for this discrepancy to vanish). If, alternatively,
the genetic code adapted to the amino-acid frequencies, and
thus if these frequencies acted as an evolutionary pressure,
one can imagine two scenarios. Either the code optimized to
take into account the prebiotic frequencies of the amino
acids that became involved in it, or it optimized for the

amino-acid frequencies of already formed proteins (or of a
subset of them) that were important for life and maybe
linked to the code’s control. Perhaps can we assume, more
realistically, that the genetic code and amino-acid frequen-
cies evolved together during some evolutionary period,
thereby approaching an optimal code/amino-acid relation.

More generally, the parameters that acted as evolutionary pres-
sure on the genetic code probably included all the mechanisms
that encode and maintain the genetic information, and were
not just restricted to the frequency of amino acids and the
preservation of protein structure. For example, the genetic
code is obviously related to the translation apparatus, com-
posed of the ribosomes and tRNAs, whose action we described
schematically here by the probabilities p(c’|c) to misread codon
c as ¢'. This apparatus was certainly less reliable at the begin-
ning of evolution. All these mechanisms probably evolved
together with the genetic code during the early stages of life.

Although the code still evolves today, as reflected by its
departure from universality in some organisms, its evolution
is very limited and concerns only the reassignment of a few
codons [2]. As the same change sometimes recurs in different
lineages, the code seems to have reached the bottom of a
funnel in the evolutionary landscape that contains several
roughly equivalent optimal codes. But apart from such
restricted modifications, the code no longer evolves signifi-
cantly, and has not undergone important modifications since
an early stage in the development of life. This stability proba-
bly arose because even small modifications in the code would
have entailed loss of functionality of genes that were already
being expressed. Moreover, the advent of more sophisticated
transcription/translation control mechanisms, which involve
huge protein systems, could have decreased the evolutionary
pressure on the genetic code. Even though our present infor-
mation on the genetic code is insufficient to discriminate
between evolutionary scenarios, our analysis enables us to
put some constraints on the situation at the time when evolu-
tion of the code was pretty much frozen. In particular, it
appears that the frequencies of the amino acids that were
used in proteins synthesized at that time were similar to the
present frequencies. We do not know what determines the
present amino-acid frequencies, but presumably they result,
at least in part, from the amino acids’ physicochemical prop-
erties. For instance, the ratio of hydrophobic to hydrophilic
amino acids is intrinsically related to the globular structure of
proteins and certainly contributes to the pressure on amino-
acid frequencies. Also, amino acids that are easily synthesized
may be used more often. Thus, we can assert that some of the
pressures that determine the present amino-acid frequencies
were already present at the time the code took on its defini-
tive form. In addition, the increased optimality of the genetic
code with respect to gmutate jmplies that the three-
dimensional structure of proteins probably played an
equally important role in fixing the structure of the code. As
the three-dimensional structure of a protein essentially



determines its function, this suggests, more generally, that
the protein function acted as a main evolutionary pressure on
the code structure. Consequently, at the time when the
genetic code took its present form, primitive life was presum-
ably already synthesizing complex proteins. This provides a
tentative picture of primitive life at that time: the translation
apparatus was similar to the present one, and organisms were
made of complex proteins whose amino-acid frequencies
were comparable to the present ones.

Materials and methods

Derivation of the mutation matrix

The derivation is based on a dataset of 141 high-resolution
protein structures determined by X-ray crystallography and
listed in [48]. To avoid bias, these 141 proteins are chosen to
present either less than 20% sequence identity or less than
25% sequence identity and no structural similarity.

The protein main chains are described by their heavy atoms,
and each side chain is represented by a pseudo-atom C*. For
a given amino-acid type, the C* has a well defined position
relative to the main chain, corresponding to the geometric
average of all heavy side-chain atoms of this type in the
dataset [49]; for glycine, the C* pseudo-atom is positioned
on the C*. Side-chain degrees of freedom are thus neglected.

Each residue, at each position of each of the 141 proteins, is
mutated in turn into the 19 non-wild-type amino acids. The
mutations are made by keeping the main-chain structure
unchanged, and substituting the C* of the given amino acid
by that of the mutant amino acid. For each of these muta-
tions, the change in folding free energy is evaluated using the
database-derived potentials and the procedure detailed
below. For each substitution of amino acid a into a’, the
average of all computed changes in folding free energy, at all
protein positions, is computed and defined as minus the
matrix element M(a,a"). We then symmetrize M by setting
M(a,a’) = [M(a,a")+M(a’,a)]/2 and only consider the lower
half of M (a < a’). This procedure does not define the diago-
nal elements of M. On the basis of the principle that the
structural role of a given amino acid is fulfilled by no other
amino acid better than by itself, we assign to all the diagonal
element the same maximum value: M(a,a) = Max[M(a',a")]
+ 1. Then, to simplify M without modifying its structure, we
center it around its mean value:

M(a,a’) > M(aa’) - <M> with <M>= — 3 M(a,a’) (8)
210,47

Finally, we multiply all matrix elements M(a,a’) by 2 and

replace them by the closest integer. The resulting half matrix

is given in Figure 2.

Database derived potentials
The potentials we use to evaluate the protein conformations
are derived from observed frequencies of sequence and
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structure patterns in the aforementioned dataset of 141 pro-
teins. We consider two types of potentials, called torsion
[50,51] and CH-C* [49] potentials.

Torsion potentials describe only local interactions along the
sequence. They take into account the propensities of single
residues and residue pairs to be associated with a (o, vy, ®)
backbone torsion angle domain. Seven (¢, y, ®) domains are
considered, defined in [50]. We use two variants of the
torsion potential, called torsiong, . range and tOrsion, qqie range-
Both are computed from propensities of a (¢, y, ®) domain
at position i along the sequence, or pairs of domains (t;, tj), at
positions i and j, to be associated with an amino acid a, at
position k. But we have k - 1 <i,j < k + 1 for the torsion,
potential and k - 8 < ij < k + 8 for the torsion, ;jqierange
potential. The folding free energy AG(S,C) of a sequence S in
the conformation C computed from these propensities is
expressed as [52,53]:

short-range

N 1 p (ak,ti,l})
AGiorsion $,0) = —kT' 3, = In —-——~—
torsion 1,1,2 C P(ti, t])P (a;)

9)
where P are normalized frequencies, N is the number of
residues in the sequence S, k is the Boltzmann constant and
T is a conformational temperature taken to be room temper-
ature [54]. The normalization factor ¢, ensures that the contri-
bution to AG(S,C) of each residue in the window [k - 1, k + 1]
for the torsiong, . ange Potential or [k - 8, k + 8] for the tor-
SI0Nyiqdle-range POtential is counted once. It is equal to the
window width, except near the chain ends.

The C*-Ct potentials are distance potentials dominated by
nonlocal, hydrophobic interactions. They are based on
propensities of pairs of amino acids (a;a;) at position i and j
along the sequence to be separated by a spatlal distance dj,
calculated between the pseudo-atoms C*. We consider two
variants of CH-CH potentials. The first one, called C+-
CHyong range POtential, describes purely nonlocal interactions
along the sequence, and only takes into account residues
separated by at least 15 residues along the sequence, that is j
> 1 + 16. The second one, simply called C*-C* potential,
though dominated by nonlocal interactions, possesses a local
interaction component. The nonlocal component is obtained
by considering together the frequencies of all residues sepa-
rated by seven sequence positions and more, thus with
Jj =1+ 8. The local component is obtained by computing sep-
arately the frequencies of residues separated by one to six
positions along the sequence, for i + 1 <j < i + 8. Consecu-
tive residues along the sequence are not considered. The
folding free energies are expressed as:

N P] (ap i U)
AGp_(S,C) = =kT 3 In ————— (10)
i<j P l(ai,aj)PJ l(dy)
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A

A +7 C

c -3 +7 D

D 0 -4 +7 E

E 0 -5 +2 +7 F

F 0 -2 -2 -3 +7 G

G -2 -4 -1 -2 -3 +7 H

H +1 -2 +1 +1 -1 0 +7 I

I -2 -3 -4 -4 0 -4 -2 +7 K

K +1 -5 +2 +3 -2 -1 +1 -3 +7 L

L -1 -3 -3 -3 0 -4 -2 0O -2 +7 M

M +1 -3 -1 -1 0 -2 0 0 -1 +1 +7 N

N 0 -3 +2 +2 -2 0O +2 -3 +2 -2 -1 +7 P

p -3 -6 -1 -2 -4 -4 -2 -5 -1 -5 -4 -1 +7 Q

Q +1 -4 +2 +3 -1 -1 +2 -2 +3 -1 0 +2 -2 +7 R

R +1 -4 +2 +2 -2 -1 +1 -3 +3 -2 0 +2 -2 +2 +7 S

S +1 -2 +2 41 -1 0 42 -2 +2 -1 0 42 -1 +2 +2 +7 T

T 0 -2 +1 0 0 -1 42 -1 +1 -1 0 +1 -1 +1 +1 +2 +7 'V

v -1 -3 -3 -4 0 -4 -2 +1 -3 o 0 -3 -4 -2 -2 -1 0 +7 W

w +1 -2 0 -1 0 -2 +1 -1 0 -1 +1 O -3 O 0 +1 0 -1 +7 ¥

Y o -1 -1 -2 +1 -1 +1 -1 -1 -1 O 0 -3 O -1 +1 +1 0 +1 +7
Figure 2
Mutation matrix M.
with j > i + 16 and the normalized frequencies P/ independent P(c,s) > c-:ms [oP(c) P(s) +mSP(c,s)] (11)

of j - i for the Ci-Cty. e POtential, and i + 1 < j and the
normalized frequencies P independent of j - i for j > i + 8 for
the C»-Ct potential. The discretization of the spatial distances
d; is performed by dividing the distances between 3 and
8 A into 25 bins of 0.2 A width and merging the distances
greater than 8 A. To increase the reliability of the statistics,
these bins are smoothed by combining the counts in each bin
with those of the 10 flanking bins at each side. The predomi-
nance of the central bin is preserved by weighting the counts
from each flanking bin by a factor 1/n, where n is the posi-
tion relative to the central bin; n is equal to 1 for the two
closest bins and to 10 for the two most distant bins.

The so-defined folding free energies are reliable for common
amino acids and structure motifs, but not for less common
ones. To correct for the sparse data, we substitute the
sequence-specific frequencies P(c,s), where s denotes a
sequence pattern and ¢ a structure motif, which appear in
expressions (9) and (10) immediately above defining the
torsion and C+-CH folding free energies, by a linear combina-
tion of these frequencies and the product of the separate fre-
quencies of s and ¢, denoted P(s) and P(c) respectively [55]:

where ms is the number of occurrences of the sequence
pattern s in the dataset, and ¢ a parameter. This expression
ensures that the sequence-specific contribution dominates
for rare sequence patterns and tends to zero for frequent
ones. This behavior is modulated by the parameter o, which
we consider here equal to 50.

Evaluation of folding free energy changes

To estimate the stability changes caused by a single-site
mutation, we compute the folding free energy changes as:
AAG(S,,,C,5S,,,C,) = AG(S,,,C,) — AG(S,,,C,,) (12)
where C,, and C,, are the mutant and wild-type conforma-
tions and S,, and S,, the mutant and wild-type sequences,
respectively. With this convention, AAG is positive when the
mutation is destabilizing, and negative when it is stabiliz-
ing. The conformations C,, and C,, of the mutant and wild-
type protein are assumed to be nearly identical. More
precisely, the backbone conformations are taken as identi-
cal and only the position of the C* pseudo-atom, which is



amino-acid dependent, is different in the mutant and wild-
type structures.

The folding free energies of the wild-type and mutant pro-
teins are computed with linear combinations of the torsion
and CH-CH potentials described in the previous section. Pre-
vious analyses [37-39] have shown that the combination that
gives the best evaluation of the AAG values depends on the
solvent accessibility, 4 of the mutated residue; 4 is defined
as the solvent-accessible surface in the protein structure,
computed by SurVol [36], multiplied by 100 and divided by
its solvent-accessible surface in an extended tripeptide Gly-
X-Gly [56]. These analyses have revealed that the mutations
can be divided in three subsets. When the mutated residue is
at the surface, with a solvent accessibility A4 equal to or larger
than 50%, the optimal folding free-energy change has been
shown to be equal to:
AAG 5 59 = 114 X AAG orion s range T 0-27 (13)
When the mutated residue is half buried, half exposed to the
solvent, with a solvent accessibility between 20 and 40%, the
optimal folding free energy is:

AAG =1.39 x AAG

20<A<40% — torsioNghort_range + (14)

0.97 x AAG e + 0.21

Finally, when the mutated residue is totally buried in the
protein core, with a solvent accessibility less than or equal to
20%, the optimal folding free energy is:

AAG ¢ 509 = 1.44 X AAG

tOrSiONymiddle_range + (15)

1.70 x AAGc“c“,m, e T 144

When the mutated residue has a solvent accessibility com-
prised between 40 and 50%, we do not evaluate its folding
free energy. We have indeed observed that in this case, the
solvent accessibility of the mutated residue is not a good
measure to guide the choice of the optimal potential.
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