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Phase conjugation of continuous quantum variables

N. J. Cerf1,2 and S. Iblisdir1
1Ecole Polytechnique, CP 165, Universite´ Libre de Bruxelles, B-1050 Bruxelles, Belgium

2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
~Received 21 December 2000; published 17 August 2001!

The phase conjugation of an unknown Gaussian state cannot be realized perfectly by any physical process.
A heuristic argument is used to derive a tight lower bound on the noise that must be introduced by an
approximate phase conjugation operation. A universal transformation achieving the optimal imperfect phase
conjugation is then presented, which is the continuous counterpart of the universal-NOT transformation for
quantum bits. In addition, it is shown that more information can be encoded into a pair of conjugate Gaussian
states than by using the same state twice.
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The spin-flip operation cannot be performed on an ar
trary spin-1/2 particle~or qubit! since it is anantiunitary
transformation. In other words, given a spin-1/2 particle p

larized in an unknown directionnW , the stateunW & cannot be

turned into u2nW & by any physical process. Recently, how
ever, it has been shown that this operation can be doneim-

perfectly, with the same fidelity for all statesunW &, by using a
universal quantum spin-flip~or universal-NOT! transforma-

tion @1,2#. This transformation yieldsu2nW & with a fidelity of
2/3, which, remarkably, coincides with the fidelity of th
optimal measurement of a spin-1/2 particle@3#. This means
that the optimal spin-flip operation can be achieved by fi
measuring the spin in an arbitrary direction, and then pre
ing a spin state pointing in the opposite direction to the m
sured spin. A related result is that encoding a space direc

nW into two antiparallel spinsunW ,2nW & is slightly more efficient

than using a naive encoding with parallel spinsunW ,nW & @2#.
In this paper, we investigate the continuous analog of

spin-flip operation, namely,phase conjugation~or, equiva-
lently, time reversal!. First, we analyze the impossibility o
perfectly conjugating an arbitrary Gaussian state~or, in par-
ticular, a coherent stateua&). We find that such a proces
necessarily effects a noise that is equal to at leasttwice the
vacuum fluctuation noise of the input coherent state. T
leads us to define a universal phase conjugator or unive
NOT operator for continuous quantum variables. We th
show that this transformation is optimal as it achieves
lower bound derived above. The resulting phase conjuga
fidelity is 1/2, which, just as for qubits, is the same as
fidelity of the optimal measurement of a coherent st
@4–6#. Finally, the link with quantum state estimation an
quantum cloning for coherent states is discussed. In part
lar, it is shown that, in analogy with the situation for qubi
it is more efficient to encode information into a pair of co
jugate coherent statesua& ^ ua* & rather than using the sam
state twiceua& ^ 2. The error variance on the real and imag
nary parts ofa can actually be divided by 2 in the forme
case~by applying an appropriateentangledmeasurement!,
with respect to the latter case.

Consider a single mode of the electromagnetic field,
noted asâ5( x̂1 i p̂)/A2. The phase conjugation operatio
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consists in flipping the sign of quadraturep̂ while keeping
quadraturex̂ unchanged, that is, replacingâ by its Hermitian
conjugateâ†. Clearly, this operation is impossible as it do
not conserve the commutation relation: ifb̂5â† is the result-
ing mode, we have@ b̂,b̂†#52@ â,â†#521 instead of 1 (\
51). A heuristic argument can be used to show that t
operation cannot be performed with an added noise tha
lower than a minimum equal to twice the vacuum noise. L
us consider two modes~modes 0 and 1! that are initially
prepared in the Einstein-Podolsky-Rosen~EPR! state, that is,
the common eigenstate ofX̂5 x̂02 x̂1 and P̂5 p̂01 p̂1 with
zero eigenvalue for both operatorsX̂ and P̂. Since @X̂,P̂#
50, these operators can be diagonalized simultaneously
that the EPR state can be understood as representing
particles with a relative positionx02x1 and a total momen-
tum p01p1 both arbitrarily close to zero. Assume now th
we apply a perfect phase conjugation on mode 1, that isx̂18

5 x̂1 and p̂1852 p̂1, while mode 0 is left unchanged. Th
EPR state is then transformed into the common eigens
with zero eigenvalue of operatorsX̂8 and P̂8, defined as

X̂85 x̂082 x̂18 ,

P̂85 p̂082 p̂18 . ~1!

We thus expect that@X̂8,P̂8#50 sinceX̂85X̂ and P̂85 P̂.
However,X̂8 andP̂8 actually cannot commute any more he
if the transformed modes 08 and 18 are to obey the standar
commutation relations. In other words, the impossibility
perfect phase conjugation is reflected here by the imposs
ity of obtaining a common eigenstate ofx̂082 x̂18 and p̂08

2 p̂18 . Instead, since@X̂8,P̂8#5@ x̂08 ,p̂08#1@ x̂18 ,p̂18#52i , the
Heisenberg uncertainty relation implies that

DX̂8D P̂8>
1

2
u^@X̂8,P̂8#&u51. ~2!

If we now assume that the phase conjugation process in
duces some noise, then it is easy to determine the minim
amount of such noise for the Heisenberg uncertainty rela
©2001 The American Physical Society07-1



ft

bi-
se
e

R

ss
ur

se
pu

on
ss
e

s
i
-

e

.
to

n

-
a

oi

ly
he

-

er

s a

the

the
s

e

ro-
sur-
nt
e
ctu-

th
ke

ng a

l
tu-
m

Al-

m
s of
to

t-
-
-

nts

N. J. CERF AND S. IBLISDIR PHYSICAL REVIEW A64 032307
to be satisfied. Let us suppose that mode 1 suffers, a
phase conjugation, from a random noisenx and np on
quadraturesx̂18 and p̂18 , respectively. Thus,x̂185 x̂11nx and

p̂1852 p̂11np . Naturally, we assume that this noise is un
ased, that is,̂nx&5^np&50. We also assume that the pha
conjugation operation is ‘‘universal,’’ i.e., phase insensitiv
Hence, we require the variances ofnx andnp to be the same
(^nx

2&5^np
2&5s2). The resulting variance of operatorsX̂8

5X̂2nx and P̂85 P̂2np is

DX̂825D P̂825s2, ~3!

since X̂ and P̂ both have a vanishing variance in the EP
state. Equation~2! then implies that

s2>1, ~4!

so that the noise induced by the phase conjugation proce
lower bounded by 1, i.e., twice the variance of a quadrat
in the vacuum state (Dxvac

2 51/2).
Let us now construct an actual approximate pha

conjugating transformation that attains this bound. The in
mode, assumed to be prepared in a coherent stateua&, is
coupled to an ancilla mode by some unitary transformati
Subsequently, the ancilla is traced over, so the proce
mode is left in a mixed state that is required to be as clos
possible to the complex conjugate stateua* &. Let us denote
the input mode byâ1 and the ancilla mode byâ2. The ca-
nonical transformation can be generally described as

b̂i5Mi j âj1Li j â j
† , ~5!

wherei , j 51,2, and the sum is implicit. The output modesb̂1

andb̂2 refer to the phase conjugator output and the proces
ancilla, respectively. This transformation is determined,
general, by eight complex coefficients, but we will now im
pose the constraints for it to characterize an~imperfect!
phase conjugator. First, we note that it is always possibl
perform a phase transformationâi→eif i âi and b̂i→eic i b̂i
such that the coefficientsM1 j andL1 j are real and positive
Then, by definition, we require that the phase conjuga
obeys^b̂1&5^â1

†&. Also, without loss of generality, we ca

assume that the ancilla is initially in the vacuum state^â2&
5^(â2)2&50 ~see @7#!. Thus, we must haveM1150 and
L1151. We now impose the ‘‘universality’’ of the transfor
mation, that is, the constraint that the added noise is ph
insensitive~each quadrature suffers from the same noise!. If
the input mode has phase-insensitive noise, i.e., if^(â1)2&
5^â1&

2 ~for example, if it is a coherent state!, then we re-
quire that the output mode also has phase-insensitive n
i.e., ^(b̂1)2&5^b̂1&

2. Using

^~ b̂1!2&2^b̂1&
25^~ â1

†!2&2^â1
†&21M12L12, ~6!

we conclude that the universality condition is simp
M12L1250. Three more conditions come from imposing t
commutation rules to be conserved by the transformation~5!:
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@b1 ,b1
†#5M12

2 2L12
2 2151, ~7!

@b2 ,b2
†#5uM21u21uM22u22uL21u22uL22u251, ~8!

@b1 ,b2#5M1 jL2 j2L1 jM2 j50. ~9!

Equation ~7!, together with the universality condition, im
plies thatL1250 andM125A2. Equations~8! and ~9! then
impose two last conditions on the four coefficientsM2 j and
L2 j , so we are left with two free parameters. If we furth
impose that mode 2 transforms just like mode 1 (M2250 and
L2251!, then we get

b̂15â1
†1A2 â2 , ~10!

b̂25A2 â11â2
† . ~11!

As we might expect, this transformation exactly describe
phase-insensitive phase-conjugating linear amplifier~see
@7#!. One can easily check that the noise variance of
output of this phase conjugator is

~Dx2!b1
5~Dp2!b1

5Dxvac
2 12Dxvac

2 53/2, ~12!

so that the phase-conjugation-induced noise is twice
vacuum noise, i.e., 2Dxvac

2 51. Hence, this transformation i
optimal as it saturates the bound~4!. In particular, if the input
is a coherent stateua&, the output will be a Gaussian mixtur
of coherent statesr with variance 1 centered onua* &. Con-
sequently, the phase-conjugating fidelity is

F5^a* urua* &51/2, ~13!

just as for an optimal measurement@4–6#. Interestingly, this
implies that phase conjugation is intrinsically a classical p
cess. It could be achieved as well by simultaneously mea
ing the two quadratures ofua&, and then preparing a cohere
state whose quadraturep has a flipped sign. Incidentally, w
note that any number of phase conjugated outputs can a
ally be prepared together at no cost~with F51/2 for each!.

It is interesting, at this point, to extend the parallel wi
the universal quantum spin-flip machine for qubits, and ma
a connection with a state estimation question. In@2#, Gisin
and Popescu have found the surprising result that encodi
directionnW into two antiparallel spinsunW ,2nW & yields slightly
more information onnW than encoding it into two paralle
spinsunW ,nW &. Here, we investigate the counterpart of this si
ation for information that is carried by a continuous quantu
variable instead of a qubit. Consider the situation where
ice wants to communicate to Bob a complex numbera5(x
1 ip)/A2. Assume that Alice is allowed to use a quantu
channel only twice so as to send Bob two coherent state
a given amplitudeuau2 each. She can choose, for example,
send Bob the product stateua& ^ 2. In this case, the best stra
egy to infer bothx andp with the same precision is to per
form a product measurement@5#. A simultaneous measure
ment of the two quadratures of each coherent stateua& yields
(x,p) with a variance 2Dxvac

2 51 @4#. The resulting error
variance onx andp estimated from these two measureme
7-2
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PHASE CONJUGATION OF CONTINUOUS QUANTUM VARIABLES PHYSICAL REVIEW A64 032307
is then equal to one half of this variance, that isDxvac
2 51/2.

~This is just the statistical factor.!
Another possibility is that Alice sends Bob the produ

stateua& ^ ua* &. In this case, a possible~but not necessarily
optimal! strategy for Bob is again to carry out a produ
measurement, taking into account that the measured valu
p of the second state should be read as2p. This obviously
results in the same error variance 1/2. However, the fact
the continuous universal-NOT transformation has a nonunit
fidelity leaves open the possibility that there exists a m
surement ofua& ^ ua* & that is not of a product form, and
yields a variance strictly lower than 1/2. Indeed, if there w
a perfect universal phase conjugator, then it could be use
convert ua* & into ua& before applying the optimal produc
measurement onua& ^ 2, thereby resulting in the same min
mum variance in both cases.

Let us now explicitly describe an entangled measurem
of the product stateua& ^ ua* &, which indeed yields a lowe
variance. Expressing the two input modes asua&5exp(ipx̂1

2ixp̂1)u0& and ua* &5exp(2ipx̂22ixp̂2)u0&, we can write the
input product state asua& ^ ua* &5exp(ipX̂2ixP̂)u0&, where
X̂5 x̂12 x̂2 and P̂5 p̂11 p̂2 are two commutingoperators.
Assume now that the two input statesua& and ua* & are sent
each into one of the inputs of a balanced beam splitter, c
acterized by the canonical transformation

x̂185~ x̂11 x̂2!/A2, p̂185~ p̂11 p̂2!/A2, ~14!

x̂285~ x̂12 x̂2!/A2, p̂285~ p̂12 p̂2!/A2. ~15!

The input product state can be reexpressed as

ua& ^ ua* &5exp~ iA2px̂282 iA2xp̂18!u0& ~16!

implying that x and p can be measured separately here
applying homodyne detection on modes 18 and 28. Indeed, a
measurement of the first quadrature of mode 18 yieldsA2 x,
on average, while a measurement of the second quadratu
mode 28 yields A2 p. These two measurements each suf
from an error of varianceDxvac

2 51/2. Hence, the resulting
error variance onx and p is reduced toDxvac

2 /251/4. In
contrast, if we had the input product stateua& ^ 2 and were
sending each coherent stateua& into an input of a balanced
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beam splitter, we would obtain a single coherent stateuA2 a&
on output mode 18. One should then necessarily perform
simultaneous measurement of the two quadratures of the
ter mode, yielding (A2 x,A2 p) with an error variance
2Dxvac

2 51, or, equivalentlyx and p with a varianceDxvac
2

51/2. As a consequence, we have proved here that a b
strategy for sendingx and p to Bob is to encode them into
two conjugate coherent statesu(x1 ip)/A2& ^ u(x2 ip)/A2&
rather than sending two replicas ofu(x1 ip)/A2&. The error
variance onx andp is indeed reduced by a factor of 2 via th
use of phase conjugation.

Finally, let us discuss the connection between the univ
sal phase conjugator and quantum cloning. It can be sh
that the Gaussian cloning machine for continuous variab
introduced in@8# generates, in addition to the two clones
the input state, an imperfect phase conjugate version of
input state with the same fidelity (F51/2) as that of the
universal phase conjugator@9#. The exact same propert
holds for the universal qubit cloner@10#, which also yields a
flipped qubit with a fidelity equal to that of the univers
quantum spin-flip machine@2#. Thus, the general rule seem
to apply that the production of two clones is necessarily
companied by the creation of one anticlone~time-reversed
state!.

As a last comment, it is worth noting that we have he
another example of the classical nature of the universal-NOT

operation. As emphasized in@2#, spin flipping is essentially a
classical operation on qubits, since it can be done by a m
surement followed by the preparation of a flipped spin. T
also implies that any number of flipped spins can be p
duced together with the same fidelity. Similarly, we ha
shown here that the same situation prevails for the ph
conjugation of continuous quantum variables. It see
tempting therefore to conjecture that any~imperfect! time-
reversal procedure can be done optimally in a classical w
Proving this conjecture and understanding the fundame
reason for it are interesting open questions.
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