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Quantum distribution of Gaussian keys using squeezed states
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A continuous key-distribution scheme is proposed that relies on a pair of conjugate quantum variables. It
allows two remote parties to share a secret Gaussian key by encoding it into one of the two quadrature
components of a single-mode electromagnetic field. The resulting quantum cryptographic information versus
disturbance trade-off is investigated for an individual attack based on the optimal continuous cloning machine.
It is shown that the information gained by the eavesdropper then simply equals the information lost by the
receiver.
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Quantum cryptography—or, more precisely, quantum k
distribution—is a technique that allows two remote parties
share a secret string of random bits~a secret key! that can be
used for exchanging encrypted information@1–3#. The secu-
rity of this process fundamentally relies on the fact that
measurement of incompatible variables inevitably affects
state of a quantum system. Any leak of information to
eavesdropper necessarily induces a disturbance of the
tem, which is, in principle, detectable by the authorized
ceiver.

In most quantum cryptosystems proposed so far, a sin
photon~or, in practice, a weak coherent state with an aver
photon number lower than one! is used to carry each bit o
the key. Mathematically, the security results from the use
a pair of noncommuting observables such as thex and z
projections of a spin 1/2,sx andsz , whose eigenstates ar
used to encode the key. The sender~Alice! randomly
chooses to encode the key using eithersz ~0 is encoded as
u↑& and 1 asu↓&) or sx @0 is encoded as 221/2(u↑&1u↓&) and
1 as 221/2(u↑&2u↓&)#, the choice of the basis being disclos
only after the receiver~Bob! has measured the photon. Th
guarantees that an eavesdropper~Eve! cannot read the key
without corrupting the transmission. Such a procedu
known as BB84@1#, is at the heart of most of the quantu
cryptographic schemes that have been experimentally d
onstrated in the past few years, which are based either on
polarization~e.g.,@4#! or the optical phase~e.g.,@5#! of single
photons. An alternative scheme, realized experimentally o
a year ago@6#, can also be devised relying on a pair
polarization-entangled photons instead of single photons@7#.
It is, however, fundamentally equivalent to BB84~see@8#! as
it again relies on the algebra of spin-1/2 particles.

Recently, it has been shown that other quantum key
tribution protocols can be devised based on continuous v
ables, where squeezed coherent light modes are used to
the key @9–11#. In these techniques, one exploits a pair
canonically conjugate~continuous! variables such as the tw
quadraturesX1 and X2 of the amplitude of a mode of th
electromagnetic field, which behave just like position a
momentum. The uncertainty relationDX1DX2>1/4 then im-
plies that Eve cannot read both quadrature components w
out degrading the state. Even though the experimental pr
ration of squeezed states is a difficult task, these sche
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circumvent a main weakness of the above-mentioned c
tosystems that is the critical dependence of their security
the ability of preparing single-photon states.

In this paper, we propose an alternative squeezed-s
quantum cryptographic scheme, which provides a mean
distribute acontinuoussecret key. Here, Alice and Bob aim
at sharing a continuous key that consists of a random lis
Gaussian-distributed variables that cannot be known to E
The key is simply a Gaussian noise that is imposed on
squeezed quadrature of a squeezed light mode. Thus, in
protocol,both the key and the quantum variable that carr
it are continuous. This is in contrast with the schemes p
posed in Refs.@9–11#, which appear hybrid as a continuou
quantum carrier encodes a discrete key element~the shared
key is made of bits or, in general, discrete variables!. Instead,
our approach can be viewed as anall-continuousquantum
cryptographic scheme, which is the proper continuous ex
sion of BB84. From a theoretical perspective, this provide
more satisfying continuous treatment of quantum key dis
bution. The trade-off between Eve’s information gain a
Bob’s disturbance can be expressed in an unexpect
simple way~restricting ourselves to individual attacks bas
on the optimal continuous cloning machine@12,13#!: the in-
formation gained by Eve on one quadrature is at most eq
to the information lost by Bob on the other quadrature. T
provides a simple information-theoretic disturbance meas
namely, the defect of information at Bob’s station. Mor
over, our all-continuous scheme avoids a potential att
against the continuous cryptosystems proposed so far by
ing in the gaps between the discrete values used to en
the key.

Let us detail our protocol. The uncertainty relation im
plies that it is impossible to measure with full accuracyboth
quadratures of a single mode,X1 andX2. Alice exploits this
property by encoding the key elements~random Gaussian
samples! as a quadrature squeezed state either inX1 or in X2
in such a way that an eavesdropper ignoring which of th
two ‘‘bases’’ is used cannot acquire information without d
turbing the state. In basis 1, Alice prepares a squee
vacuum state such that the fluctuations ofX1 are squeezed
(DX1

25s1
2,1/4), and applies a displacement ofX1 by an

amount equal to the key value (^X1&5x, wherex is the en-
coded key element!. The quantitys1

2 refers here to the in-
©2001 The American Physical Society11-1
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trinsic variance ofX1; the corresponding squeeze parame
is r 152 ln(2s1). We denote byS1

2 the variance of the key
that is, the mean valuêX1& is itself distributed as a Gaussia
variable of zero mean and varianceS1

2. Conversely, in basis
2, Alice sends a squeezed state inX2 (DX2

25s2
2,1/4),

whose displacement encodes the Gaussian key^X2&5x.
Again, ^X2& has a zero mean and a varianceS2

2, while the
squeeze parameter isr 252 ln(2s2). Thus, in summary, Alice
encodes the Gaussian key into a displaced vacuum sque
state, the squeezing~by r ) and displacement~by x) being
applied at random on quadratureX1 or X2. The actual
quadrature that carries the key is disclosed by Alice o
after Bob announces that he has received the signal, the
imposing a penalty on Eve.

Now, for our cryptographic setup to be maximally secu
we require the distribution ofX1 measurement outcomes
be indistinguishable whether basis 1 or 2 is used by Alice
this condition is fulfilled, Eve cannot obtain any indicatio
on whether she is measuring a type 1 or type 2 squee
state, whatever the statistics she accumulates. If basis
used, the outcomes ofX1 measurements~that can be ob-
tained by homodyne detection! are distributed as a Gaussia
of varianceS1

21s1
2 since each squeezed state gives an e

contribution ofs1
2 to the key variance. If, on the contrary,

type 2 squeezed state is measured, then the outcomesX1
measurements exhibit a Gaussian distribution of varia
1/(16s2

2) as a result of the uncertainty principle. Thus, w
impose the condition

S1
21s1

251/~16s2
2!. ~1!

Similarly, the requirement that type 1 and 2 squeezed st
are indistinguishable when performingX2 measurements im
plies that S2

21s2
251/(16s1

2). These two relations can b
summarized as

11S1
2/s1

2511S2
2/s2

251/a2, ~2!

where a54 s1s25e2(r 11r 2) is a dimensionless constan
that satisfiesa<1 ~or s1s2< 1/4). More generally, Eq.~2!
guarantees that the density matrices of the encoded key
ments are the same in bases 1 and 2, making them indi
guishable. Equation~2! also implies that the squeeze para
etersr 1 and r 2 completely characterize the protocol.

Let us first analyze this Gaussian key distribution in t
case where there is no eavesdropping and the transmiss
perfect. For that, we need to recall some standard notion
Shannon theory concerning continuous transmission ch
nels @14#. Consider a discrete-time continuous channel t
adds a Gaussian noise of variances2 on the signal. If the
input x of the channel is a Gaussian signal of varianceS2,
the uncertainty onx is measured by the differential Shanno
entropyh(x)5221log2(2p eS2) bits @15#. Conditionally on
x, the outputy is distributed as a Gaussian of variances2 so
that the entropy ofy conditionally on x becomesh(yux)
5221log2(2p es2) bits. Now, the distribution ofy is given
by the convolution of these two Gaussians, i.e., a Gaus
of variance S21s2. Hence, the output entropy ish(y)
5221log2@2p e(S21s2)# bits. According to Shannon theory
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the information processed through this noisy channel can
expressed as the mutual entropy betweenx andy ~the amount
by which the uncertainty ony is reduced by knowingx) @15#,

I ~bits!5h~y!2h~yux!5
1

2
log2~11g!, ~3!

whereg5S2/s2 is the signal-to-noise ratio~SNR!. This is
Shannon’s famous formula for the capacity of a Gauss
additive noise channel where the signal variance~or power!
is S2 while the noise variance iss2.

Equation ~3! immediately applies to our cryptograph
setup in the absence of eavesdropping. Assume Bob
forms a measurement in the good basis after the latte
announced by Alice on an authenticated public chann
~This is equivalent to the more realistic procedure where B
actually measures the key in a random basis, but then
cards the bad outcomes after the basis is disclosed by Al!
The SNR in basis 1 is simplyg15S1

2/s1
2, while it is g2

5S2
2/s2

2 in basis 2. Then, Eq.~2! becomes 11g1511g2

51/a2 so that the SNR is the same in both the basesg
5e2(r 11r 2)21. This means that the processed informati
from Alice to Bob in both the bases can be expressed, us
Eq. ~3!, as

I ~bits!52 log2~a!5~r 11r 2!/ ln 2. ~4!

This informationI measures the number of bits that can
transmitted asymptotically~using block coding! per use of
the channel with an arbitrary high fidelity for a given SNR
This transmission rate can be shown to be attainable if
signal is Gaussian distributed~which is the case under con
sideration here!. Note that I ~when expressed in natura
units—nats—rather than bits! simply equals the sum of the
squeeze parameters in bases 1 and 2, which reflects tha
protocol cannot work in the absence of squeezing. As
example, ifs1

25s2
251/8, i.e., if we have a 3-dB squeezin

(er5A2) in each basis, theng53, so we can process one b
on average per key state.

Let us now estimate the average photon number^N& con-
tained in each encoded key state. It clearly increases with
widening (S2) of the displacement used to represent Alice
key values. It also increases with squeezing but then
displacement distribution can be narrowed to achieve a s
SNR. Let us determine the relative contribution of these t
effects assuming, for simplicity, thats15s25s so that the
same squeezing is applied on both quadratures. Then, Eq~2!
implies thats25 1

4 e22r , S25 1
2 sinh(2r), and 11g5e4r . The

mean photon number in a given encoded key state~with a
given displacementx) is N5x21sinh2 r, where the first term
reflects the displacement effect while the second charac
izes vacuum squeezing@16#. Then, for a given SNR~or a
given r ), the average number of photons over all values ox
sent by Alice is^N&5S21sinh2 r. This yields for the aver-
age number of photons per key state,

^N&5
12a

2a
5

e2r21

2
5

~11g!1/221

2
. ~5!
1-2
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Equivalently, the processed information can be expresse
I (bits)5 log2(2 ^N&11), implying that the photon number in
creases exponentially with the processed information. N
that ^N&51/2 in the above example of a 1-bit channel~3-dB
squeezing!.

Let us now analyze the signature that is left by an eav
dropper Eve in this continuous cryptographic protocol. Fi
we must emphasize that in contrast with BB84, the key v
ues received by Bob are not exactly equal to those sen
Alice even in the absence of eavesdropping. This sim
results from the fact that the noise due to the intrinsic fl
tuations of the squeezed quadrature adds to the signal, g
rise to a finite SNR. This already holds at Alice’s stati
regardless of the~possibly tapped! channel. So, an eaves
dropper will be detectable in this scheme by an enhan
noise variance~or reduced SNR! at Bob’s station. Thus, a
protocol that Alice can follow to detect eavesdropping is
disclose on an authenticated public channel the exact va
x of a random subset of key elements. Then, Bob comp
them to the received valuesy and computes the distributio
of the differencesy2x. For a perfect and untapped chann
it should be a Gaussian of variances2, so the SNR is un-
changed. Otherwise, the SNR decreases by an amount
can be viewed as a measure of the disturbance of the A
to-Bob channel. Assume, for example, that Eve uses an
dividual ‘‘intercept-and-resend’’ attack, measuring each k
element in basis 1 or 2 at random, and resending a sque
state centered on the value of the measured quadrature
variance at Bob’s station will be 2s2 ~twice the intrinsic
variance! if Eve used the good basis, or 1/(16s2) in the
opposite case, so the resulting noise variance iss2@1
11/(2a2)#. Thus Bob’s computed SNR is reduced by a fa
tor 2/(31g).

As we shall see, the trade-off between the informat
acquired by Bob and Eve in this protocol can be analy
exactly using Eq.~3!. For that, we will assume that the op
timal individual eavesdropping strategy for Eve consists
using the optimal~Gaussian! cloning machine for continuou
quantum variables@12,13#. More precisely, we consider a
attack where Eve makes two imperfect copies~or clones! of
the key state, then sends one to Bob while she keeps
other one. Once Alice has revealed the basis she used
encoding the key, Bob and Eve then measure their rece
states in the appropriate basis~again, this is equivalent to
Bob measuring in a random basis and then discarding
bad measurements after the basis disclosure!. In practice,
Eve must keep her clones in a quantum memory u
completion of the protocol, i.e., until after Bob informe
Alice that he has received the data and Alice revealed
bases in return. The optimality of this eavesdropping strat
is a very reasonable assumption in view of the fact that
phase-covariant qubit cloner is known to be the best in
vidual eavesdropping strategy for BB84@17# ~actually, the
universal qubit cloner is optimal for the related six-sta
quantum cryptographic protocol@18#!. It is also corroborated
by an independent study of the optimum eavesdropping s
egy in a continuous-variable cryptographic scheme that
brought to our attention after completion of the present pa
@19#.
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In order to analyze the information-theoretic balance
tween Bob and Eve, we use a class ofasymmetricGaussian
cloners defined in Ref.@12#, which produce a different
amount of noise on both quadratures and for Bob and Ev
has been proved in Ref.@12# that the no-cloning inequality

s1,B
2 s2,E

2 >1/16 ~6!

must hold~and is saturated for this class of cloners!, where
s1,B

2 ands2,E
2 are the variances of the cloning-induced erro

that affect Bob’sX1 measurements and Eve’sX2 measure-
ments, respectively. For example, in basis 1, the outcome
X1 measurements by Bob will be distributed as a Gaussia
variances1

21s1,B
2 , since these cloning-induced errors a

superimposed on the intrinsic fluctuations of the squee
states. Similarly, a dual no-cloning uncertainty relati
holds, connecting Bob’s errors onX2 and Eve’s errors on
X1 : s2,B

2 s1,E
2 >1/16. Note that Eq.~6! and its dual were also

shown in @19# to put a bound on Bob and Eve’s measur
ments in a continuous-variable setup, implying that o
cloning-based eavesdropping strategy is indeed optimal.

In order to calculate the information acquired by Bob a
Eve, we characterize the cloners that saturate these ineq
ties by two parametersx and l: we rewrite the cloning-
induced error variances on Bob’s side ass1,B

2 5xl(s1
2/a)

and s2,B
2 5xl21(s2

2/a), while the errors on Eve’s side ar
written as s1,E

2 5x21l(s1
2/a) and s2,E

2 5x21l21(s2
2/a).

Thus,x characterizes the balance between Bob’s and Ev
errors ass1,B /s1,E5s2,B /s2,E5x. ~The limit x→0 corre-
sponds to the case of vanishing eavesdropping where
gets the entire informationI while Eve does not get any
information. The casex51 represents a symmetric clone
where the error variances are the same for Bob and E!
Similarly, l describes the quadrature 1 vs 2 balance, tha
s1,B /s2,B5s1,E /s2,E5l(s1 /s2). Let us now express the
information processed from Alice to Bob~or from Alice to
Eve! in basis 1~or basis 2!. In basis 1, the variance of Bob’
measurement outcomes iss1

21s1,B
2 5(11xl/a)s1

2 , while
the distribution of the key elements has a varianceS1

2. Using
Shannon’s formula, Eq.~3!, and the identity 11S1

2/s1
2

51/a2, we obtain for Bob’s information in basis 1,

I 1,B5
1

2
log2S 11axl

a21axl D . ~7!

Similarly, using the variance of Eve’s outcomes in basis
s2

21s2,E
2 5@111/(xla)#s2

2 , we obtain for Eve’s informa-
tion in basis 2

I 2,E5
1

2
log2S 11a/~xl!

a21a/~xl! D . ~8!

Then, the balance between Bob and Eve’s information
be expressed by calculating thesumof Eqs.~7! and ~8!,

I 1,B1I 2,E5
1

2
log2~1/a2!5I . ~9!
1-3
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Remarkably, the informationI 2,E acquired by Eve on the
second quadrature isexactlycounterbalanced by the defect
information at Bob’s side on the first quadrature,I 2I 1,B . Of
course, the counterpart of Eq.~9! also holds when inter-
changing the bases, that is,I 2,B1I 1,E5I .

Thus, assuming that the continuous cloner is the best
sible individual attack against our continuous cryptograp
protocol, Bob’s information lossI 2I B can be viewed as a
proper disturbance measure as it simply is an upper boun
the information that might be gained by a potential eav
dropper. Consequently, the net amount of key bits that
be generated by this method is bounded from below byI B
2I E>2I B2I . This follows from@20# where it is proven that
the secret key rate ofA and B with respect toE is lower
bounded by the difference of mutual informationI (A;B)
2I (A;E). Even thoughA, B, andE here denote continuou
variables, we can use this result provided that the gener
key and the exchanged reconciliation messages are dis
as required in@20#. Our continuous variablesA, B, and E
only appear at the right of the conditional bar in entro
formulas, so they can be approximated by discrete num
~that is, they can be replaced by an integer such asbnAc,
approximating the real variableA). As n grows, this will
approximate the real variable with a precision far beyo
what is needed given the noise level. Thus, our protoco
guaranteed to generate a nonzero net key rate provided
I B.I 2, that is, in terms of signal-to-noise ratiosg8
.A11g21, whereg8 is the actual SNR measured by Bo
This means that a 1-bit channel (g53) may still be used if
the noise power is almost tripled (g8.1).

In practice, a cryptosystem—even continuous—is
course expected to yield key bits, not continuous keys.
the procedure proposed here consists in performing the q
tum distribution of a~real! Gaussian key followed by a dis
cretization procedure so as to apply some~discrete! recon-
ciliation and privacy amplification protocols. The detail
the extraction of a binary key from a Gaussian key will
investigated in a further paper@21#. Such a strategy has th
advantage of circumventing a weakness of the squeezed-
cryptosystems as presented in Refs.@9–11#. There, the key is
binary ~or belongs to a larger finite alphabet!, so there are
gaps between the discrete key values. This allows Eve
gain knowledge about the occurrences where she meas
the wrong quadrature~without getting the key value!. For
example, if Alice sends6V to encode a bit 0 or 1 and Ev
gets a real value around zero, then Eve can deduce w
high probability that she measured the wrong quadrat
This knowledge alone is sufficient for her to attack the k
distribution scheme simply by omitting to resend the cor
gn
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sponding key element to Bob, thereby faking an attenua
in the transmission. This limitation does not apply to o
scheme since the key values continuously fill in an en
region in the (X1 ,X2) phase space, the marginal distributio
of X1 or X2 being independent of the encoding basis.

In conclusion, an all-continuous quantum cryptograp
protocol was proposed that is based on single-m
squeezed states of the electromagnetic field. It exploits
uncertainty relation between the conjugate pair of quadra
componentsX1 andX2 by encoding a continuous Gaussia
distributed key into eitherX1- or X2-squeezed states, thereb
allowing a continuous key distribution between two remo
parties. It is shown that the information acquired by
eavesdropper on the key elements encoded inX1 is compen-
sated by a reduction~by the same amount! of the key infor-
mation available on theX2 amplitude at the receiver’s sta
tion. This information-theoretic trade-off characterizes t
worst-case individual attack based on the cloning mach
so we conclude that the loss of information at the receive
end is a good upper bound on the tapped information
realization of this continuous protocol based on squee
states would be very challenging as the generation
squeezed light has been a difficult experimental task
years. Also, it would require synchronized local oscillators
Alice’s and Bob’s stations in order for them to have a co
mon phase for homodyne detecting the amplitudesX1 and
X2. In addition, probably the main limitation in the imple
mentation of this protocol is related to the loss of squeez
effected by attenuation in the transmission medium. T
would dramatically decrease the SNR and make the proto
less efficient~or insecure!. In analogy with what is known
for BB84, there probably is a threshold on the squeeze
rameter that Alice should reach below which the proto
would fail. Nevertheless, it should be stressed that the cr
tographic protocol proposed here was analyzed using
conjugate pair (X1 ,X2), but other complementary variable
might be exploited as well. In particular, one could imagi
a continuous cryptographic scheme based on the ti
frequency complementarity where ultrashort single-pho
pulses or, alternatively, single-photon pulses that are hig
peaked in frequency would be used in order to encode
Gaussian key. Such a scheme might possibly avoid som
the weaknesses of the squeezed state protocol and be
appropriate for an experimental realization.

We are grateful to Jonathan Dowling, Nicolas Gis
Sofyan Iblisdir, Serge Massar, and Hugo Zbinden for help
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