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Phase conjugation of continuous quantum variables
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The phase conjugation of an unknown Gaussian state cannot be realized perfectly by any physical process.
A heuristic argument is used to derive a tight lower bound on the noise that must be introduced by an
approximate phase conjugation operation. A universal transformation achieving the optimal imperfect phase
conjugation is then presented, which is the continuous counterpart of the universaiansformation for
guantum bits. In addition, it is shown that more information can be encoded into a pair of conjugate Gaussian
states than by using the same state twice.
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The spin-flip operation cannot be performed on an arbi-consists in flipping the sign of quadratupewhile keeping

trary spin-1/2. particle(or qubiy since it is anantiunitary 4 agraturex unchanged, that is, replaciagby its Hermitian
transformation. In other words, given a spin-1/2 particle po-__ . ~ i . L : .

i . s - conjugatea’. Clearly, this operation is impossible as it does
larized in an unknown direction, the stateln) cannot be

i N ) not conserve the commutation relationbia' is the result-
turned into| —n) by any physical process. Recently, how-

: . ' ’ ing mode, we havgb,b™]=—[a,a’]=—-1 instead of 1
ever, it has been shown that this operation can be done =1). A heuristic argument can be used to show that this

perfectly with the same fidelity for all states), by using a  operation cannot be performed with an added noise that is
universal quantum spin-fligor universalnoT) transforma-  |ower than a minimum equal to twice the vacuum noise. Let
tion [1,2]. This transformation yields—n) with a fidelity of ~ us consider two modegnodes 0 and )lthat are initially

2/3, which, remarkably, coincides with the fidelity of the prepared in the Einstein-Podolsky-Ros&iPR) state, that is,
optimal measurement of a spin-1/2 parti8. This means the common eigenstate &=X,—x; and P=p,+p; with

that the optimal spin-flip operation can be achieved by firszero eigenvalue for both operatoXs and P. Since[X,P]
measuring the spin in an arbitrary direction, and then prepar=0, these operators can be diagonalized simultaneously, so
ing a spin state pointing in the opposite direction to the meathat the EPR state can be understood as representing two
sured spin. A related result is that encoding a space directioparticles with a relative positior,—x; and a total momen-

n into two antiparallel spinfn, —n) is slightly more efficient  tum po+p; both arbitrarily close to zero. Assume now that

than using a naive encoding with parallel spingn) [2]. we apply a perfect phase conjugation on mode 1, thagis,

In this paper, we investigate the continuous analog of the=x; and p;=—p;, while mode O is left unchanged. The
spin-flip operation, namelyphase conjugatior{or, equiva- EPR state is then transformed into the common eigenstate
perfectly conjugating an arbitrary Gaussian s{@te in par-
ticular, a coherent statb_y)). We find that such a process X=X, —X},
necessarily effects a noise that is equal to at leaite the
vacuum fluctuation noise of the input coherent state. This Pl 1)
leads us to define a universal phase conjugator or universal- Po~P1-

NOT operator for continuous quantum variables. We then o A o, AL A
show Ec:)hat this transformation ?s optimal as it achieves the/Ve thus expect thgtx’,P’]=0 sinceX’=X and P’ =P.
lower bound derived above. The resulting phase conjugatiohfowever,X” andP’ actually cannot commute any more here
fidelity is 1/2, which, just as for qubits, is the same as thef the transformed modes’@nd 1 are to obey the standard
f|de||ty of the optima| measurement of a coherent Statecommutation relations. In other words, the ImpOSSIb”Ity of
[4—6]. Finally, the link with quantum state estimation and Perfect phase conjugation is reflected here by the impossibil-
quantum cloning for coherent states is discussed. In particlity of obtaining a common eigenstate &f,—X; and p;

lar, it is shown that, in analogy with the situation for qubits, _ p.. Instead, sincgX',P’'1=[X4,psl+[X,.pi1=2i, the

!t is more efficient to encode information into a pair of con- Heisenberg uncertainty relation implies that

jugate coherent statée)®|a*) rather than using the same

state twicel a)®2. The error variance on the real and imagi- P TS

nary parts ofae can actually be divided by 2 in the former AXTAP"=S[([X",P'])[=1. 2
case(by applying an appropriatentangledmeasurement

with respect to the latter case. If we now assume that the phase conjugation process intro-

Consider a single mode of the electromagnetic field, deguces some noise, then it is easy to determine the minimum
noted asa=(x+ip)/y2. The phase conjugation operation amount of such noise for the Heisenberg uncertainty relation
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to be satisfied. Let us suppose that mode 1 suffers, after [by,bl]=M2,—L2,~1=1, (7)
phase conjugation, from a random noisg and n, on
quadratures and p;, respectively. Thusx;=x;+n, and [by,b31=|Mpi| 2+ |Mpg?—|Lpi|?—|Lpg?=1, (8

p;=—p;+n,. Naturally, we assume that this noise is unbi-
ased, that is(n,)=(n,)=0. We also assume that the phase

conjugation ope.ration is “gniversal,” i.e., phase insensitive.Equatiorl (7), together with the universality condition, im-
Hegci, er r_eqlzure the vanan'cesrqundnp to be the same plies thatL;,=0 andM ;,=\/2. Equations(8) and (9) then
((n)=(np)=07). The resulting variance of operatol  impose two last conditions on the four coefficieMs; and

[b1,b2]=MyjLoj—L4jM;=0. 9

=X—n,andP'=P—n, is Loj, so we are left with two free parameters. If we further
oo mra impose that mode 2 transforms just like modevl,6=0 and
AX'*=AP'*=0"%, (3 Lyy=1), then we get
sinceX and P both have a vanishing variance in the EPR b,=al+\2a,, (10

state. Equatiori2) then implies that
B — o oAt
o?=1, @ by=\22;+a}. (11)
we might expect, this transformation exactly describes a

so that the noise induced by the phase conjugation process'i . o . . . ;
ase-insensitive phase-conjugating linear amplifisee

lower bounded by 1, i.e., twice the variance of a quadratur 7). One can easily check that the noise variance of the

. 2 _
in the vacuum statex,c=1/2). . output of this phase conjugator is
Let us now construct an actual approximate phase-

conjugating transformation that attains this bound. The input (AX®)p. = (Ap?)p. = AXZ,+2AX2, =3/2, (12)
mode, assumed to be prepared in a coherent $tgteis ! !

coupled to an ancilla mode by some unitary transformationsg that the phase-conjugation-induced noise is twice the
Subsequently, the ancilla is traced over, so the processgghcyum noise, i.e., 2x2,=1. Hence, this transformation is
mode is left in a mixed state that is required to be as close agyiimal as it saturates the boufd. In particular, if the input
possible to the complex conjugate sthi€ ). Let us denote s 4 coherent statier), the output will be a Gaussian mixture

the input mode bya; and the ancilla mode by,. The ca-  of coherent stateg with variance 1 centered diae* ). Con-
nonical transformation can be generally described as sequently, the phase-conjugating fidelity is

b= My, + Lya © F=(a*pla*)=112, (13

wherei,j=1,2, and the sum is implicit. The output modes just as for an optimal measurem¢gdt-6|. Interestingly, this

ande refer to the phase conjugator output and the processe?;‘s)geﬁ ?Oajlghbisg.ccﬁg{/i%aggr:/\ll;IIT:)tm;isrﬁﬁll tlgr?egﬁ;s'?:egg-r-
ancilla, respectively. This transformation is determined, inin tHe two quadratures ), and thgn reparin acz;herent
general, by eight complex coefficients, but we will now im- 9 q ' preparing

pose the constraints for it to characterize @mperfecy state whose quadratupehas a flipped sign. Incidentally, we

. ; o : ote that any number of phase conjugated outputs can actu-
phase conjugator. First, we note that it is always possible t(g”y be prepared together at no césith F = 1/2 for each.

A idig. b. iip. ) . - . .
perform a phase transformatian—€'“a; and b;—e"b; It is interesting, at this point, to extend the parallel with

such that the coefficientsly; andL,; are real and positive. he yniversal quantum spin-flip machine for qubits, and make
Then, by definition, we require that the phase conjugatof, connection with a state estimation question[2h Gisin

obeys(b,)=(a}). Also, without loss of generality, we can and Popescu have found the surprising result that encoding a
assume that the ancilla is initially in the vacuum stég)  directionn into two antiparallel spingn, —n) yields slightly
=((a,)%)=0 (see[7]). Thus, we must havé ;=0 and more information onn than encoding it into two parallel
L1;=1. We now impose the “universality” of the transfor- gpins|n,n). Here, we investigate the counterpart of this situ-

mation, that is, the constraint that the added noise is phasgion for information that is carried by a continuous quantum
insensitive(each quadrature suffers from the same noiSe  yariaple instead of a qubit. Consider the situation where Al-

the input mode has phase-insensitive noise, i.e{(af)?)  ice wants to communicate to Bob a complex numéer(x
=(a,)? (for example, if it is a coherent statehen we re- +ip)/\/2. Assume that Alice is allowed to use a quantum
quire that the output mode also has phase-insensitive noisehannel only twice so as to send Bob two coherent states of

i.e., ((by)2)=(b,)2. Using a given amplitudéa|® each. She can choose, for example, to
send Bob the product stafte)®?2. In this case, the best strat-
((b1)?)—(by)?=((a)?)—(al)?+ Mol 15, (6)  egy to infer bothx andp with the same precision is to per-

form a product measuremef]. A simultaneous measure-
we conclude that the universality condition is simply ment of the two quadratures of each coherent stateields
M.l 1,=0. Three more conditions come from imposing the (x,p) with a variance Ax2,.=1 [4]. The resulting error
commutation rules to be conserved by the transformdBgan  variance orx andp estimated from these two measurements
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is then equal to one half of this variance, thatis, =1/2.  beam splitter, we would obtain a single coherent gtaRea)
(This is just the statistical factor. on output mode 1 One should then necessarily perform a
Another possibility is that Alice sends Bob the productsimultaneous measurement of the two quadratures of the lat-
state|@)®|a*). In this case, a possibl@ut not necessarily ter mode, vyielding (2x,/2p) with an error variance
optima) strategy for Bob is again to carry out a product 2Ax2, =1, or, equivalentlyx and p with a varianceAx2,.
measurement, taking into account that the measured value of 12 As a consequence, we have proved here that a better
p of the second state should be read-as. This obviously  strategy for sending andp to Bob is to encode them into
results in the same error variance 1/2. However, the fact th%vo conjugate coherent stat{z(s<+ip)/\/§)®|(x—ip)/\/§)

the continuous universaloT transformation has a nonunity . ; X
fidelity leaves open the possibility that there exists a mea[ather than sending two replicas |(Qf<+|p)/\/§). The error

surement ofla)®|a*) that is not of a product form, and variance orx andp is indeed reduced by a factor of 2 via the

yields a variance strictly lower than 1/2. Indeed, if there was5¢ _Of phase conj_ugatlon. . :
Finally, let us discuss the connection between the univer-

a perfect universal phase conjugator, then it could be used to . X
convert|a*) into |a) before applying the optimal product sal phase conjugator and quantum cloning. It can be shown

measurement ofw)®2, thereby resulting in the same mini- that the Gaussian cloning machine for continuous variables
mum variance in botH cases. introduced in[8] generates, in addition to the two clones of

Let us now explicitly describe an entangled measuremerif® input state, an imperfect phase conjugate version of the
of the product statéa)® |a* ), which indeed yields a lower input state with the same fidelityF(=1/2) as that of the
variance. Expressing the two input modes|as=exp(px,  universal phase conjugatg@]. The exact same property
“ixp)|0) and | a* )= exp(—ipX,—ixP,)|0), we can write the h_olds for tht_a un_lversa_l qu_blt clon¢tQ], which also y|e!ds a
) A flipped qubit with a fidelity equal to that of the universal
input product state afw)®|a*)=exp(pX—ixP)[0), where g antum spin-flip machink2]. Thus, the general rule seems
X=X;—Xz and P=p;+p, are two commutingoperators. to apply that the production of two clones is necessarily ac-

Assume now that the two input states) and|a*) are sent  companied by the creation of one anticlofiene-reversed
each into one of the inputs of a balanced beam splitter, chakiatg.

acterized by the canonical transformation As a last comment, it is worth noting that we have here
A, A A, A a another example of the classical nature of the univeveal-
X;=(X1+%)/V2,  P1=(P1+P2)/\2, (14 operation. As emphasized ji], spin flipping is essentially a
. A . .. classical operation on qubits, since it can be done by a mea-
X5=(X1=X2)/\2,  py=(P1—P2)/2. (15  surement followed by the preparation of a flipped spin. This

also implies that any number of flipped spins can be pro-
duced together with the same fidelity. Similarly, we have

B . o ~, shown here that the same situation prevails for the phase
| @) ®]a*) =ex ‘pr?_' ‘/EXpl)|O> (16) conjugation of continuous quantum variables. It seems
ytempting therefore to conjecture that atignperfecy time-
reversal procedure can be done optimally in a classical way.
Proving this conjecture and understanding the fundamental
reason for it are interesting open questions.

The input product state can be reexpressed as

implying thatx and p can be measured separately here b
applying homodyne detection on modesdnd 2. Indeed, a
measurement of the first quadrature of modeyiklds 2 x,

on average, while a measurement of the second quadrature
mode 2 yields y2 p. These two measurements each suffer \we are grateful to Serge Massar for useful discussions.
from an error of variance\x,.=1/2. Hence, the resulting S.|. acknowledges funding from the Belgian “Fonds pour la
error variance orx and p is reduced toAx2,/2=1/4. In  Recherche Industrielle et Agricole.” N.J.C. is funded in part
contrast, if we had the input product state)®? and were by the project EQUIP under the IST-FET-QJPC European
sending each coherent stdte) into an input of a balanced Programme.
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