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Abstract — We study the design of entropy-constrained
multiterminal quantizers for coding two correlated contin-
uous sources. Two design algorithms are presented, both
optimizing a Lagrangian cost measure involving distortions
and information rates.

I. Introduction
We study the design of a multiterminal quantizer (Fig. 1) for the

encoding of two correlated sources X and Y in Rk. We assume that
the sources are encoded separately by the encoders αX and αY , and
that the pair of output indices is jointly decoded by the decoder β.
The reproduction values are denoted by X̂ and Ŷ , and both corre-
sponding distortions E[d(X, X̂)] and E[d(Y, Ŷ )] must be minimized.
We further assume that the quantization step is followed by an ideal
Slepian-Wolf (SW, [1]) entropy coder (γX , γY , γ−1). This assump-
tion does make sense since recent works [2] propose practical coders
operating close to the SW bounds. We propose to design a quan-
tizer pair jointly minimizing the two distortions with constraints on
the two bit rates predicted by the SW theorem.
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Fig. 1. Block diagram of the proposed multiterminal quantizer

II. Algorithms
We use the notations I = αX(X), J = αY (Y ). The achievable
rates for SW coding of these two indices satisfy [1] RX ≥ H(I | J),
RY ≥ H(J | I) and RX + RY ≥ H(I, J).

Using discrete Lagrangian optimization, we define the cost mea-
sure to be minimized by the triple (αX , αY , β): J(αX , αY , β) =
DX+µDY +λXRX+λY RY , where DX and DY are the average dis-
tortions, RX and RY the average rates, and µ, λX and λY are posi-
tive Lagrangian multipliers. We define β(i, j) = (βX(i, j), βY (i, j)),
and RX = H(I), RY = H(J | I). This is without loss of generality,
since time sharing allows to reach any point on the achievable rates
curve. The optimality condition for αX is

αX(x) = min−1
i EY [d(x, βX(i, J)) + µd(Y, βY (i, J))

−λY log P [J | I = i] | X = x]

−λX log P [I = i] ,

for all x ∈ Rk, where i is taken in the set IX of indices for αX . The
optimal encoder for Y is similar:

αY (y) = min−1
j EX [d(X, βX(I, j)) + µd(y, βY (I, j))

−λY log P [J = j | I] | Y = y],

for all y ∈ Rk, where j is taken in the set IY of indices for αY .
The optimal decoder for the mean squared error is the classical
Bayes estimator: β(i, j) = E [X, Y | I = i ∧ J = j] for all (i, j) ∈
IX ×IY . A simple descent algorithm for the design of (αX , αY , β)
consists in alternatively forcing the above optimality conditions.
General equations of the same flavor can be found in a recent work
of Fleming et al. [3]. The implementation of the design equation
is not simple due to the conditional probabilities. We propose a
simpler approach, inspired by Flynn and Gray [4].

In this second algorithm, we define αX as the composition of a
primary quantizer QX and an index assignment (IA) function δX :
δX : KX → IX , where KX is the index set for QX . Similarly, we

set αY = δY ◦QY . In the following, merging two quantization cells
i and i′ in IX means creating a new IA function δ′X identical to δX

excepted that δ′X(i) = δ′X(i′) = δX(i). We design the IA function
by iteratively merging quantization cells until the current rate is
equal to the target rate. We denote by ∆(i,i′)(.) (resp. ∆(j,j′)(.))

the variation of the argument when i and i′ (resp. j and j′) are
merged in δX (resp. δY ). We define the following marginal returns

ΛX(i, i′) = −(∆(i,i′)(DX) + µ∆(i,i′)(DY ))/∆(i,i′)(RX)

ΛY (j, j′) = −(∆(j,j′)(DX) + µ∆(j,j′)(DY ))/(λ∆(j,j′)(RY ))

where µ and λ are positive Lagrangian multipliers. We can find
a good sequence of mergings by choosing at each step the pair of
indices minimizing the corresponding marginal return. It amounts
to choosing the merging that minimizes the distortion increase per
bit. This approach is advantageous in that it can be implemented
using a training set and it directly gives the whole rate-distortion
curve. The drawback of the technique is the lack of optimality
guarantee. As noted in [4], the re-computations of the rates and
distortions after a merging can be made in time independent of the
number of training samples.

III. Experiments
In these experiments, we defined X and Y as scalar Gaussian
sources (k = 1) with unit variance and correlation factor ρ = 0.9.
We first implemented the descent algorithm using numerical in-
tegration. We chose to train the encoder αY and the decoder β
with – asymmetrically – αX defined as a uniform quantizer with
RX ≈ 6.37 bits. The encoder αY is initialized with an encoder
identical to αX . We then implemented the second algorithm (IA
method). The encoder chosen for αX is the same as above. For
αY , we started with a uniform encoder with thinner intervals.

In the table below, we display the results for the descent algo-
rithm, which confirm the advantage of entropy constraints (EC)
over simple entropy limitations (non-EC).

RY DX + DY (EC) DX + DY (non-EC) Difference
2.5 9.24× 10−3 11.09× 10−3 +0.79dB
3.5 2.34× 10−3 3.09× 10−3 +1.20dB
4.0 1.34× 10−3 1.59× 10−3 +0.75dB
5.0 5.17× 10−4 5.29× 10−4 +0.11dB

Then, similar results are shown for the IA method. In some
cases, the method is really competitive to the more computationally
intensive descent algorithm.

RY DX + DY (EC) DX + DY (non-EC) Difference
2.5 9.46× 10−3 11.43× 10−3 +0.82dB
3.5 2.34× 10−3 3.36× 10−3 +1.56dB
4.0 1.52× 10−3 1.86× 10−3 +0.89dB
5.0 5.37× 10−4 6.49× 10−4 +0.82dB
6.0 2.91× 10−4 3.19× 10−4 +0.40dB
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