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Quantum distribution of Gaussian keys using squeezed states
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A continuous key-distribution scheme is proposed that relies on a pair of conjugate quantum variables. It
allows two remote parties to share a secret Gaussian key by encoding it into one of the two quadrature
components of a single-mode electromagnetic field. The resulting quantum cryptographic information versus
disturbance trade-off is investigated for an individual attack based on the optimal continuous cloning machine.
It is shown that the information gained by the eavesdropper then simply equals the information lost by the
receiver.
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Quantum cryptography—or, more precisely, quantum keycircumvent a main weakness of the above-mentioned cryp-
distribution—is a technique that allows two remote parties tdosystems that is the critical dependence of their security on
share a secret string of random kigssecret keythat can be the ability of preparing single-photon states.
used for exchanging encrypted informatidn-3]. The secu- In this paper, we propose an alternative squeezed-state
rity of this process fundamentally relies on the fact that thequantum cryptographic scheme, which provides a means to
measurement of incompatible variables inevitably affects thélistribute acontinuoussecret key. Here, Alice and Bob aim
state of a quantum system. Any leak of information to anat sharing a continuous key that consists of a random list of
eavesdropper necessarily induces a disturbance of the sy(g‘,aussian-distributed variables that cannot be known to Eve.
tem, which is, in principle, detectable by the authorized re-The key is simply a Gaussian noise that is imposed on the
ceiver. squeezed quadrature of a squeezed light mode. Thus, in our

In most quantum cryptosystems proposed so far, a singlerotocol,both the key and the quantum variable that carries
photon(or, in practice, a weak coherent state with an averagé are continuous. This is in contrast with the schemes pro-
photon number lower than ohés used to carry each bit of posed in Refs[9-11], which appear hybrid as a continuous
the key. Mathematically, the security results from the use ofjuantum carrier encodes a discrete key elentiet shared
a pair of noncommuting observables such as xhand z  key is made of bits or, in general, discrete variaplesstead,
projections of a spin 1/2y, ando,, whose eigenstates are our approach can be viewed as alrcontinuousquantum
used to encode the key. The sendgdice) randomly  cryptographic scheme, which is the proper continuous exten-
chooses to encode the key using either(0 is encoded as sion of BB84. From a theoretical perspective, this provides a
|1) and 1 ag])) or oy [0 is encoded as2¥(|1)+]||)) and ~ More satisfying continuous treatment of quantum key distri-
1as 2 Y4(|1)—|1))], the choice of the basis being disclosed bution. The trade-off between Eve’s information gain and
only after the receiveBob) has measured the photon. This Bob’s disturbance can be expressed in an unexpectedly
guarantees that an eavesdropffeve) cannot read the key Simple way(restricting ourselves to individual attacks based
without corrupting the transmission. Such a procedureOn the optimal continuous cloning machift2,13): the in-
known as BB841], is at the heart of most of the quantum formation gained by Eve on one quadrature is at most equal
cryptographic schemes that have been experimentally dento the information lost by Bob on the other quadrature. This
onstrated in the past few years, which are based either on tHgovides a simple information-theoretic disturbance measure,
polarization(e.g.,[4]) or the optical phasée.g.,[5]) of single  namely, the defect of information at Bob's station. More-
photons. An alternative scheme, realized experimentally onl@ver, our all-continuous scheme avoids a potential attack
a year ago[6], can also be devised relying on a pair of against the continuous cryptosystems proposed so far by fill-
polarization-entangled photons instead of single phofdhs ing in the gaps between the discrete values used to encode
It is, however, fundamentally equivalent to BB&%e[8]) as  the key.
it again relies on the algebra of spin-1/2 particles. Let us detail our protocol. The uncertainty relation im-

Recently, it has been shown that other quantum key disPlies that it is impossible to measure with full accurawth
tribution protocols can be devised based on continuous varfuadratures of a single mod€; andX,. Alice exploits this
ables, where squeezed coherent light modes are used to cafipperty by encoding the key elemeriteandom Gaussian
the key[9—11]. In these techniques, one exploits a pair ofSamplegas a quadrature squeezed state eitheg,iir in X,
canonically conjugatécontinuous variables such as the two in such a way that an eavesdropper ignoring which of these
quadraturesX; and X, of the amplitude of a mode of the two “bases” is used cannot acquire information without dis-
electromagnetic field, which behave just like position andturbing the state. In basis 1, Alice prepares a squeezed
momentum. The uncertainty relatidnX;AX,=1/4 then im-  vacuum state such that the fluctuationsXgf are squeezed
plies that Eve cannot read both quadrature components withA Xi=o7<1/4), and applies a displacement Xf by an
out degrading the state. Even though the experimental prepamount equal to the key valu€X;) =x, wherex is the en-
ration of squeezed states is a difficult task, these schemesded key elemejnt The quantityai refers here to the in-
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trinsic variance ofX;; the corresponding squeeze parametertthe information processed through this noisy channel can be
is r;=—1In(20;). We denote b;E"{ the variance of the key, expressed as the mutual entropy betweandy (the amount
that is, the mean valugX, ) is itself distributed as a Gaussian by which the uncertainty opis reduced by knowing) [15],
variable of zero mean and variané. Conversely, in basis
2, Alice sends a squeezed state X3 (AX5=o03<1/4),
whose displacement encodes the Gaussian &) =x.
Again, (X,) has a zero mean and a variartg, while the
squeeze parameterris= — In(20>). Thus, in summary, Alice where y=32%/¢2 is the signal-to-noise raticSNR). This is
encodes the Gaussian key into a displaced vacuum squeez8tdannon’s famous formula for the capacity of a Gaussian
state, the squeezin@y r) and displacementby x) being  additive noise channel where the signal variataepowe)
applied at random on quadratudé, or X,. The actual is 32 while the noise variance is?.
quadrature that carries the key is disclosed by Alice only Equation (3) immediately applies to our cryptographic
after Bob announces that he has received the signal, therelsetup in the absence of eavesdropping. Assume Bob per-
imposing a penalty on Eve. forms a measurement in the good basis after the latter is
Now, for our cryptographic setup to be maximally secure,announced by Alice on an authenticated public channel.
we require the distribution 0X; measurement outcomes to (This is equivalent to the more realistic procedure where Bob
be indistinguishable whether basis 1 or 2 is used by Alice. lfactually measures the key in a random basis, but then dis-
this condition is fulfilled, Eve cannot obtain any indication cards the bad outcomes after the basis is disclosed by Alice.
on whether she is measuring a type 1 or type 2 squeezethe SNR in basis 1 is simply;=32/¢2, while it is y,
state, whatever the statistics she accumulates. If basis 1 is32/¢3 in basis 2. Then, Eq(2) becomes # y;=1+ v,
used, the outcomes of; measurementgthat can be ob- =1/a? so that the SNR is the same in both the bases,
tained by homodyne detectipare distributed as a Gaussian =e?('1772)— 1. This means that the processed information
of varianceEer oi since each squeezed state gives an extrrom Alice to Bob in both the bases can be expressed, using
contribution of(rf to the key variance. If, on the contrary, a Eq. (3), as
type 2 squeezed state is measured, then the outconds of
measurements exhibit a Gaussian distribution of variance | (bits)=—log,(a@)=(r{+r5)/In2. 4)
1/(16cr§) as a result of the uncertainty principle. Thus, we
impose the condition This informationl measures the number of bits that can be
- ) transmitted asymptoticallyusing block coding per use of
21+ 01=1/(1603). (1) the channel with an arbitrary high fidelity for a given SNR.

e . This transmission rate can be shown to be attainable if the
Similarly, the requirement that type 1 and 2 squeezed state§gn,) is Gaussian distributeevhich is the case under con-

are '”d'St'”%“'Sh,f‘ble wher; performig measurements im-  gijeration here Note that! (when expressed in natural
plies that%5+05=1/(1607). These two relations can be ypjts—nats—rather than bjtsimply equals the sum of the
summarized as squeeze parameters in bases 1 and 2, which reflects that the
2, 2 2, 2 4, 2 protocol cannot work in the absence of squeezing. As an
1+3{/oi=1+25o5=1la%, 2 example, ifo2=03=1/8, i.e., if we have a 3-dB squeezing
where a=4 oyo,=e~(1*72 is a dimensionless constant (e"=/2) in each basis, thep=3, so we can process one bit
that satisfiesr<1 (or o,0,< 1/4). More generally, Eq2)  ON average per key state.
guarantees that the density matrices of the encoded key ele- L&t us now estimate the average photon nun{b&rcon-
ments are the same in bases 1 and 2, making them indistiﬁ@_'”ed. in each encodeq key state. It clearly increases w'|th the
guishable. Equatiof2) also implies that the squeeze param-Widening &%) of the displacement used to represent Alice’s
etersr, andr, completely characterize the protocol. key values. It also increases with squeezing but then the
Let us first analyze this Gaussian key distribution in thediSPlacement distribution can be narrowed to achieve a same
case where there is no eavesdropping and the transmissiong&\R. Let us d'etermlne'the .rglatlve contribution of these two
perfect. For that, we need to recall some standard notions &ffects assuming, for simplicity, that, = o,= o so that the
Shannon theory concerning continuous transmission charf@me squee2|ngl|sgppl|e2d on both quadratures. EhemZEq-
nels[14]. Consider a discrete-time continuous channel thatmplies thato*=ze™, 2 =3sinh(2), and 1+ y=e " The
adds a Gaussian noise of varianeé on the signal. If the Mean photon number in a given encoded key staith a
input x of the channel is a Gaussian signal of variadde  9iven d|splac§ment) is N=x +S|nr12_r, where the first term
the uncertainty ox is measured by the differential Shannon _reflects the d|splacement effect while the. second character-
entropyh(x) =2~ log,(27re3?) bits [15]. Conditionally on  1Z€S vacuum squeezind6]. Then, for a given SNRor a
x, the outpuly is distributed as a Gaussian of varianceso ~ 9ivenr), the average ngmb_er of photons over all values of
that the entropy ofy conditionally onx becomesh(y|x) ~ Sent by Alice is(N)=32+sint?r. This yields for the aver-
=2 Yog,(2red?) bits. Now, the distribution of is given g€ number of photons per key state,
by the convolution of these two Gaussians, i.e., a Gaussian o 1o
of variance 32+ ¢2. Hence, the output entropy is(y) N = l-a e'-1 (1+y™-1 5)
=2"Yog,[2me(22+¢?)] bits. According to Shannon theory, (N)= 2¢ 2 2 '

1
I (bits) =h(y) —h(y[x) = 5logy(1+ ), ()
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Equivalently, the processed information can be expressed as In order to analyze the information-theoretic balance be-
| (bits)=log,(2(N)-+1), implying that the photon number in- tween Bob and Eve, we use a classasymmetricGaussian
creases exponentially with the processed information. Noteloners defined in Ref[12], which produce a different
that(N)=1/2 in the above example of a 1-bit chanf@dB  amount of noise on both quadratures and for Bob and Eve. It

squeeziny has been proved in Ref12] that the no-cloning inequality
Let us now analyze the signature that is left by an eaves- 5
dropper Eve in this continuous cryptographic protocol. First, o1p05=1/16 (6)

we must emphasize that in contrast with BB84, the key val-
ues received by Bob are not exactly equal to those sent byiust hold(and is saturated for this class of clonenghere
Alice even in the absence of eavesdropping. This simplyriB anda%E are the variances of the cloning-induced errors
results from the fact that the noise due to the intrinsic flucthat affect Bob’sX; measurements and Eve}, measure-
tuations of the squeezed quadrature adds to the signal, givingents, respectively. For example, in basis 1, the outcomes of
rise to a finite SNR. This already holds at Alice’s station X; measurements by Bob will be distributed as a Gaussian of
regardless of thepossibly tappeldchannel. So, an eaves- variance o+ a4, since these cloning-induced errors are
dropper will be detectable in this scheme by an enhanceguperimposed on the intrinsic fluctuations of the squeezed
noise varianceor reduced SNRat Bob's station. Thus, a states. Similarly, a dual no-cloning uncertainty relation
protocol that Alice can follow to detect eavesdropping is toholds, connecting Bob’s errors ox, and Eve’s errors on
disclose on an authenticated public channel the exact valugs, : 43 .42 .=1/16. Note that Eq(6) and its dual were also
x of a random subset of key elements. Then, Bob compareshown in[19] to put a bound on Bob and Eve’s measure-
them to-the received valugsand computes the distribution ments in a continuous-variable setup, implying that our
of the differencey —x. For a perfect and untapped channel, cioning-based eavesdropping strategy is indeed optimal.
it should be a Gaussian of varianeg, so the SNR is un- In order to calculate the information acquired by Bob and
changed. Otherwise, the SNR decreases by an amount thefe, we characterize the cloners that saturate these inequali-
can be V|eWed as a measure of the dISturbance of the A||qu'es by two parameterq and \: we rewrite the C|Oning_
59'%0b IC‘ha{‘”e'- ,?ssudme, ford‘ixatrtnpllf' that Eve uses harll Nhduced error variances on Bob’s side @§g=xA (07 @)
vidual intercept-and-resend - attack, measuring €ach k€y,nq ;2 — 4\ ~1(o3/a), while the errors on Eve’s side are
element in basis 1 or 2 at random, and resending a squeezed..._~ 2 _ Ty, 2 2 _ 1y 1,2
itten as o1 g=x" "N(oi/a) and o5z=x" "N~ (05 a).

state centered on the value of the measured quadrature. T e 7 ~ , ,

. , . ) ) L us, xy characterizes the balance between Bob’s and Eve’s
variance at Bob’s station will be & (twice the intrinsic

. . . . errors asoyg/og=0,g/0,e=x. (The limit y—0 corre-
varlanpe) if Eve used the gooc_i ba5|s., or 1/((.16 in the sponds to the case of vanishing eavesdropping where Bob
opposite case, so the resulting noise varianceo1

5 ; ) gets the entire informatioh while Eve does not get any
:cr)rllz(/%gﬁl;)Thus Bob’s computed SNR s reduced by a faC'information. The casgr=1 represents a symmetric cloner

As we shall the trade-off between the informati where the error variances are the same for Bob and)Eve.
s we shall see, the trade-oll betwee € informatio imilarly, X describes the quadrature 1 vs 2 balance, that is,
acquired by Bob and Eve in this protocol can be analyze

: . o1glo,g=01el0e=N(01/0,). Let us now express the

A S, ot e il sesume 1t e 98, o rocesee o Al t B from Ace t

. ! . . . . Eve) in basis 1(or basis 2. In basis 1, the variance of Bob’s
using the optimalGaussiahcloning machine for continuous . > 5 .
quantum variable$12,13. More precisely, we consider an measurement outcomes dé+01'3_(1+x)\/6¥.)01' wh_He
attack where Eve makes two imperfect copiesclones of the d|str|l?ut|on of the key elements has_a va_rlaﬁéeuzsmg
the key state, then sends one to Bob while she keeps th%ham;on s formula, Eq(3), and the identity i X%/07y
other one. Once Alice has revealed the basis she used for1/a”, we obtain for Bob's information in basis 1,
encoding the key, Bob and Eve then measure their received
states in the appropriate bagisgain, this is equivalent to | —EI 1+axh
Bob measuring in a random basis and then discarding the 187 0%| 27 ax\|
bad measurements after the basis disclgsure practice,
Eve must keep her clones in a quantum memory untilSimilarly, using the variance of Eve’s outcomes in basis 2,

completion of the protocol, i.e., until after Bob informed 42+ 52 _=[1+1/(y\a)]o2, we obtain for Eve’s informa-
Alice that he has received the data and Alice revealed th§on in basis 2

bases in return. The optimality of this eavesdropping strategy
is a very rea_sonable_assumpt?on in view of the fact tha_t th_e 1 1+ al(x\)
phase-covariant qubit cloner is known to be the best indi- IzyEzzlogz( )
vidual eavesdropping strategy for BB§47] (actually, the

universal qubit cloner is optimal for the related six-state L )
quantum cryptographic protocfL8]). It is also corroborated Then, the balance betwe_en Bob and Eve’s information can
by an independent study of the optimum eavesdropping stral2€ exPressed by calculating tsemof Egs.(7) and(8),

egy in a continuous-variable cryptographic scheme that was
brought to our attention after completion of the present paper
[19].

)

a’+al(x\) ®)

1
Il,B+I2,E:§|092(1/a2):| . (9)
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Remarkably, the informatiot, e acquired by Eve on the sponding key element to Bob, thereby faking an attenuation
second quadrature é&xactlycounterbalanced by the defect of in the transmission. This limitation does not apply to our
information at Bob’s side on the first quadrature,l; 5. Of  scheme since the key values continuously fill in an entire
course, the counterpart of E¢9) also holds when inter- region in the K, ,X,) phase space, the marginal distributions
changing the bases, that Isg+1,g=1. of X; or X, being independent of the encoding basis.

Thus, assuming that the continuous cloner is the best pos- |n conclusion, an all-continuous quantum cryptographic
sible individual Qttack against our continuous pryptographicmotocm was proposed that is based on single-mode
protocol, Bob’s information los$—1g can be viewed as @ squeezed states of the electromagnetic field. It exploits the

proper disturbance measure as it simply is an upper bound Qfhcertainty relation between the conjugate pair of quadrature
the information that might be gained by a potential eaves-

dropper. Consequently, the net amount of key bits that Caﬁomponenté(l andX; by encoding a continuous Gaussian-
be generated by this method is bounded from below by istributed key into eitheX;- or X,-squeezed states, thereby

. o allowing a continuous key distribution between two remote
—lg=2lg—1I. This follows from[20] where it is proven that g y

the secret key rate oh and B with respect toF is lower parties. It is shown that the information acquired by an
. ) : eavesdropper on the key elements encodex irs compen-
bounded by the difference of mutual informatid(A;B) v PP y i y

_1(A‘E). Even thoughA, B, andE here denote continuous sated by a reductiofby the same amounof the key infor-

h . - ation available on th&, amplitude at the receiver’s sta-
variables, we can use this result provided that the generatg

- ; n. This information-theoretic trade-off characterizes the
key and_ the _exchanged recqncmatlon messages are discrefftrst-case individual attack based on the cloning machine
as required in20]. Our continuous variabled, B, and E '

. " . so we conclude that the loss of information at the receiver’'s
only appear at the right of the conditional bar in entropy

f | h b ) d by di b end is a good upper bound on the tapped information. A
ormuas, so they can be approxmate' y discrete nUmbelR yjization of this continuous protocol based on squeezed
(that is, they can be replaced by an integer suchnag,

A ) Lo states would be very challenging as the generation of
approximating the real variabld). As n grows, this will

) h | able with ision far b queezed light has been a difficult experimental task for
approximate the real variable with a precision far beyondq, s aise, it would require synchronized local oscillators at
what is needed given the noise level. Thus, our protocol i

. lice’s and Bob's stations in order for them to have a com-
guaranteed to. ger_1erate a nonzero net key r.ate proyld,ezd thﬁ‘lton phase for homodyne detecting the amplitudigsand
lg=>1p, that is, in terms of signal-to-noise ratioy” . "\ aqddition, probably the main limitation in the imple-
>y1+y—1, wherey' is the actual SNR measured by Bob. menation of this protocol is related to the loss of squeezing
This means that a 1-bit channe}< 3) may sill be used if  gffected by attenuation in the transmission medium. This
the noise power is almost tripled/(>1). _ _ would dramatically decrease the SNR and make the protocol
In practice, a cryptosystem—even continuous—is Ofjess efficient(or insecurg In analogy with what is known
course expected to yield key bits, not continuous keys. Sqqr BB84, there probably is a threshold on the squeeze pa-
the procedure proposed here consists in performing the quafsmeter that Alice should reach below which the protocol
tum distribution of a(rea) Gaussian key followed by a dis- \yoy|d fail. Nevertheless, it should be stressed that the cryp-
cretization procedure so as to apply sofdéscretg recon-  qgraphic protocol proposed here was analyzed using the
ciliation an.d pnvacy.ampllflcatlon protocols.'The detaﬂ of conjugate pair X;,X»), but other complementary variables
the extraction of a binary key from a Gaussian key will beyight be exploited as well. In particular, one could imagine
investigated m_afurther _pap@?l]. Such a strategy has the 5 ~ontinuous cryptographic scheme based on the time-
advantage of circumventing a weakness of the squeezed-stgigquency complementarity where ultrashort single-photon
cryptosystems as presented in R¢gs-11). There, the key is  ises or, alternatively, single-photon pulses that are highly
binary (or belongs to a larger finite alphaheso there are  peaked in frequency would be used in order to encode the
gaps between the discrete key values. This allows Eve g5 ssian key. Such a scheme might possibly avoid some of
gain knowledge about the occurrences where she measurgeh \yeaknesses of the squeezed state protocol and be more

the wrong qugdrature/vithout getting the. key valye For appropriate for an experimental realization.
example, if Alice sendstV to encode a bit 0 or 1 and Eve

gets a real value around zero, then Eve can deduce with a We are grateful to Jonathan Dowling, Nicolas Gisin,

high probability that she measured the wrong quadratureSofyan Iblisdir, Serge Massar, and Hugo Zbinden for helpful
This knowledge alone is sufficient for her to attack the keydiscussions. G.V.A. acknowledges the support from the
distribution scheme simply by omitting to resend the corre-Banque Nationale de Belgique.
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