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Classical simulation of quantum entanglement without local hidden variables
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Recent work has extended Bell’s theorem by quantifying the amount of communication required to simulate
entangled quantum systems with classical information. The general scenario is that a bipartite measurement is
given from a set of possibilities and the goal is to find a classical scheme that reproduces exactly the correla-
tions that arise when an actual quantum system is measured. Previous results have shown that, using local
hidden variables, a finite amount of communication suffices to simulate the correlations for a Bell state. We
extend this in a number of ways. First, we show that, when the communication is merely required to be finite
on average, Bell states can be simulatedwithout any local hidden variables. More generally, we show that
arbitrary positive operator valued measurements on systems ofn Bell states can be simulated withO(n2n) bits
of communication on average~again, without local hidden variables!. On the other hand, when the communi-
cation is required to beabsolutely bounded, we show that a finite number of bits of local hidden variables is
insufficient to simulate a Bell state. This latter result is based on an analysis of the nondeterministic commu-
nication complexity of theNOT-EQUAL function, which is constant in the quantum model and logarithmic in the
classical model.
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I. INTRODUCTION

We consider how much classical communication is
quired to simulate the correlations exhibited by measur
entangled quantum systems. Following@1#, define aquantum
measurement scenarioas a triple of the form
(uC&AB ,MA ,MB), where uC&AB is an entangled bipartite
quantum state,MA is a set of measurements on the first co
ponent, andMB is a set of measurements on the seco
component. The goal is to devise communication protoc
that enable two separated parties, Alice and Bob, to simu
a quantum measurement scenario using classical infor
tion. The input to the protocol is (x,y)PMA3MB , and Al-
ice receivesx ~but noty!, while Bob receivesy ~but notx!.
Alice and Bob’soutputsshould be jointly distributed so as t
exactly reproduce the probability distribution that arises if
actual quantum system in stateuC&AB is measured accordin
to ~x,y!. We shall refer to this problem asclassical entangle-
ment simulation. In @2#, a related problem, dubbedclassical
teleportation, is also introduced. Here Alice is given a cla
sical description of a quantum stateuC& and Bob is given a
classical description of a quantum measurementxPM . The
goal is for Bob to produce data that stochastically simula
the result of applying measurementx to stateuC&. As shown
in @2# and discussed below, this problem is closely related
classical entanglement simulation.

The first relevant result in this topic is Bell’s famous the
rem@3#, which implies that, whenuC&AB is a Bell state, there
exist (MA ,MB) for which Alice and Bob must performsome
~nonzero! communication in order to achieve classical e
tanglement simulation. More recently, Brassard, Cleve,
Tapp @1# and, independently, Steiner@4# have shown that,
1050-2947/2001/63~5!/052305~8!/$20.00 63 0523
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when uC&AB is a Bell state andMA , MB are each the set o
all von Neumann measurements on a qubit, the simulatio
possible with only afinite amount of classical communica
tion between Alice and Bob.

In the protocols devised in@1# and@4#, it is supposed that
Alice and Bob have an infinite supply of correlated rando
bits ~specifying real-valued parameters!. Such shared random
bits are generally calledlocal hidden variables. The two pa-
pers differ in their technical definition of the ‘‘finite amoun
of classical communication.’’ In@1#, the amount of commu-
nication that occurs in the protocol isexactly8 bits. In con-
trast~a slightly generalized version of! the protocol in@4# has
the property that, for any given pair of measurements (x,y)
PMA3MB , the average~i.e., expected! number of bits of
communication is 2.97 bits; however, the amount of comm
nication for any particular execution of the protocol may
arbitrarily large. The result in@4# is then refined in@2#, where
the amount of classical communication is decreased to 1
bits on average for all von Neumann measurements. A
the setsMA and MB are extended to include all positive
operator-valued measurements~POVM’s!, using 6.38 bits of
communication on average. We will refer to the first kind
protocol as abounded communication model, whereas the
second kind will be called anaverage communication mode.

Regarding the classical entanglement simulation of m
than one Bell state, it is shown in@1# that the exact simula-
tion of arbitrary von Neumann measurements onn Bell states
requiresV(2n) bits of communication in the bounded com
munication model. With minor modifications to the tec
niques in@1,5#, this V(2n) lower bound also carries over t
the average communication model. Also note that this re
©2001 The American Physical Society05-1
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~as well as most other results for classical simulation of
tanglement! immediately applies to classical teleportatio
protocols. This is because any protocol for classical telep
tation of ann-qubit state can be converted into one for cla
sical entanglement simulation ofn Bell states with the same
amount of communication. This is accomplished by Ali
first simulating~by herself! the probabilistic effect of mea
suring ‘‘her’’ n qubits of then Bell states. She also compute
the resulting mixture of pure states that describes ‘‘Bob’s’n
qubits. Then Alice classically teleports the state of Bob’sn
qubits to him. Conversely, protocols for the classical e
tanglement simulation can be converted into protocols
classical teleportation, at the expense of a little more co
munication~see@2# for details!.

The present paper generalizes the above results in a n
ber of ways. All protocols for classical entanglement sim
lation proposed so far apply to single Bell states, and t
use an infinite number of bits of local hidden variables
the simulation. Our first result is that local hidden variab
are not necessary in the average communication model
particular, whenuC&AB is a Bell state andMA ,MB are each
the set of all von Neumann measurements, classical
tanglement simulation is possible with a constant num
~less than 20! of bits of communication on average, witho
any local hidden variables. We also show that, whenuC&AB
consists ofn Bell states andMA ,MB are each the set of a
POVM’s, the simulation can be carried out with no loc
hidden variables andO(n2n) bits of communication on av
erage. Note that this communication cost is almost optim
due to the aforementioned lower bound ofV(2n).

In contrast to the above results about the the average c
munication model, we show that local hidden variables
necessaryin the bounded communication model~when
uC&AB is a Bell state, andMA ,MB are all von Neumann
measurements!. More precisely, the simulation o
(uC&AB ,MA ,MB) in the bounded communication model r
quires aninfinite number of bits of local hidden variables
This follows from a connection between the quantum m
surement scenario and the nondeterministic communica
complexity of theNOT-EQUAL function. These results indi
cate that there is a fundamental difference between the a
lutely bounded communication model and the model of co
munication with bounded expectation.

II. CASE OF A SINGLE BELL STATE

We begin by considering the case of von Neumann m
surements on Bell states. Our first result, stated in theore
is actually a special case of a stronger result given in theo
3 ~where the bound on the amount of communication will
decreased from 22 to 20 bits, and where the measurem
can be arbitrary POVM’s!. The proof of theorem 1 uses th
same basic approach as that of theorem 3, but since
considerably simpler, it is presented first.

Theorem 1. For the quantum measurement scena
(uC&AB ,MA ,MB), where uC&AB5(1/&)(u00&1u11&) and
whereMA ,MB are each the set of all von Neumann measu
ments, classical entanglement simulation is possible with
any local hidden variables with a constant number~less than
05230
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22! of bits of communication on average.
Proof. We first recall Steiner’s original protocol@4#. The

task of the two parties, Alice and Bob, is to simulate carryi
out measurements on the Bell state, (1/&)(u00&1u11&) with
respect to operatorsR(x) andR(y) (x,yP@0,1#), where

R~x!5S cos~2px! sin~2px!

sin~2px! 2cos~2px!
D . ~1!

In order to carry out this simulation, Alice and Bob sha
an infinite sequence of local hidden variablesu1 ,u2 ,...,
which are uniformly distributed over the interval@0,1#. In
addition, Alice has an infinite set of valuesu1 ,u2 ,..., which
are also uniformly distributed over the interval@0, 1#.

In order to simulate a Bell state, Alice and Bob carry o
the following operations.

~i! Alice finds the smallest valuekP$1,2, . . .% such that
uk<ucos@2p(uk2x)#u. Then Alice sends the value of thisk to
Bob, and she outputs the value of sgn$cos@2p(uk2x)#%.

~ii ! After Bob receives the indexk from Alice, he outputs
the value of sgn$cos@2p(uk2y)#%.

One can verify that this protocol produces the correct s
tistics„namely, that Alice and Bob’s outputs are random b
correlated so as to be equal with probability cos2@p(x2y)#…
and that the amount of communication is 1.485 bits on av
age.

Steiner’s protocol enables Alice to effectively generate
random variable,u, distributed according to the density func
tion p(u)5(p/2)ucos@2p(u2x)#u and convey this value to
Bob. Explicitly sending the exact value ofu requires an in-
finite number of bits of communication; the above meth
uses local hidden variables to accomplish this with a fin
amount of communication.

In order to circumvent the need for local hidden variab
~or an infinite amount of communication!, a different ap-
proach is used. Alice generatesu herself, according to the
density functionp(u)5(p/2)ucos@2p(u2x)#u. In most cases,
only a few bits ofu suffice for Bob to be able to compute th
value of sgn$cos@2p(u2y)#%. So Alice sends Bob only a few
bits of u at a time and receives a response from Bob e
time as to whether or not the precision is sufficient. In t
first round. Alice sends Bob the first two significant bits ofu
~since one bit of precision is never sufficient for Bob!. Then
Bob determines whether this information unambiguously
termines the value of sgn$cos@2p(u2y)#% and indicates the
answer in a bit sent to Alice. In subsequent rounds, Al
sends one additional bit of precision ofu to Bob, until Bob’s
response indicates that the precision is sufficient.

To upper bound the expected amount of information co
municated, note that, after each round, Bob has at least1

5

chance of havingu with sufficient precision. This is becaus

for any zP@0,1# andwP@0,1
4 #,

E
z2w

z p

2
ucos~2pu!udu. 1

4 E
z

z1w p

2
ucos~2pu!udu. ~2!

Thus the expected number of rounds is less than 5. Since
first round consists of 3 bits~two from Alice and one from
Bob! and each subsequent round consists of 2 bits~one from
5-2
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CLASSICAL SIMULATION OF QUANTUM . . . PHYSICAL REVIEW A 63 052305
each of Alice and Bob!, the expected number of bits of com
munication is less than 11. To simulate an arbitrary von N
mann measurement, it suffices to simulate two measurem
with respect to operators of the formR(x) @1#. Thus the
expected amount of communication is less than 22 bits.j

Regarding theminimumnumber of bits of communication
necessary to perform classical entanglement simulation w
out local hidden variables as in theorem 1, it should be no
that a single run of a protocol without local hidden variab
cannot succeed in general if the communication is less th
bit. This is because, in the case where the two measurem
x andy are both in the same basis, Alice’s and Bob’s outp
have exactly one bit of mutual information. One can eas
check that this mutual information is a lower bound on t
amount of forward and backward communication that m
be used to simulate entanglement~see the Appendix!. There-
fore, 1 bit of communication is necessary in this worst ca
For other specific pairs of measurements~x,y!, the mutual
information is lower than 1 bit and so is the minimu
amount of communication. Let us now consider the c
where the measurement directionsx andy are chosen at ran
dom and assumed to be isotropic~the distribution of maxi-
mum uncertainty!. The average communication here is wi
respect to the probabilistic selection of a pair of measu
ments as well as the probabilistic choices made by Alice
Bob during the execution of the protocol.

Lemma 1. Let (uC&AB ,MA ,MB) be the quantum measure
ment scenario whereuC&AB5(1/&)(u00&1u11&), and
MA ,MB are each the set of all von Neumann measureme
Suppose that a pair~x,y! is selected according to two inde
pendent uniform distributions on the surface of the Blo
sphere. Then, for any protocol in the average communica
model that has no local hidden variables, the sum of
~forward and backward! communication must be at lea
0.279 bits on average.

Proof. Consider the situation where Alice and Bob a
each given a random measurement direction~xW andyW ! by a
third person—say, Charles. As before, Bob does not kn
the measurement Alice is performing, and, conversely, A
ignores Bob’s measurement. We also assume that, initia
the two parties share no information. Then Charles obse
the outcomes of Alice’s and Bob’s measurements, notea
~561! andb ~561!. Our goal here is to estimate the num
ber of bits that must be communicated from Alice to B
~and from Bob to Alice! in order for them to exactly repro
duce the quantum correlations that would be observed if t
shared a singlet. This quantity can be bounded from be
by the amount of shared randomness that Charles obse
between Alice’s and Bob’s outcomes, whileknowing the
measurement directions. In other words, what is relev
here is the mutual information between Alice’s and Bob
outcomesa and b conditionallyon the measurement direc
tions x and y—that is, I (a:bux,y). ~It is shown in the Ap-
pendix that the mutual information is indeed a lower bou
on the number of bits that must be communicated.! For
given measurement directionsxW andyW , the correlation coef-
ficient is r 52xW•yW , so that the joint distribution of the out
05230
-
nts

h-
d

s
1

nts
s
y

t

.

e

-
d

ts.

n
e

w
e
y,
es

y
w
es

nt

d

comes isp(a,bur )5(11rab)/4, with a561 andb561.
The resulting mutual information for a givenr is then equal
to

I ~a:bur !5
11r

2
log2~11r !1

12r

2
log2~12r !. ~3!

If xW and yW are uniformally distributed, then the correlatio
coefficient is distributed asP(r )51/2 in the interval@21, 1#.
As a result, the~average! mutual information betweena and
b conditionally onr can be written as

I 5E I ~a:bur !P~r !dr5E
21

1

~11r !log2~11r !dr

5 log2~2/Ae!. ~4!

Thus the amount of~forward and backward! communication
that is necessary to establish this shared randomness bet
Alice and Bob is bounded byCf1Cb>I 50.279 bits. j

Note that this bound assumes that there are no initi
shared local hidden variables between Alice and Bob. I
more general scenario, however, the bound in lemma 1 o
measures thetotal amount of shared randomnes, possib
including prior shared randomness. In other words,I is the
sum of the initial shared randomness and the communicat
so it does not discriminate the random bits that are sha
beforehand~the local hidden variables! from the bits that are
communicated after the measurement basis are disclose
Alice and Bob.

Now we shall show that, if the bound on the communic
tion is changed from being constant on average to being
absolute constant, then the classical entanglement simula
without local hidden variables that occurs in theorem 1
comes impossible to achieve. Prior to doing this, we revi
a relevant result from the theory of communication comple
ity ~see@6# for an extensive review of the field!. Consider the
NOT-EQUAL function, FNE: $0,1%n3$0,1%n→$0,1%, defined
as

FNE~x,y!5H 1 if xÞy

0 if x5y,
~5!

and suppose that Alice and Bob are givenx and y, respec-
tively, as inputs and their goal is to evaluateFNE(x,y)50, in
the following weak sense. Bob should output a bitb that is
distributed so that ifFNE(x,y)50, then Pr@b51#50; if
FNE(x,y)51, then Pr@b51#.0. Also, assume that Alice
and Bob have noa priori shared random information. A
protocol that accomplishes this can be regarded as anonde-
terministicprotocol for theFNE function. By standard tech
niques in communication complexity~see @6#, p. 19!, the
following lower bound can be obtained on the amount
communication required by Alice and Bob in order
achieve this.

Lemma 2. Any nondeterministicclassical protocol for
computing the functionFNE requires at least log2(n) bits of
communication.
5-3
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The above lemma will be used to prove the followin
theorem.

Theorem 2. For the quantum measurement scena
(uC&AB ,MA ,MB), where uC&AB5(1/&)(u00&1u11&) and
whereMA ,MB are each of the set of all von Neumann me
surements, classical entanglement simulation is impossib
the number of bits of communication is absolutely bound
by a constant and the number of bits of local hidden va
ables is also a finite constant.

Proof. We will show that any protocol for classical en
tanglement simulation that uses a constant number of bit
communication~in the absolute sense! and a constant num
ber of bits of local hidden variables can be converted int
nondeterministic protocol forFNE with a constant amount o
communication~independent ofn!, thereby contradicting
lemma 2. First, note that a finite amount of prior shar
randomness can always be simulated by a finite amoun
communication at the start of the protocol~to establish the
shared randomness!. Thus we can suppose, without loss
generality, that the protocol for classical entanglement sim
lation uses no prior shared randomness.

Consider the restricted set of measurements, whereMA
andMB each consist of all measurements with respect to
operators of the formR(x/2n) @R is defined in Eq.~1!#, where
xP$0,1%n is ann-bit binary number. Note that if the protoco
for entanglement simulation is givenx andy as inputs, then
the resulting output bits of Alice and Bob, call thema andb,
satisfy Pr@a5b#5cos2@p(x2y)/2n#. It follows that Pr@a
Þb#50 if x5y and Pr@aÞb#.0 if xÞy. Therefore, if at
the end of the protocol Alice sends her bita to Bob ~increas-
ing the communication cost of the protocol by one bit! and
then Bob outputsa% b, the result is a nondeterministic pro
tocol for computingFNE with a constant number of bits o
communication~independent ofn!, contradicting lemma 2.j

In contrast to lemma 2, we note the following.
Lemma 3. There is a nondeterministic quantum protoc

for FNE where the communication cost is exactly one qub
Proof. The idea is for Alice to create the sta

cos(px/2n)u0&1sin(px/2n)u1& and send it to Bob. Then Bob
measures with respect to the operatorR(y). It is straightfor-
ward to calculate that the outcome of Bob’s measuremeb
satisfies Pr@b51#50 if x5y and Pr@b51#.0 if xÞy. j

Comparing lemmas 2 and 3, there is a 1 vs log2(n) quan-
tum vs classical gap for the nondeterministic communicat
complexity of FNE. This is noteworthy since it is a cas
where even an exponential increase in the amount of c
munication permitted is not sufficient for a classical proto
to simulate a quantum protocol. See@7# for other results
about nondeterministic communication complexity in t
quantum case.

III. CASE OF SEVERAL BELL STATES

In this section, we shall exhibit a protocol that generaliz
theorem 1 as follows.

Theorem 3. Suppose that Alice and Bob must simulate t
classical teleportation of a state belonging to
2n-dimensional Hilbert space and suppose that Bob m
carry out an arbitrary POVM. Or suppose that Alice and B
05230
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must simulate carrying out arbitrary POVM’s on ebits~that
is, an entangled state belonging to the tensor product of
2n-dimensional Hilbert spaces!. Both simulations can be re
alized by communicating on average fewer than (3n16)2n

12 bits. Specifically, we shall exhibit a protocol in whic
alice sends Bob on average fewer than (3n16)2n bits and
Bob sends Alice on average fewer than 2 bits of commu
cation.

We now proceed with a general proof of theorem 3. W
start with a discussion of how much classical communicat
is necessary for approximate simulation of quantum comm
nication.

Lemma 4. Consider the problem of classical teleportati
in which Alice is given a quantum stateuC& belonging to a
2n-dimensional Hilbert space~i.e., Alice is givenn qubits!
and Bob is given an arbitrary POVMx5$Bl% whereBl are
the POVM elements. Suppose Alice sends Bobm
11)2n11 ~with m>n/2! bits of classical information abou
stateuC&. With this classical information Bob can calcula
an approximation Pm( l ) to the true probability P( l )
5^CuBl uC& that his measurement yields outcomel. Alice
can choose the bits she sends to Bob, and Bob can us
algorithm, such that the approximate probabilities sum t
@( l P

m( l )51# and satisfy the constraint

uP~ l !2Pm~ l !u<amTr~Bl !, ~6!

where Tr(Bl) is the trace of the POVM elementBl andam is
bounded by

am,2n/22m11. ~7!

An equivalent formulation of Eq.~6! is that the information
provided by Alice enables Bob to define two bounds

Pmin
m ~ l !5max$0,Pm~ l !2amTr~Bl !%, ~8!

Pmax
m ~ l !5min$1,Pm~ l !1amTr~Bl !%, ~9!

such that he knows with certainty thatP( l ) belongs to the
interval

P~ l !P@Pmin
m ~ l !,Pmax

m ~ l !#. ~10!

This interval has the property that asm increases the interva
shrinks:

0<Pmin
m ~ l !<Pmin

m11~ l !, ~11!

1>Pmax
m ~ l !>Pmax

m11~ l !. ~12!

Proof. Let us choose an arbitrary basisuj& of the Hilbert
space. This basis is known to both Alice and Bob. In t
basis, the stateuC& can be written as

uC&5(
j 51

2n

@X~ j !1 iY~ j !#u j &, ~13!

whereX( j ) andY( j ) are real numbers. We can write them
5-4
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X~ j !5~21!x0~ j !(
r 51

`

xr~ j !22r ,

~14!

Y~ j !5~21!y0~ j !(
r 51

`

yr~ j !22r ,

werexr( j ),yr( j )P$0,1%.
We shall suppose that the (m11)2n11 bits of information

aboutuC& sent by Alice are the values ofxr( j ),yr( j ) for all
j and for 0<r<m. Bob then knows the coefficientsX( j ),
Y( j ) with finite precision. Denote the part ofX( j ) andY( j )
which is known to Bob by

Xm~ j !5~21!x0~ j !S (
r 51

m

xr~ j !22r122m21D ,

~15!

Ym~ j !5~21!y0~ j !S (
r 51

m

yr~ j !22r122m21D .

We then have

uX~ j !2Xm~ j !u<22m21,
~16!

uY~ j !2Ym~ j !u<22m21.

Denote Bob’s estimate of the stateC by

uCm&5(
j 51

2n

@Xm~ j !1 iYm~ j !#u j &. ~17!

We can write the true state as

uC&5uCm&1uDCm&. ~18!

Bob’s uncertainty can be measured by

^DCmuDCm&5(
j 51

2n

@X~ j !2Xm~ j !#21@Y~ j !2Ym~ j !#2

<2n22m21. ~19!

For this inequality to be informative, it is necessary thatm
>n/2.

Bob’s estimate for the probabilityP( l ) is

Pm~ l !5^CmuBl uCm&. ~20!

Let us write Bob’s POVM elements as

Bl5Tr~Bl !ub̃ l&^b̃ l u, ~21!

whereub̃ l& is a normalized state. We then have

P~ l !2Pm~ l !5Tr~Bl !@2 Rê Cmub̃ l&^b̃ l uDCm&

1u^b̃ l uDCm&u2#, ~22!

which we can bound by
05230
uP~ l !2Pm~ l !u<Tr~Bl !@2u^Cmub̃ l&uu^b̃ l uDCm&u

1u^b̃ l uDCm&u2#

<Tr~Bl !@2u^b̃ l uDCm&u1u^b̃ l uDCm&u2#

<Tr~Bl !@2A^DCmuDCm&1^DCmuDCm&#

<Tr~Bl !@2n/22m11/212n22m21#

<Tr~Bl !a
m, ~23!

where we have used that 2n/22m11/212n22m21,am if m
>n/2. This proves Eq.~6!

Let us now prove the monotonicity properties~11! and
~12!. To this end we compute the difference between succ
sive estimatesuPm( l )2Pm11( l )u. Define the quantities
dXm11( j ), dYm11( j ) by

dXm11~ j !5Xm~ j !2Xm11~ j !,
~24!

dYm11~ j !5Ym~ j !2Ym11~ j !.

We have

udXm11~ j !u<22m22, udYm11~ j !u<22m22. ~25!

Then we define the difference of estimated state for two s
cessive values ofm:

udCm&5uCm&2uCm11&5(
j 51

2n

@dXm11~ j !1 idYm11~ j !#u j &.

~26!

The difference between successive estimates decreases

^dCm11udCm11&5(
j 51

2n

@dXm11~ j !#21@dYm11~ j !#2

<2n22m23. ~27!

Finally, we have

uPm~ l !2Pm11~ l !u5Tr~Bl !u2 Rê Cmub̃ l&^b̃ l udCm11&

1u^b̃ l udCm11&u2u

<Tr~Bl !@2A^dCm11udCm11&

1^dCm11udCm11&#

<Tr~Bl !@2n/22m21/212n22m23#

<Tr~Bl !a
m11 ~ if m>n/221!,

~28!

which together with the definitions~8! and ~9! implies Eqs.
~11! and ~12!. j

We now turn to the proof of theorem 3. The two comp
cations with respect to theorem 1 are that the state is
scribed by many parameters and not one anglex and that
Bob may have more than two outcomes between which
5-5
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choose since his POVM may have more than two outcom
These two complications lead to the more intricate proto
given below.

Proof of theorem. Note that the second part of the the
rem~dealing with simulating measurements on ebits! follows
directly from the first part of the theorem~dealing with the
simulating the transmission of qubits! in view of the relation-
ships between classical teleportation and classical entan
ment simulation~discussed at the end of Sec. I!. Hence we
consider only the first part dealing with the simulation
quantum communication.

The protocol used by Alice and Bob consists of a series
rounds which we label byK. Alice’s role during each round
is simple to describe. She starts the round by sending
some information about the stateuC&. Specifically, during the
first round (K51) this information consists of the values
the coefficientsxr( j ),yr( j ) defined in Eqs.~14! for r
50, . . . ,3n/212 and all values ofj ( j 51, . . . ,2n). During
the next rounds (K52,3, . . . ), this information consists o
the values of the coefficientsx3n/21K11( j ),y3n/21K11( j ) for
j 51, . . . ,2n.

Upon receiving this information, Bob will carry out
computation~which we describe below! and reaches one o
two conclusions. One possibility is that he is able to cho
an outcomel for his measurement. The second possibility
that he is unable to choose an outcomel in which case he
needs more information aboutuC&. Thus the end of the round
consists of Bob sending Alice one bit telling her whether
not he needs more information aboutuC&. If Bob does not
need more information, then the protocol terminates si
Bob has chosen an outcome for his measurement. If
needs more information, then they both incrementsK by 1
and the next round starts.

The reason why the first round differs slightly from th
next rounds is that Bob needs a large amount of initial inf
mation before he can start trying to choose an outcome
this first try does not succeed, then only small additio
amounts of information are necessary for Bob to try again
choose an outcome. Mathematically, the necessity for
large amount of initial information is expressed in Eqs.~31!
and~38! below which are nontrivial inequalities only when
sufficient amount of information has been transmitted by
ice to Bob.

We now describe the computation carried out by Bo
Recall that with the information sent to him by Alice, Bo
can construct the approximationuC3n/21K11& to the true
stateuC& @defined in Eq.~17!#. Using this approximate state
he knows that the true probabilityP( l ) of outcomel is com-
prised betweenPmin

3n/21K11( l ) andPmax
3n/21K11( l ); see Eq.~10!.

It is convenient for Bob to reexpress this approximate kno
edge of the true probabilities in terms of set of subinterv
I K( l ),RK of the unit interval@0, 1#. Bob’s strategy will then
be simply expressed in terms of these intervals.

To define these subintervals we introduce the follow
notations:

Dm~ l !5Pmin
m ~ l !2Pmin

m21~ l ! ~29!

„note thatDm( l )>0 @see Eq.~11!#… and
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Tm5(
l 51

L

Pmin
m ~ l !, ~30!

whereL is the number of outcomes of Bob’s POVM$Bl%,
l 51, . . . ,L. We have the following property:

Tm>(
l 51

L

Pm~ l !2amTr~Bl !512am(
l 51

L

Tr~Bl !512am2n

>1223n/22m11 ~ if m>n/211!, ~31!

which follow from Eqs.~8! and ~7!.
The subintervals are defined forK51 by

I 1~1!5@0,Pmin
3n/212~1!@ ,

I 1~ l !5F (
l 851

l 21

Pmin
3n/212~ l 8!, (

l 851

l

Pmin
3n/212~ l 8!F , ~32!

and forK52,3, . . . ,̀ by

I K~1!5@T3n/21K,T3n/21K1D3n/21K11~1!@ ,

I K~ l !5FT3n/21K1 (
l 851

l 21

D3n/21K11~ l 8!,

T3n/21K1 (
l 851

l

D3n/21K11~ l 8!F . ~33!

We also define the subintervals

RK5@T3n/21K11, 1@ , K51,2, . . . ,̀ . ~34!

These subintervals have several properties which fol
directly from Eqs.~6!, ~8!, ~11!, ~10!, and~31!.

~i! The intervalsI K( l ) ~K51, . . . ,̀ andl 51, . . . ,L! are
disjoint.

~ii ! The intervalsI K8( l ) ~K851, . . . ,K and l 51, . . . ,L!
and the intervalRK are disjoint.

~iii ! The intervals I K8( l ) ~K85K11, . . . ,̀ and l
51, . . . ,L! all belong to the intervalRK.

~iv! The union of the intervalsI K8( l ) ~K851, . . . ,K and
l 51, . . . ,L! and ofRK is the unit interval:

S ø
K851

K

ø
l 51

L

I K8~ l !D øRK5@0,1@ . ~35!

~v! The union of the intervalsI K11( l ) ~K fixed and l
51, . . . ,L! and ofRK11 is the intervalRK:

S ø
l 51

L

I K11~ l ! D øRK115RK. ~36!

~vi! The union of all the intervalsI K( l ) ~K51, . . . ,̀ and
l 51, . . . ,L! is the unit interval
5-6
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ø
K51

`

ø
l 51

L

I K~ l !5@0,1@ . ~37!

~vii ! The length of the intervalRK is

m~RK!512T3n/21K11<22K. ~38!

~viii ! The length of the union of the intervalsI K( l ) ~K
51, . . . ,̀ and l fixed! is P( l ):

mS ø
K51

`

I K~ l ! D 5 (
K51

`

m„I K~ l !…5P~ l !. ~39!

Bob’s strategy is now simple to describe. Initially, befo
Alice sends him any information, he chooses a random n
ber r uniformly distributed in the interval@0,1@. He then car-
ries out the following operations at each round.

Bob’s strategy. At roundK, he checks whetherr belongs
to I K( l ). If so, he outputs outcomel and tells Alice he does
not need any more information. On the other hand, if
roundK,r belongs toRK, he tells Alice he needs more infor
mation.

Because of properties~i!–~v!, Bob is sure that at roundK,
r will belong to one of the intervalsI K( l ) or to RK. Hence
the strategy described above is well defined. Furthermore
view of properties~i! and~vi!, r belongs to one and only on
interval I K( l ): hence, the protocol will eventually terminat

To calculate the probability that Bob outputs outcomel,
note that this occurs if and only ifr belongs to one of the
intervals I K( l ) ~K51, . . . ,̀ and l fixed!. The probability
that Bob outputs outcomel is therefore equal to
m„øK51

` I K( l )…. From property~viii ! this is equal toP( l )
5^CuBl uC&, as required.

Finally, we compute the mean amount of communicat
required by the above protocol. Note that the first round
ways occurs. The amount of communication during t
round, denotedC1, consists of (3n/212)2n11 bits of com-
munication sent by Alice to Bob@namely, the values of the
coefficientsxm( j ),ym( j ), j 51, . . . ,2n, m51, . . . ,3n/212#
and of 1 bit of communication sent by Bob to Alice~telling
her whether he could choose an outcome or not!.

The subsequent roundsK>2 do not always occur. Roun
K only occurs if Bob was not able to choose an outco
before roundK—that is, if r does not belong to any of th
intervals I K8( l ) ~K851, . . . ,K21 and l 51, . . . ,L!. Using
property~iv! this can be reexpressed as the fact that rounK
occurs if and only ifr belongs toRK21. The probability that
roundK occurs is therefore

P~round K occurs!5m~RK21!512T3n/21K<22K11.
~40!

During roundsK>2, a certain amount of communicatio
occurs, always the same, denotedC8. This consists of 2n11

bits sent by Alice to Bob@namely, the values of the coeffi
cientsx3n/21K11( j ),y3n/21K11( j ), j 51, . . . ,2n# and of 1 bit
of communication sent by Bob to Alice~telling her whether
he could choose an outcome or not!.

The average amount of communication is therefore
05230
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t

in
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C̄5C11 (
K52

`

P~round K occurs! C8<C11C8 (
K52

`

22K21

5C11C8. ~41!

The average amount of communication therefore consist
fewer than (3n16)2n bits sent by Alice to Bob and fewe
than 2 bits sent by Bob to Alice. j

IV. CONCLUSION

We have shown in theorem 2 that perfect classical sim
lation of quantum communication and entanglement is
possible if the amount of communication is bounded and
two parties share a finite number of random bits. Inde
with bounded communication and finite prior shared ra
domness, only approximate simulations of quantum comm
nication are possible.

However, if we give the parties something slightly mo
powerful than finite communication, then perfect simulati
becomes possible. One possibility is for Alice and Bob
have ana priori supply of an infinite number of shared ran
dom bits as in@1# ~this could, for instance, be established
having an infinite conversation prior to the start of the sim
lation protocol itself!. A second possibility, considered i
theorem 3, is for Alice and Bob to share no prior randomn
and to require that the amount of communication is o
finite on average. In this case, the amount of communica
varies from one simulation to another, and can sometime
arbitrarily large.

In all cases, as the numbern of qubits or ebits that mus
be simulated increases, the amount of classical commun
tion required grows exponentially withn.
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APPENDIX: SHARED RANDOMNESS ACHIEVED BY
COMMUNICATION

In this appendix, we sketch a proof that the mutual info
mation I between Alice and Bob’s outputs~if they share no
prior randomness! is bounded from above by the total num
ber of bits exchanged in an arbitrary number of rounds
two-way communication. Assume that, initially, Alice an
Bob have each a random variable denoted, respectively
A0 andB0 ~this represents a local source of randomness!, but
they share no information, i.e.,I (A0 :B0)50. Then Alice and
Bob communicate via an arbitrary number of rounds of tw
way communication. The first round consists of Alice sen
5-7
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ing B1 to Bob, followed by Bob sendingA1 to Alice. SoB1
is a function ofA0 , while A1 is a function ofB0 andB1 . In
general, thei th round consists in Bob receivingBi followed
by Alice receiving Ai . Again, Bi is a function of
A0 ,...,Ai 21 , andAi is a function ofB0 ,...,Bi . Assume that
this protocol terminates afterN rounds. Alice then outputs
X5X(A0 ,...,AN) which is a function of all the information
Alice has, and similarly Bob outputsY5Y(B0 ,...,BN).

We first note that the data processing inequality impl
that

I ~X:Y!<I ~A0 ,...,AN :B0 ,...,BN!. ~A1!

We now bound the right-hand side~RHS! of this equation by

I ~A0 ,...,AN :B0 ,...,BN!

5I ~A0 :B0!1H~A1 ,...,ANuA0!1H~B1 ,...,BNuB0!

2H~A1 ,...,AN ,B1 ,...,BNuA0 ,B0!. ~A2!

The first term of the RHS of Eq.~A2! is zero since there is
no initial shared randomness. The second term of the RH
Eq. ~A2! measures the amount of randomness received
Alice during theN rounds in addition to the initial random
nessA0 . It is simply bounded from above by the number
bits of backward communicationCb since
tin

05230
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y

H~A1 ,...,ANuA0!<H~A1 ,...,AN!<H~A1!1¯1H~AN!

5Cb . ~A3!

Similarly, the third term on the RHS of Eq.~A2! is bounded
from above by the number of bits of forward communicati
Cf . Finally, using the chain rule for entropies, the four
term on the RHS of Eq.~A2! can be reexpressed as

H~A1 ,B1uA0 ,B0!1H~A2 ,B2uA0 ,A1 ,B0 ,B1!1¯

1H~AN ,BNuA0 ,...,AN21 ,B0 ,...,BN21!. ~A4!

The i th term in this sum can be written as

H~Ai ,Bi uA0 ,...Ai 21 ,B0 ,...Bi 21!

5H~Bi uA0 ,...,Ai 21 ,B0 ,...,Bi 21!

1H~Ai uA0 ,...,Ai 21 ,B0 ,...,Bi !.

These two conditional entropies vanish sinceBi depends on
A0 ,...,Ai 21 , andAi depends onB0 ,...,Bi . Thus the fourth
term on the RHS of Eq.~A2! is zero. As a consequence, w
have

I ~X:Y!<Cf1Cb , ~A5!

as asserted above.
t
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