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Classical simulation of quantum entanglement without local hidden variables

Serge MassarDave Bacorf, Nicolas J. Cerf** and Richard Cleve

1Service de Physique Ttiéque, UniversiteLibre de Bruxelles, CP 225, 1050 Brussels, Belgium

2Departments of Physics and Chemistry, University of California Berkeley, California 94704

SEcole Polytechnique, CP 165, Universltibre de Bruxelles, B-1050 Bruxelles, Belgium
“4Information and Computing Technologies Research Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
California 91109
SDepartment of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
(Received 22 September 2000; published 16 April 2001

Recent work has extended Bell's theorem by quantifying the amount of communication required to simulate
entangled quantum systems with classical information. The general scenario is that a bipartite measurement is
given from a set of possibilities and the goal is to find a classical scheme that reproduces exactly the correla-
tions that arise when an actual quantum system is measured. Previous results have shown that, using local
hidden variables, a finite amount of communication suffices to simulate the correlations for a Bell state. We
extend this in a number of ways. First, we show that, when the communication is merely required to be finite
on average Bell states can be simulatedthout any local hidden variables. More generally, we show that
arbitrary positive operator valued measurements on systems8ell states can be simulated wit(n2") bits
of communication on averagagain, without local hidden variablesOn the other hand, when the communi-
cation is required to babsolutely boundedve show that a finite number of bits of local hidden variables is
insufficient to simulate a Bell state. This latter result is based on an analysis of the nondeterministic commu-
nication complexity of theloT-EQUAL function, which is constant in the quantum model and logarithmic in the
classical model.
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I. INTRODUCTION when|W¥),g is a Bell state and,, Mg are each the set of
all von Neumann measurements on a qubit, the simulation is

We consider how much classical communication is re-possible with only &inite amount of classical communica-
quired to simulate the correlations exhibited by measuringion between Alice and Bob.
entangled quantum systems. Followirgd, define aquantum In the protocols devised ifl] and[4], it is supposed that
measurement scenarioas a triple of the form Alice and Bob have an infinite supply of correlated random
([¥)ae.Ma,Mg), where |W),g is an entangled bipartite pits (specifying real-valued parametgrSuch shared random
quantum stateM 4 is a set of measurements on the first com-pits are generally calletbcal hidden variablesThe two pa-
ponent, andMg is a set of measurements on the secontyers differ in their technical definition of the “finite amount
component. The goal is to devise communication protocol$y ¢|assical communication.” Ifi1], the amount of commu-
that enable two separated parties, Alice and Bob, to simulatgication that occurs in the protocol éxactly8 bits. In con-
a quantum measurement scenario using classical 'nform?fast(a slightly generalized version xathe protocol if4] has

tion. Theinput to the protocol is X,y) e My X Mg, and Al- the property that, for any given pair of measurement
ice receivex (but noty), while Bob receivey (but notx). c Mpr?/IBwthe éverage%i.ge. exgecte)jnumber of bitsy)éf

Alice and Bob’soutputsshould be jointly distributed so as to B o
A . .. __communication is 2.97 bits; however, the amount of commu-
exactly reproduce the probability distribution that arises if an . tion for any particular execution of the protocol may be
actual quantum system in sta¥¥ ), is measured accordin o oo : .
ua’ quantum sy in St®) g | u g arbitrarily large. The result if4] is then refined ih2], where

to (x,y). We shall refer to this problem aassical entangle- . S
the amount of classical communication is decreased to 1.19

ment simulationIn [2], a related problem, dubbeiassical k
teleportation is also introduced. Here Alice is given a clas- Pits on average for all von Neumann measurements. Also,

sical description of a quantum stdt&) and Bob is given a the setsM, and Mg are extended to inclpde all pqsitive—
classical description of a quantum measuremeaM. The  Operator-valued measuremeBOVM's), using 6.38 bits of
goal is for Bob to produce data that stochastically simulate§ommunication on average. We will refer to the first kind of
the result of applying measuremento state|¥). As shown protocol as abounded communication modethereas the
in [2] and discussed below, this problem is closely related teecond kind will be called aaverage communication model
classical entanglement simulation. Regarding the classical entanglement simulation of more
The first relevant result in this topic is Bell's famous theo- than one Bell state, it is shown [d] that the exact simula-
rem[3], which implies that, wheW’) 55 is a Bell state, there tion of arbitrary von Neumann measurementsx@ell states
exist (M ,Mg) for which Alice and Bob must perforrrome  requiresQ(2") bits of communication in the bounded com-
(nonzerg communication in order to achieve classical en-munication model. With minor modifications to the tech-
tanglement simulation. More recently, Brassard, Cleve, andiques in[1,5], this Q(2") lower bound also carries over to
Tapp[1] and, independently, Steing4] have shown that, the average communication model. Also note that this result
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(as well as most other results for classical simulation of en22) of bits of communication on average.

tanglement immediately applies to classical teleportation  Proof. We first recall Steiner’s original protocpd]. The
protocols. This is because any protocol for classical teleportask of the two parties, Alice and Bob, is to simulate carrying
tation of ann-qubit state can be converted into one for clas-out measurements on the Bell statey@)(|00) +|11)) with
sical entanglement simulation ofBell states with the same respect to operatoiR(x) andR(y) (x,ye[0,1]), where
amount of communication. This is accomplished by Alice

first simulating(by herself the probabilistic effect of mea- cog2mx)  sin(2mx)

suring “her” n qubits of then Bell states. She also computes R(x)= sin(2wx) —cog2mx) /"

the resulting mixture of pure states that describes “Bohis”

qubits. Then Alice classically teleports the state of Bab's In order to carry out this simulation, Alice and Bob share
qubits to him. Conversely, protocols for the classical en-an infinite sequence of local hidden variablég,d,,...,
tanglement simulation can be converted into protocols fowhich are uniformly distributed over the intervgd,1]. In
classical teleportation, at the expense of a little more comaddition, Alice has an infinite set of valueg,us,,..., which
munication(see[2] for details. are also uniformly distributed over the intenfal, 1].

The present paper generalizes the above results in a num- In order to simulate a Bell state, Alice and Bob carry out
ber of ways. All protocols for classical entanglement simu-the following operations.
lation proposed so far apply to single Bell states, and they (i) Alice finds the smallest valuke {1,2, ...} such that
use an infinite number of bits of local hidden variables foru,<|cog2m(6—x)]|. Then Alice sends the value of thisto
the simulation. Our first result is that local hidden variablesBob, and she outputs the value of gvg 27 (6,—x) ]}
are not necessary in the average communication model. In (ii) After Bob receives the indelk from Alice, he outputs
particular, wherj¥) g is a Bell state andl»,Mg are each the value of sgftog2m(6,_,)1}.
the set of all von Neumann measurements, classical en- One can verify that this protocol produces the correct sta-
tanglement simulation is possible with a constant numbetistics (namely, that Alice and Bob’s outputs are random bits,
(less than 2Pof bits of communication on average, without correlated so as to be equal with probability §agx—y)])
any local hidden variables. We also show that, whén,g and that the amount of communication is 1.485 bits on aver-
consists ofn Bell states andV 5, ,Mg are each the set of all age.

POVM'’s, the simulation can be carried out with no local  Steiner’s protocol enables Alice to effectively generate a
hidden variables an®(n2") bits of communication on av- random variableg, distributed according to the density func-
erage. Note that this communication cost is almost optimaltion p(6)=(m/2)|co§2m(6—x)]| and convey this value to
due to the aforementioned lower bound®{2"). Bob. Explicitly sending the exact value @frequires an in-

In contrast to the above results about the the average confinite number of bits of communication; the above method
munication model, we show that local hidden variables araises local hidden variables to accomplish this with a finite
necessaryin the bounded communication modéivhen  amount of communication.
|W)ag is a Bell state, andi,,Mg are all von Neumann In order to circumvent the need for local hidden variables
measurements More precisely, the simulation of (or an infinite amount of communicatipna different ap-
(]¥)ag,M4a,Mpg) in the bounded communication model re- proach is used. Alice generat@sherself, according to the
quires aninfinite number of bits of local hidden variables. density functionp(#) = (7/2)|cog2m(6—x)]|. In most cases,
This follows from a connection between the quantum meaeonly a few bits ofé suffice for Bob to be able to compute the
surement scenario and the nondeterministic communicatiowalue of sgfico§2m7(6—y)]}. So Alice sends Bob only a few
complexity of theNOT-EQUAL function. These results indi- bits of # at a time and receives a response from Bob each
cate that there is a fundamental difference between the abstme as to whether or not the precision is sufficient. In the
lutely bounded communication model and the model of comf{irst round. Alice sends Bob the first two significant bitséof
munication with bounded expectation. (since one bit of precision is never sufficient for Bobhen
Bob determines whether this information unambiguously de-
termines the value of sfeog27(6—y)]} and indicates the
Il. CASE OF A SINGLE BELL STATE answer in a bit sent to Alice. In subsequent rounds, Alice

We begin by Considering the case of von Neumann measends one additional bit of preCiSion 6fo BOb, until Bob’s
surements on Bell states. Our first result, stated in theorem 1€sponse indicates that the precision is sufficient.
is actually a special case of a stronger result given in theorem T0 upper bound the expected amount of information com-
3 (where the bound on the amount of communication will bemunicated, note that, after each round, Bob has at legst a
decreased from 22 to 20 bits, and where the measuremerftgance of having with sufficient precision. This is because,
can be arbitrary POVM’s The proof of theorem 1 uses the for anyze[0,1] andwe[0,5],
same basic approach as that of theorem 3, but since it is
considerably simpler, it is presented first.

Theorem 1 For the quantum measurement scenario
(|¥)as,Ma,Mpg), where [W),g=(1#2)(|00)+|11)) and
whereM 5 ,Mg are each the set of all von Neumann measureThus the expected number of rounds is less than 5. Since the
ments, classical entanglement simulation is possible withouirst round consists of 3 bitdwo from Alice and one from
any local hidden variables with a constant numfess than Bob) and each subsequent round consists of 2(bitg from

(1)

z T Z+W g7
J —|c05(2m9)|d0>%J 7 cog270)|do. (2)
Z*W2 z 2
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each of Alice and Bol the expected number of bits of com- comes isp(a,b|r)=(1+rab)/4, with a=+1 andb=*1.
munication is less than 11. To simulate an arbitrary von NeuThe resulting mutual information for a givenis then equal
mann measurement, it suffices to simulate two measurements
with respect to operators of the forRR(x) [1]. Thus the
expected amount of communication is less than 22 bil.
Regarding theninimumnumber of bits of communication
necessary to perform classical entanglement simulation with-
out local hidden variables as in theorem 1, it should be note¢f x andy are uniformally distributed, then the correlation
that a single run of a protocol without local hidden variablescoefficient is distributed aB(r)=1/2 in the interva[—1, 1].
cannot succeed in general if the communication is less than As a result, theaverage mutual information betweea and
bit. This is because, in the case where the two measuremertisconditionally onr can be written as
x andy are both in the same basis, Alice’s and Bob’s outputs

1+r 1-r
I(a:b|r)= Tlogz(1+r)+ Tlogz(l—r). 3)

have exactly one bit of mutual information. One can easily 1

check that this mutual information is a lower bound on the IZJ I(a:b|r)P(r)dr= J_1(1+r)logz(1+r)dr
amount of forward and backward communication that must

be used to simulate entanglemésee the Appendjx There- =log,(2/\/e). (4)

fore, 1 bit of communication is necessary in this worst case.

For other specific pairs of measuremefits)), the mutual Thus the amount offorward and backwasdcommunication
information is lower than 1 bit and so is the minimum that is necessary to establish this shared randomness between
amount of communication. Let us now consider the casélice and Bob is bounded b@¢+C,=1=0.279 bits. N
where the measurement directionandy are chosen at ran- Note that this bound assumes that there are no initially
dom and assumed to be isotrogitbe distribution of maxi- shared local hidden variables between Alice and Bob. In a

mum uncertainty The average communication here is with More general scenario, however, the bound in lemma 1_only
respect to the probabilistic selection of a pair of measureMeasures theotal amount of shared randomnes, possibly

ments as well as the probabilistic choices made by Alice and'¢!uding prior shared randomness. In other wordis the
Bob during the execution of the protocol. sum of the initial shared randomness and the communication,

Lemma LLet (|¥)5,Ma,Mg) be the quantum measure so it does not discriminate the random bits that are shared
AB:VIA, B -

ment scenario where|¥) 5= (142)(|00)+|11)), and beforehandthe local hidden variableé$rom the bits that are

communicated after the measurement basis are disclosed to
M, ,Mg are each the set of all von Neumann measurement i« and Bob

Suppose that a paix.y) is selected according to two inde- 4, e shall show that, if the bound on the communica-

pendent uniform distributions on the surface of the Bloghtion is changed from being constant on average to being an

sphere. Then, for any protocol in the average communicatiogpsolyte constant, then the classical entanglement simulation

model that has no local hidden variables, the sum of th&yithout local hidden variables that occurs in theorem 1 be-

(forward and backwaydcommunication must be at least comes impossible to achieve. Prior to doing this, we review

0.279 bits on average. a relevant result from the theory of communication complex-
Proof. Consider the situation where Alice and Bob areity (see[6] for an extensive review of the fieldConsider the

each given a random measurement directioandy) by a  NOT-EQUAL function, Fyg: {0,1"x{0,1}"—{0,1}, defined

third person—say, Charles. As before, Bob does not knovas

the measurement Alice is performing, and, conversely, Alice

ignores Bob’s measurement. We also assume that, initially, 1 if x#y

the two parties share no information. Then Charles observes FNe(XY) =10 =y 5

the outcomes of Alice’s and Bob’s measurements, nated ’

(==1) andb (==1). Our goal here is to estimate the num- and suppose that Alice and Bob are giveandy, respec-
ber of bits that must be communicated from Alice to BObtiver as inputs and their goal is to evalutge(x,y) =0, in

(and from Bob to Alice in order for them to exactly repro- pe following weak sense. Bob should output atbihat is
duce the quantum correlations that would be observed if theyistributed so that ifFyg(x,y)=0, then Pfb=1]=0; if

shared a singlet. This quantity can be bounded from belovptNE(x,y):L then Pfb=1]>0. Also, assume that Alice
by the amount of shared randomness that Charles observgad Bob have na priori shared random information. A
between Alice’s and Bob’s outcomes, whilmowingthe  protocol that accomplishes this can be regarded asnale-
measurement directions. In other words, what is relevanferministic protocol for theF e function. By standard tech-
here is the mutual information between Alice’s and Bob’sniques in communication complexitisee[6], p. 19, the
outcomesa and b conditionallyon the measurement direc- following lower bound can be obtained on the amount of
tions x and y—that is, 1(a:b|x,y). (It is shown in the Ap- communication required by Alice and Bob in order to
pendix that the mutual information is indeed a lower boundachieve this.

on the number of bits that must be communicatedzor Lemma 2 Any nondeterministicclassical protocol for
given measurement directiorsandy, the correlation coef- computing the functiorF g requires at least lggn) bits of
ficient isr=—X-y, so that the joint distribution of the out- communication.
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The above lemma will be used to prove the following must simulate carrying out arbitrary POVM'’s on ebjtkat
theorem. is, an entangled state belonging to the tensor product of two
Theorem 2 For the quantum measurement scenario2"-dimensional Hilbert spacgsBoth simulations can be re-

(|¥)ag,Ma,Mg), where | V) g=(1#2)(|00)+|11)) and alized by communicating on average fewer tham{%)2"

whereM 5 ,Mpg are each of the set of all von Neumann mea-+2 bits. Specifically, we shall exhibit a protocol in which

surements, classical entanglement simulation is impossible #lice sends Bob on average fewer tham¢3%)2" bits and

the number of bits of communication is absolutely boundedob sends Alice on average fewer than 2 bits of communi-

by a constant and the number of bits of local hidden vari-cation.

ables is also a finite constant. We now proceed with a general proof of theorem 3. We
Proof. We will show that any protocol for classical en- start with a discussion of how much classical communication

tanglement simulation that uses a constant number of bits aé necessary for approximate simulation of quantum commu-

communication(in the absolute sens@nd a constant num- nication.

ber of bits of local hidden variables can be converted into a Lemma 4 Consider the problem of classical teleportation

nondeterministic protocol fof e with a constant amount of in which Alice is given a quantum stat®) belonging to a

communication(independent ofn), thereby contradicting 2"-dimensional Hilbert spacé.e., Alice is givenn qubit9

lemma 2. First, note that a finite amount of prior sharedand Bob is given an arbitrary POVM={B,} whereB, are

randomness can always be simulated by a finite amount ahe POVM elements. Suppose Alice sends Bomm (

communication at the start of the protodtd establish the +1)2"*1 (with m=n/2) bits of classical information about

shared randomnessThus we can suppose, without loss of state|¥). With this classical information Bob can calculate

generality, that the protocol for classical entanglement simuan approximation P™(1) to the true probability P(l)

lation uses no prior shared randomness. =(¥|B|¥) that his measurement yields outcoreAlice
Consider the restricted set of measurements, whMeke can choose the bits she sends to Bob, and Bob can use an

andMg each consist of all measurements with respect to thalgorithm, such that the approximate probabilities sum to 1

operators of the fornR(x/2") [Ris defined in Eq(1)], where  [=,P™(1)=1] and satisfy the constraint

xe{0,1}" is ann-bit binary number. Note that if the protocol

for entanglement simulation is givenandy as inputs, then IP(H—P™(1)|<a™r(B), (6)

the resulting output bits of Alice and Bob, call thenandb,

satisfy Pfa=b]=cog[m(x—y)/2"]. It follows that Pfa  where Tr@) is the trace of the POVM elemeBj anda™ is

#b]=0 if x=y and Pfa#b]>0 if x#y. Therefore, if at bounded by

the end of the protocol Alice sends her &ito Bob (increas- M an/2—m

ing the communication cost of the protocol by one hind a’<2 : @)

then Bob outputai®b, the result is a nondeterministic pro-

tocol for computingF g with a constant number of bits of

communication(independent of), contradicting lemma M
In contrast to lemma 2, we note the following.

An equivalent formulation of Eq6) is that the information
provided by Alice enables Bob to define two bounds

m _ m _m
Lemma 3 There is a nondeterministic quantum protocol Prmin(1)=max0,P™(1)— a™Tr(B))}, 8)
for Fyg where the communication cost is exactly one qubit. m .
Proof The idea is for Alice to create the state Pra(1)=min{1,P7(1) + a"Tr(B)}, ©

cos@@x/2")|0) + sin(mx/2")|1) and send it to Bob. Then Bob

measures with respect to the operd®gy). It is straightfor-

ward to calculate that the outcome of Bob’s measurerbent

satisfies Hb=1]=0 if x=y and Pfb=1]>0 if x¥y. R
Comparing lemmas 2 and 3, thesed 1 vs log(n) quan-

tum vs classical gap for the nondeterministic communicationrhis interval has the property that asincreases the interval

complexity of Fye. This is noteworthy since it is a case shrinks:

where even an exponential increase in the amount of com-

munication permitted is not sufficient for a classical protocol 0<P™ ()<P™"1(]) (12)

to simulate a quantum protocol. SE@| for other results min min

about nondeterministic communication complexity in the

guantum case.

such that he knows with certainty thR{l) belongs to the
interval

P(1) e [Prin(1).PradD]. (10

1=P()=PRal(). (12

Proof. Let us choose an arbitrary bagjis of the Hilbert
Ill. CASE OF SEVERAL BELL STATES space. This basis is known to both Alice and Bob. In this

. . - . basis, the statgl) can be written as
In this section, we shall exhibit a protocol that generalizes &)

theorem 1 as follows. on
Theorem 3Suppose that Alice and Bob must simulate the W)= X +iY (i 13
classical teleportation of a state belonging to a ) 121 [X() ). 13

2"-dimensional Hilbert space and suppose that Bob must
carry out an arbitrary POVM. Or suppose that Alice and BobwhereX(j) andY(j) are real numbers. We can write them as
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X(j)=(=1)0D > x.(j)27",
r=1

Y<1'>=<—1>YO<J'>§1 y ()27,

werex,(j),Y.(j) €{0,1.

We shall suppose that then@ 1) 2" bits of information

(14

about|¥) sent by Alice are the values af(j),y,(j) for all
j and for O<r=<m. Bob then knows the coefficiends(j),
Y(j) with finite precision. Denote the part &f(j) andY(j)

which is known to Bob by

xm(j)=<—1>*o<i>(2 xr<j>2f+2ml),

m
Ym(j)=(—1)y°(”( er yr(j)2r+2m1)-

We then have

IX(§)=X"(j)]=27m",

Y()=Y"(j)=27m

Denote Bob’s estimate of the staieby
on
™= 2, [X7G)+HY™(D)])-
We can write the true state as
W)=+ AT,

Bob’s uncertainty can be measured by

2n

(19

(16)

7

(18

(QUTAYT) = 3 [XG) = XDV =Y P

S2n72m71_

For this inequality to be informative, it is necessary that

=n/2.
Bob’s estimate for the probabiliti?(1) is

PT(1) = (W™B|¥™).
Let us write Bob’s POVM elements as
B=Tr(B)[B) (B,
where|,73’|) is a normalized state. We then have
P(1)=P™(1)=Tr(By)[2 R W™ B))(Bi| A W™
+|(BlAw™?],

which we can bound by

(19

(20

(21)

(22

PHYSICAL REVIEW A 63 052305

[P =P™(D)|<Tr(B)[2(¥ | B)[(Bi|AY™)|
+[(BlA¥™|?]
<Tr(B)[2[(BA¥™)[+[(B|AW™)]|?]
<Tr(B)[2\V(AWMAW™) + (AW AY™)]
<Tr(By)[2"2 M+ 24 2n-2m=1]
<Tr(B))a™, (23

where we have used that"2 m*1/242n=2m-1 M jf m
=n/2. This proves Eq(6)

Let us now prove the monotonicity properti€sl) and
(12). To this end we compute the difference between succes-
sive estimates|P™(1)—P™"1(1)|. Define the quantities
SX™A(j), SY™(j) by

SXMHA(j)=X"(j) = X™L()),
. . . (24)
SY™ ) =YM() = Y™ ().
We have

[SX™I(j)|=27m, Joy™H () <272 (25)

Then we define the difference of estimated state for two suc-
cessive values afn:

2n
[ ST = [T — [T =D [SX™H()) +isY™())]]).
=1
(26)
The difference between successive estimates decreases as
2n
<6\I,m+l|5\1,m+1>: 2 [5xm+l(j)]2+[5Ym+1(j)]2
=1
$2n72m73_ (27)
Finally, we have
[P™(1)—=P™X(1)|=Tr(B))|2 R&W™B))(By| o™ 1)
+[(Bi| s¥™
<Tr(B))[2\(s¥™ [ s¥™ )
+<6~\Pm+l| Nm+l>]

sTr(Bl)[anZ—m—l/Z_’_ 2n—2m—3]

<Tr(B)a™?! (if m=n/2—1),
(28

which together with the definition@) and (9) implies Egs.
(11) and(12). [ |

We now turn to the proof of theorem 3. The two compli-
cations with respect to theorem 1 are that the state is de-
scribed by many parameters and not one angénd that
Bob may have more than two outcomes between which to
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choose since his POVM may have more than two outcomes. L
These two complications lead to the more intricate protocol Tmzz Pmin(1), (30
given below. =1

Proof of theoremNote that the second part of the theo-
rem (dealing with simulating measurements on ebiédows
directly from the first part of the theorefdealing with the
simulating the transmission of qubjitis view of the relation- L L
ships between classical teleportation and classical entangle+m— mepy _ ,m _q__m —1_ mon
ment simulation(discussed at the end of Seg. Hence we °T /21 PA()=a"TH(B)=1~a ;1 Tr(By=1-a"2
consider only the first part dealing with the simulation of aemil o
guantum communication. =1-2 (if m=n/2+1), (3D

The protocol used by Alice and Bob consists of a series of | .
rounds which we label biK. Alice’s role during each round which f°”°V.V from Egs.(8) a_nd(?).
is simple to describe. She starts the round by sending Bob 'he Subintervals are defined fr=1 by
some information about the stdt&). Specifically, during the
first round (K=1) this information consists of the values of
the coefficientsx,(j),y,(j) defined in Egs.(14) for r

wherelL is the number of outcomes of Bob’s POV{\B,},
I=1,... L. We have the following property:

11(1)=[0,P3*%(1)],

-1 [
=0,...,2/2+2 and all values of (j=1, ...,2"). During 100y _ 3n/2+2, 3n/2+2,
the next roundsK=2,3, .. .), this information consists of () |§1 Prin (I )'|§1 Pain (D[, (32
the values of the coefficients; o k+1(J),Yan2k+1(]) for
i=1...,2. and fork=2,3, ... © by

Upon receiving this information, Bob will carry out a
computation(which we describe belowand reaches one of IK(1)=[T3M2+K T3n2HK L ASM2EKFL 9y

two conclusions. One possibility is that he is able to choose

an outcomd for his measurement. The second possibility is

that he is unable to choose an outcolria which case he 1%(h=
needs more information abolit). Thus the end of the round

consists of Bob sending Alice one bit telling her whether or

not he needs more information abdt). If Bob does not !

1-1

T3n/2+K+ E A3n/2+K+1(|/),
I"=1

need more information, then the protocol terminates since TOM2EK L DT AS2EKE L1y (33
Bob has chosen an outcome for his measurement. If Bob I'=1

needs more information, then they both incremeftby 1 i )

and the next round starts. We also define the subintervals

The reason why the first round differs slightly from the
next rounds is that Bob needs a large amount of initial infor-
mation before he can start trying to choose an outcome. If . . .
this first try does not succeed, then only small additional,. These subintervals have several properties which follow
amounts of information are necessary for Bob to try again todlre'ctlyhfrqm Eqsl.(62, I(S)’ (El) . (10), and(:IBE).
choose an outcome. Mathematically, the necessity for the, (i) The intervald °(1) (K=1, ...~ andl=1,... L) are
large amount of initial information is expressed in E(&l) Isjoint.

RK=[T3”/2+K+1, 1[, K:1,2, . (34)

and (38) below which are nontrivial inequalities only when a (i) The intervalsl® (1) (K'=1,... K andI=1,... L)

sufficient amount of information has been transmitted by Al-and the intervaR" are disjoint,

ice to Bob. (i) The intervals IK'(I) (K'=K+1,...° and |
We now describe the computation carried out by Bob.=1, ... L) all belong to the intervaRX.

Recall that with the information sent to him by Alice, Bob (i) The union of the intervals®’(1) (K'=1, ... K and

can construct the approximatio’3"'**¥*1) to the true I=1,...L) and ofRK is the unit interval:

state|¥) [defined in Eq(17)]. Using this approximate state,

he knows that the true probabili§(l) of outcomel is com- KoL
prised betwee® 2K+ 1(1) and P32+ K+1(]): see Eq(10). U U1 JurR*=[0,1. (39)
It is convenient for Bob to reexpress this approximate knowl- K'=11=1
edge of the true probabilities in terms of set of subintervals ) ) Kot ]
1%(1),R¥ of the unit interval[0, 1]. Bob’s strategy will then (v) The union of the intervald™"*(l) (K fixed and|
be simply expressed in terms of these intervals. =1,... L) and of R“"* is the intervalR":
To define these subintervals we introduce the following L
notations: U |K+l(|) URK+1=RX, (36)
=1
AM(1)=Phi(1) =P t() (29
(vi) The union of all the intervals’(l) (K=1, ... » and
(note thatA™(1)=0 [see Eq.(11)]) and I=1,...L)is the unit interval
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o L =<} )

U ul®=[o.1. (37) Cc=cC'+ > P(round K occur§ C'<C +C’ >, 27K1
K=1I=1 K=2 K=2
(vii) The length of the intervaR¥ is =Ccl+c. (41
p(RK)=1—T3M2r K< 7K, (38)  The average amount of communication therefore consists of
(viii) The length of the union of the interval&(l) (K Iﬁ\;vﬁrztgﬁg éznt gg/Z;obl;t?Oszlriléeb.y Alice to Bob and fe:ver

=1,... andl fixed) is P(l):

IV. CONCLUSION

" UIKU)):K;MIK(I)):P(I). (39)

K=1

We have shown in theorem 2 that perfect classical simu-
lation of quantum communication and entanglement is im-
Bob’s strategy is now simple to describe. Initially, before possible if the amount of communication is bounded and the
Alice sends him any information, he chooses a random numtwo parties share a finite number of random bits. Indeed,
berr uniformly distributed in the intervdl0,1]. He then car- with bounded communication and finite prior shared ran-
ries out the following operations at each round. domness, only approximate simulations of quantum commu-
Bob’s strategy At round K, he checks whetharbelongs nication are possible.
to IX(1). If so, he outputs outcomeand tells Alice he does However, if we give the parties something slightly more
not need any more information. On the other hand, if atpowerful than finite communication, then perfect simulation
roundK,r belongs toR¥, he tells Alice he needs more infor- becomes possible. One possibility is for Alice and Bob to
mation. have ana priori supply of an infinite nhumber of shared ran-
Because of propertig$)—(v), Bob is sure that at rouni, dom bits as if 1] (this could, for instance, be established by
r will belong to one of the intervals®(l) or to RK. Hence having an infinite conversation prior to the start of the simu-
the strategy described above is well defined. Furthermore, ilation protocol itself. A second possibility, considered in
view of propertiegi) and(vi), r belongs to one and only one theorem 3, is for Alice and Bob to share no prior randomness
interval IX(1): hence, the protocol will eventually terminate. and to require that the amount of communication is only
To calculate the probability that Bob outputs outcolme finite on average. In this case, the amount of communication
note that this occurs if and only if belongs to one of the varies from one simulation to another, and can sometimes be
intervals IX(1) (K=1, ... and| fixed). The probability arbitrarily large.

that Bob outputs outcomel is therefore equal to In all cases, as the numberof qubits or ebits that must
w(Ug_,1%(1)). From property(viii) this is equal toP(l) be simulated increases, the amount of classical communica-
=(¥|B,|¥), as required. tion required grows exponentially with

Finally, we compute the mean amount of communication
required by the above protocol. Note that the first round al- ACKNOWLEDGMENTS
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property(iv) this can be reexpressed as the fact that rd¢nd
occurs if and only ifr belongs toRK 1. The probability that APPENDIX: SHARED RANDOMNESS ACHIEVED BY

roundK occurs is therefore COMMUNICATION

P(round K occurg = u(RX~1)=1—T3n2+K<p-K+1 |r) this appendix, we sketch a proof that the mutual infor-
(40) mation| between Alice and Bob’s output# they share no
prior randomnessis bounded from above by the total num-
During roundsK=2, a certain amount of communication ber of bits exchanged in an arbitrary number of rounds of
occurs, always the same, deno@t This consists of 2" two-way communication. Assume that, initially, Alice and
bits sent by Alice to Boljnamely, the values of the coeffi- Bob have each a random variable denoted, respectively, as

cientsxsnosk+1(0) Yaneek+1(3), j=1,...,2'7and of 1 bit Ay andBj (this represents a local source of randompesst
of communication sent by Bob to Alicgelling her whether they share no information, i.d.(Ay:Bg)=0. Then Alice and
he could choose an outcome or not Bob communicate via an arbitrary number of rounds of two-

The average amount of communication is therefore way communication. The first round consists of Alice send-
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ing B, to Bob, followed by Bob sending, to Alice. SoB; H(AL, ... ANA)<H(A1,... A))<H(A)+- -+ H(Ay)
is a function ofA,, while A, is a function ofBy andB;. In
general, théth round consists in Bob receivir; followed =Cp. (A3)

by Alice receiving A;. Again, B; is a function of Simi : :

) 4 imilarly, the third term on the RHS of E¢A2) is bounded
Ag,--- Ait, andAi is a function OfBO""’B.’i - Assume that o0 ahove by the number of bits of forward communication
this protocol terminates afteéd rounds. Alice then outputs C,. Finally, using the chain rule for entropies, the fourth

X=X(Ay,...,Ay) Which is a function of all the information term on the RHS of EA(A2) can be reexpressed as
Alice has, and similarly Bob outputé=Y(By,...,By). aA2) P

We first note that the data processing inequality implies H(A;,B1|Aq,Bg) +H(A,,B5|Ag,A;,Bg,By)+-

that
+H(AN,BNAG, .. Ay—1,Bg, ... Bn—1)- (A4)

I(X:Y)<I(Ag,....Ay:Bg,....Bn). Al
( J=1(A N-=0 v A1) Theith term in this sum can be written as

We now bound the right-hand sidBHS) of this equation by H(A B:|Ag... A_1.B B._ 1)
i+BilAg,---Ai-1,B0,...Bj -1
:H(Bi|AOl"'!Ai*lvBOl"'vBi*l)

+H(A{|Ag,...,Ai_1,Bg,...,B)).

I(Ag,... Ay Bos... By
:I(AOBO)+H(A1,,AN|A0)+H(B]_,,BN|BO)

~H(AL.. An.B1,... BrlAg,Bo). (A2) These two conditional entropies vanish sigedepends on

The first term of the RHS of EqA2) is zero since there is Ao.---Ai—1, andA; depends orB,...,B;. Thus the fourth
no initial shared randomness. The second term of the RHS d¢grm on the RHS of EqiA2) is zero. As a consequence, we

Eq. (A2) measures the amount of randomness received bfjave

Alice during theN rounds in addition to the initial random- )
nessA,. It igs simply bounded from above by the number of HXX)=Ci+ Gy, (AS)
bits of backward communicatio@, since as asserted above.
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