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Abstract. Several classes of state-dependent quantum cloners for three-level
systems are investigated. These cloners optimally duplicate some of the four
maximally-conjugate bases with an equal fidelity, thereby extending the phase-
covariant qubit cloner to qutrits. Three distinct classes of qutrit cloners can be
distinguished, depending on whether two, three, or four maximally-conjugate
bases are cloned as well (the latter case simply corresponds to the universal
qutrit cloner). These results apply to symmetric as well as asymmetric cloners,
so that the balance between the fidelity of the two clones can also be analysed.

1. Introduction
Since its inception, quantum information theory has traditionally been con-

cerned with informational processes involving two-level quantum systems, known
as qubits. For example, quantum teleportation, quantum cryptography, quantum
computation, or quantum cloning were all developed using qubits as fundamental
units of quantum information [1]. Over the last few years, however, there has been
a growing interest in quantum informational processes based on multi-level or
even continuous-spectrum systems. There are several reasons for this. First,
higher-dimensional quantum informational processes seem to be more efficient
in certain situations. For example, multi-level quantum cryptographic schemes
can be shown to be more secure against eavesdropping than their qubit-based
counterparts [2]. Second, the present experimental context makes it reasonable to
consider the manipulation of more-than-two-level quantum information carriers.
For example, the time-bin implementation of qubits can be relatively straightfor-
wardly extended to three or more time bins [3]. Quantum computation over
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continuous variables also seems to be a promising avenue, as it can be carried out
by manipulating squeezed states of light with only linear optics elements [4].

In this paper, the concept of quantum cloning is extended from qubits to
qutrits (quantum three-level systems). In spite of this apparently simple incre-
mental step of just one more dimension, the question of cloning turns out to be
already significantly more complex for qutrits, suggesting that the state-dependent
cloning of multi-level systems is a rich field. Quantum cloning is a concept that was
first introduced in a seminal paper by Buzek and Hillery [5], where a universal (or
state-independent) and symmetric 1! 2 cloning transformation was introduced
for qubits. This transformation was later extended to higher dimensions by Buzek
and Hillery [6] and by Werner [7], but for the special case of universal (state-
independent) cloning. In contrast, we will rather focus here on non-universal (or
state-dependent) cloning. Our starting point will be a general characterization of
asymmetric and state-dependent 1! 2 cloning transformations for N-level
systems, as described in [8, 9]. Let us first review this formalism before analysing
the special case of N ¼ 3 in details.

Consider an arbitrary state j i in a N-dimensional Hilbert space of which we
wish to produce two (approximate) clones. The class of cloning transformations to
be analysed is such that, if the input state is j i, then the two output clones (called
A and B) are produced in a mixture of the states j m;ni ¼ Um;nj i:

�A ¼
XNÿ1
m;n¼0

pm;nj m;nih m;nj

�B ¼
XNÿ1
m;n¼0

qm;nj m;nih m;nj ð1Þ

where the unitary operators

Um;n ¼
XNÿ1
k¼0

exp ½2�iðkn=NÞ�jkþ mmodNihkj ð2Þ

correspond to error operators: Um;n shifts the state by m units (modulo N) in the
computational basis, and multiplies it by a phase so as to shift its Fourier transform
by n units (modulo N). Of course, U0;0 ¼ I, which corresponds to no error. In the
special case of a qubit (N ¼ 2), we have U1;0 ¼ �x, U0;1 ¼ �z, and U1;1 ¼ ÿi�y, and
the corresponding class of so-called Pauli cloners can be investigated exhaustively
[10, 11].

From equation (1), it is clear that the clones A and B are characterized in
general by the weight functions pm;n and qm;n, respectively. As will be seen below,
the class of cloners we will restrict attention to are defined by a particular relation
between these weight functions [8, 9]. More specifically, the focus will be on
cloners satisfying

pm;n ¼ jam;nj2

qm;n ¼ jbm;nj2 ð3Þ
where am;n and bm;n are two (complex) amplitude functions that are dual under a
Fourier transform:
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bm;n ¼ 1

N

XNÿ1
x;y¼0

exp ½2�iðnxÿmyÞ�=Nax;y: ð4Þ

Of course, these amplitudes are normalized:
P

m;n jam;nj2 ¼
P

m;n jbm;nj2 ¼ 1. Inter-
estingly enough, the cloners obeying equations (3) and (4) form a fairly general
class, which contains most cloners discovered so far.

The Fourier transform that underlies the relation between the pm;n and the qm;n
is responsible for the complementarity between the quality of the two clones: if clone
A is very good (am;n is a ‘peaked’ function), then clone B is very bad (bm;n is a rather
‘flat’ function, so that many error operators Um;n act on j i with significant
probabilities). Note that the relation between these dual amplitude functions am;n
and bm;n can be re-expressed in a simple way by associating them with Fourier
transformed amplitude functions aFm;n and bFm;n defined as

cFm;n ¼
1ffiffiffiffiffi
N

p
XN
n 0¼0

exp ½ÿ2�iðnn 0=NÞ�cm;n 0 ð5Þ

or, conversely,

cm;n ¼ 1ffiffiffiffiffi
N

p
XN
n 0¼0

exp ½2�iðnn 0=NÞ�cFm;n 0 ð6Þ

where cm;n stands for am;n or bm;n. We have

bFm;n ¼
1ffiffiffiffiffi
N

p
XNÿ1
n 0¼0

exp ½ÿ2�iðnn 0=NÞ�bm;n 0

¼ 1ffiffiffiffiffi
N

p
XNÿ1
n 0¼0

exp ½ÿ2�iðnn 0=NÞ� 1
N

XNÿ1
x;y¼0

exp ½2�iðn 0xÿmyÞ�=Nax;y

¼ 1ffiffiffiffiffi
N

p
XNÿ1
y¼0

exp ½ÿ2�iðmy=NÞ�an;y

¼ aFn;m: ð7Þ
Therefore, the Fourier transformed amplitudes aFm;n and b

F
m;n of the two clones are

simply transposes of each other, which will be helpful in the following. The balance
between the quality of clones A and B can be alternatively expressed by an entropic
no-cloning uncertainty relation that relates the probability distributions pm;n and qm;n
[9]:

H½pm;n� þH½qm;n�5 log2ðN2Þ ð8Þ
where H½p� denote the Shannon entropy of the probability distribution p. This
inequality is actually a special case of an information-theoretic no-cloning
uncertainty relation involving the losses of the channels yielding the two clones
[11]. Also, more refined uncertainty relations can be found that express the fact that
the index m of output A is dual to the index n of output B, and conversely [9].

Let us now describe the class of cloning transformations that actually produce
the clones characterized by equation (1). For this, we need first to define the set of
N2 generalized Bell states for a pair of N-dimensional systems:
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jBm;ni ¼ Nÿ1=2XNÿ1
k¼0

exp ½2�iðkn=NÞ�jkijkþ mi ð9Þ

with m and n (04m; n4N ÿ 1) labelling these Bell states. We characterize the
cloning transformation by assuming that the cloner input is prepared in the joint
state jB0;0i together with a (N-dimensional) system called a reference system and
denoted R. We consider a unitary cloning transformation Ucl acting on this input
system together with two additional N-dimensional systems prepared each in an
initial state j0i: a blank copy and the cloning machine itself. After transformation,
the input system and the blank copy become respectively the clones A and B, while
the cloning machine denoted as C can be traced over. We thus are interested in the
joint state (after cloning) of the reference R, the two clones (A and B), and the
cloning machine C, that is

ðIR û UclÞ ¼ jB0;0ij0ij0i ¼ jûiRABC: ð10Þ
More specifically, we consider only joint states which can be written as

jûiRABC ¼
XNÿ1
m;n¼0

am;njBm;niR;AjBm;ÿniB;C ¼
XNÿ1
m;n¼0

bm;njBm;niR;BjBm;ÿniA;C ð11Þ

with am;n and bm;n being related by equation (4). This construction is very useful
because one can easily express the output state resulting from cloning an arbitrary
input state j i simply by projecting the reference system onto an appropriate state.
Indeed, before cloning, projecting R onto state j �i amounts to project the input
system onto j i since these two systems are in state jB0;0i. Therefore, as this
projection of R onto j �i can as well be performed after cloning, it is easy to write
the resulting joint state of the two clones and the cloning machine when the input
state is j i. Using jBm;ni ¼ ðI ûUm;nÞjB0;0i, we get

j i !
XNÿ1
m;n¼0

am;n Um;nj iAjBm;ÿniB;C ¼
XNÿ1
m;n¼0

bm;nUm;nj iBjBm;ÿniA;C: ð12Þ

Now, it is easy to check that tracing over systems B and C (or A and C) yields the
expected final states of clone A (or clone B), in accordance with (1). Thus, the N2

amplitudes am;n (or bm;n) completely define the state after cloning, equation (12), so
they completely characterize the class of cloning transformations of interest here.

Finally, let us see how the cloning fidelity can be calculated based on these
amplitude matrices am;n or bm;n. The fidelity of the first clone when copying a state
j i can be written, in general, as

FA ¼ h j�Aj i ¼
XNÿ1
m;n¼0

jam;nj2jh j m;nij2: ð13Þ

(Of course, the same relation can be used for the second clone by replacing am;n by
bm;n.) For example, for any state jki (k ¼ 0; . . .N ÿ 1) in the computation basis, the
fidelity of the first clone is equal to

FA ¼
XNÿ1
n¼0

ja0;nj2: ð14Þ
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As we will see later on for N ¼ 3, the cloning fidelity for other bases can also be
written as a sum of three squared terms of the am;n matrix. This will make it
possible to express constraints on the state-dependent cloners of interest.

In the rest of this paper, we use this general characterization of cloning in order
to investigate the state-dependent cloning of a qutrit. Four maximally-conjugate
bases can be defined in a three-dimensional space: these bases are such that any
basis state in one basis has equal squared amplitudes when expressed in any other
basis. We analyse transformations that optimally clone a subset of these four
maximally-conjugate bases for a qutrit. Three interesting situations occur depend-
ing on whether we consider a subset of two or three of these bases, or all four bases.
The case of a qubit is also treated in the Appendix for completeness.{

2. Cloning a three-level system
In a three-dimensional Hilbert space, one can define four maximally-conjugate

(or mutually unbiased) bases [12]. Conventionally, one chooses the first basis to be
simply the computation basis fj0i; j1i; j2ig. The second basis is defined as

j0 0i ¼ 1ffiffiffi
3

p ðj0i þ j1i þ j2iÞ;

j1 0i ¼ 1ffiffiffi
3

p ðj0i þ þj1i þ þ2j2iÞ;

j2 0i ¼ 1ffiffiffi
3

p ðj0i þ þ2j1i þ þj2iÞ; ð15Þ

where þ ¼ exp ð2�i=3Þ. Similarly, the third basis is defined as

j0 00i ¼ 1ffiffiffi
3

p ðj0i þ j1i þ þj2iÞ;

j1 00i ¼ 1ffiffiffi
3

p ðj0i þ þj1i þ j2iÞ;

j2 00i ¼ 1ffiffiffi
3

p ðj0iþ þ j1i þ j2iÞ; ð16Þ

while the fourth basis is defined as

j0Fi ¼ 1ffiffiffi
3

p ðj0i þ j1i þ þ2j2iÞ;

j1Fi ¼ 1ffiffiffi
3

p ðj0i þ þ2j1i þ j2iÞ;

j2Fi ¼ 1ffiffiffi
3

p ðþ2j0i þ j1i þ j2iÞ: ð17Þ
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It is easy to check that the scalar product between any two basis states belonging to
two distinct bases is 1=

ffiffiffi
3

p
, as expected. We can also check that the first and second

bases are connected by a discrete Fourier transform. The same relation holds for
the third and fourth bases.

Let us start by calculating the action of the nine error operators Um;n on these
basis states. Within each of these four bases, it can be shown that applying Um;n to
one basis state yields either jki or jkþ 1mod3i or jkþ 2mod3i up to a phase þ or
þ2. Using this property, we can express the fidelity of the first (or second) clone in
each basis. The fidelity of one of the clones when copying a state j i is defined as

F ¼ h j�j i ð18Þ
where � is defined in equation (1). Note that, unlike the situation for a qubit, there
are two possible errors when copying the basis state jki (in a given basis) for a qutrit
depending on it being transformed into jkþ 1mod 3i or jkþ 2mod 3i. Therefore,
we define two disturbances D1 and D2 corresponding to these two errors.
Remembering that the state of the first clone is completely characterized by the
matrix

ðpm;nÞ ¼
p0;0 p0;1 p0;2

p1;0 p1;1 p1;2

p2;0 p2;1 p2;2

0BB@
1CCA ð19Þ

we can calculate the fidelity and the two disturbances when cloning any basis state
in any basis. For example, for the first maximally-conjugate basis, we have

F ¼ p0;0 þ p0;1 þ p0;2; ð20Þ

D1 ¼ p1;0 þ p1;1 þ p1;2; ð21Þ

D2 ¼ p2;0 þ p2;1 þ p2;2: ð22Þ

The cloning of the three last maximally-conjugate bases can be treated together by
considering the state

j 0i ¼ 1ffiffiffi
3

p j0i þ exp ði�Þj1i þ exp ðiýÞj2iÞð ð23Þ

with arbitrary � and ý. By direct computation, we get the fidelity

F ¼ h 0j�j 0i ¼ p0;0 þ 1
3 ðp1;0 þ p2;0 þ p1;2 þ p2;1 þ p1;1 þ p2;2Þ

þ 2
9 ðp1;0 þ p2;0Þ½cos ð�þ ýÞ þ cos ð�ÿ 2ýÞ þ cosðý ÿ 2�Þ�

þ 2
9 ðp1;2 þ p2;1Þ½cos ð�þ ý þ 2�=3Þ þ cos ð�ÿ 2ý þ 2�=3Þ

þ cos ðý ÿ 2�þ 2�=3Þ�
þ 2

9 ðp1;1 þ p2;2Þ½cos ð�þ ý ÿ 2�=3Þ þ cos ð�ÿ 2ý ÿ 2�=3Þ
þ cos ðý ÿ 2�ÿ 2�=3Þ�: ð24Þ

Before calculating the disturbances, we need first to define the states
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j 1i ¼ 1ffiffiffi
3

p ðj0i þ þ exp ði�Þj1i þ þ2 exp ðiýÞj2iÞ;

j 2i ¼ 1ffiffiffi
3

p ðj0i þ þ2 exp ði�Þj1i þ þ exp ðiýÞj2iÞ; ð25Þ

which, together with j 0i, form an orthonormal basis. We can easily rewrite the

second, third, and fourth maximally-conjugate bases in the form fj 0i; j 1i; j 2ig
for well-chosen values of � and ý. This is of course not true for the first

(computational) basis. We can now calculate the disturbances,

D1 ¼ h 1j�j 1i ¼ p0;1 þ 1
3 ðp1;1 þ p2;1 þ p1;0 þ p2;2 þ p1;2 þ p2;0Þ

þ 2
9 ðp1;1 þ p2;1Þ½cos ð�þ ýÞ þ cos ð�ÿ 2ýÞ þ cos ðý ÿ 2�Þ�

þ 2
9 ðp1;0 þ p2;2Þ½cos ð�þ ý þ 2�=3Þ þ cos ð�ÿ 2ý þ 2�=3Þ

þ cos ðý ÿ 2�þ 2�=3Þ�
þ 2

9 ðp1;2 þ p2;0Þ½cos ð�þ ý ÿ 2�=3Þ þ cos ð�ÿ 2ý ÿ 2�=3Þ
þ cos ðý ÿ 2�ÿ 2�=3Þ� ð26Þ

and

D2 ¼ h 2j�j 2i ¼ p0;2 þ 1
3 ðp1;2 þ p2;2 þ p1;1 þ p2;0 þ p1;0 þ p2;1Þ

þ 2
9 ðp1;2 þ p2;2Þ½cos ð�þ ýÞ þ cos ð�ÿ 2ýÞ þ cosðý ÿ 2�Þ�

þ 2
9 ðp1;1 þ p2;0Þ½cos ð�þ ý þ 2�=3Þ þ cos ð�ÿ 2ý þ 2�=3Þ

þ cos ðý ÿ 2�þ 2�=3Þ�
þ 2

9 ðp1;0 þ p2;1Þ½cos ð�þ ý ÿ 2�=3Þ þ cos ð�ÿ 2ý ÿ 2�=3Þ
þ cos ðý ÿ 2�ÿ 2�=3Þ�: ð27Þ

It can be easily checked that F, D1, and D2 are invariant if we replace ð�; ýÞ by
ð�� 2�=3; ý � 4�=3Þ, and that these phase shifts simply permute cyclically the

states j 0i, j 1i, and j 2i. Therefore, the values of F, D1 and D2 are invariant

under a cyclic permutation of the states of the maximally-conjugate bases. Note

that all the states of the second maximally-conjugate basis fulfil

�þ ý ¼ �ÿ 2ý ¼ ý ÿ 2� ¼ 0. Similarly, in the third and fourth maximally-

conjugate bases, we have �þ ý ¼ �ÿ 2ý ¼ ý ÿ 2� ¼ 2�=3 and ÿ2�=3, respect-
ively. For those states, equations (24), (26) and (27) can be simplified. For instance,

the fidelity and disturbances when cloning any basis state of the second maximally-

conjugate basis are given by

F 0 ¼ p0;0 þ p1;0 þ p2;0;

D 0
1 ¼ p0;1 þ p1;1 þ p2;1;

D 0
2 ¼ p0;2 þ p1;2 þ p2;2: ð28Þ

For the third basis, we have
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F 00 ¼ p0;0 þ p1;1 þ p2;2;

D 00
1 ¼ p0;1 þ p1;2 þ p2;0;

D 00
2 ¼ p0;2 þ p1;0 þ p2;1; ð29Þ

while the fourth basis yields

FF ¼ p0;0 þ p1;2 ¼ p2;1;

D1F ¼ p0;1 þ p1;0 þ p2;2;

D2F ¼ p0;2 þ p1;1 þ p2;0: ð30Þ
In the following, we will be interested in extending to a three-dimensional

space the so-called phase-covariant qubit cloner described in the Appendix. Two
extensions can be considered, depending on whether two or three of the maxi-
mally-conjugate bases are copied equally well. The cloner that copies all four bases
with an equal fidelity is simply the universal cloner, as discussed in the final
section.

3. Optimal cloner of two maximally-conjugate bases
Here, we consider a state-dependent cloner that clones equally well the third

and fourth maximally-conjugate bases. This imposes the conditions

p1;1 þ p2;2 ¼ p1;2 þ p2;1;

p1;2 þ p2;0 ¼ p1;0 þ p2;2;

p1;0 þ p2;1 ¼ p1;1 þ p2;0: ð31Þ
It is easy to deduce from these constraints together with equation (24) that the
cloning fidelity for an arbitrary state j 0i is given by

F ¼ p0;0 þ 1
3 ðp1;0 þ p2;0 þ 2ðp1;2 þ p2;1ÞÞ

þ 2
9 ½p1;0 þ p2;0 ÿ ðp1;2 þ p2;1Þ�½cos ð�þ ýÞ þ cos ð�ÿ 2ýÞ þ cos ðý ÿ 2�Þ�: ð32Þ

The function cos ð�þ ýÞ þ cos ð�ÿ 2ýÞ þ cos ðý ÿ 2�Þ reaches its extremal value
ÿ3=2 when �þ ý ¼ �ÿ 2ý ¼ ý ÿ 2� ¼ 2�=3 or ÿ2�=3, that is, when j 0i belongs
to the third or fourth basis. Therefore, when the second basis is not cloned as well
as the third and fourth maximally-conjugate bases, i.e. when p1;0 þ p2;0 <
p1;1 þ p2;2, there exists no state of the form 1ffiffi

3
p ðj0i þ exp ði�Þj1i þ exp ðiýÞj2iÞ

outside the third and fourth bases that is equally well cloned. Similarly, we expect
that when the first and second bases are not cloned as well as the third and fourth
maximally-conjugate bases, i.e. when p0;1 þ p0;2 < p1;1 þ p2;2 and p1;0 þ p2;0 <
p1;1 þ p2;2, then there exists no state at all outside the third and fourth bases that
is equally well cloned.

Let us now consider a state-dependent qutrit cloner that is characterized by the
amplitude matrix

ðam;nÞ ¼
v y y

y x x

y x x

0BB@
1CCA ð33Þ
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where v, x, and y are real parameters obeying the normalization condition
v2 þ 4x2 þ 4y2 ¼ 1. This matrix corresponds to the probability matrix
pm;n ¼ a2m;n. It is easy to check that this cloner results in a same fidelity (and
same disturbances: D1 ¼ D2) for all the basis states of the two last bases
fj0 00i; j1 00i; j2 00ig and fj0Fi; j1Fi; j2Fig:

F 00 ¼ FF ¼ v2 þ 2x2;

D 00
1;2 ¼ DF1;2 ¼ x2 þ 2y2: ð34Þ

Of course, we have F þD1 þD2 ¼ 1. Using equations (5), (6), and (7), we get

ðaFm;nÞ ¼
1ffiffiffi
3

p
vþ 2y vÿ y vÿ y

yþ 2x yÿ x yÿ x

yþ 2x yÿ x yÿ x

0BBB@
1CCCA; ð35Þ

ðbFm;nÞ ¼
1ffiffiffi
3

p
vþ 2y yþ 2x yþ 2x

vÿ y yÿ x yÿ x

vÿ y yÿ x yÿ x

0BBB@
1CCCA; ð36Þ

ðbm;nÞ ¼ 1

3

vþ 4xþ 4y vÿ 2xþ y vÿ 2xþ y

vÿ 2xþ y vþ xÿ 2y vþ xÿ 2y

vÿ 2xþ y vþ xÿ 2y vþ xÿ 2y

0BBB@
1CCCA; ð37Þ

so that the matrix bm;n characterizing the second clone has the same form as am;n
with the substitution:

v! ðvþ 4xþ 4yÞ=3; ð38Þ
x! ðvþ xÿ 2yÞ=3; ð39Þ
y! ðvÿ 2xþ yÞ=3: ð40Þ

Consequently, the states of the last two bases are again copied with the same
fidelity (and same disturbances) onto the second clone:

~FF ¼ ðv2 þ 8x2 þ 6y2 þ 4vyþ 8xyÞ=3; ð41Þ
~DD1;2 ¼ ðv2 þ 2x2 þ 3y2 ÿ 2vyÿ 4xyÞ=3: ð42Þ

We will now be interested in finding the optimal cloner, that is the cloner that
maximizes the fidelity of the second clone for a given fidelity of the first clone.
Maximizing ~FF with the constraint that F is given and using the normalization
condition yields the solution

v ¼ F; ð43Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð1ÿ FÞ=2

p
; ð44Þ

y ¼ ð1ÿ FÞ=2: ð45Þ
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Hence, the fidelity of the second clone can be written as a function of the fidelity of
the first clone

~FF ¼ 2ÿ F

3
þ 2

ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð1ÿ FÞ

p
ð46Þ

which expresses the complementarity between the clones. As expected, F ¼ 1
implies ~FF ¼ 1=3, and conversely. An interesting special case is the symmetric
cloner, which yields two clones of equal fidelity

F ¼ ~FF ¼ 1

2
þ 1ffiffiffiffiffiffi

12
p ’ 0:789: ð47Þ

It should be noted that equations (46) and (47) hold regardless of which bases are
optimally cloned, provided that two of them are equally cloned. The two remain-
ing ones are then copied with a lower fidelity v2 þ 2y2 ¼ 1

2þ 1
2
ffiffiffiffi
12

p ’ 0:644. Note
also that a more general cloner could be constructed for which these two remaining
bases are not cloned with an equal fidelity, but this will not be considered here.

4. Optimal cloner of three maximally-conjugate bases
Now, we consider a state-dependent cloner that clones equally well the final

three maximally-conjugate bases and for which D1 ¼ D2. Again, our result will
actually be independent of which three bases are optimally cloned, so we consider
only the final three for simplicity. This imposes the conditions

p0;1 þ p1;1 þ p2;1 ¼ p0;2 þ p1;2 þ p2;2

p1;0 þ p2;0 ¼ p1;1 þ p2;2 ¼ p1;2 þ p2;1

p1;1 þ p2;1 ¼ p1;2 þ p2;0 ¼ p1;0 þ p2;2

p1;2 þ p2;2 ¼ p1;0 þ p2;1 ¼ p1;1 þ p2;0: ð48Þ
It is easy to deduce from these constraints together with equations (24), (26) and
(27) that the cloning fidelity for an arbitrary state j 0i ¼ 1ffiffi

3
p ðj0i þ exp ði�Þj1iþ

exp ðiýÞj2iÞ is simply given by

F ¼ p0;0 þ p1;0 þ p2;0; ð49Þ
that is, it coincides with the cloning fidelity of the elements of the three last bases.
This simplification occurs because of cyclical compensations in equation (24)
which originate from the fact that the number of bases that are equally well cloned
here is equal to the dimension of the Hilbert space (3 in the present case). This
situation generalizes the one encountered with the phase-covariant cloner for a
qubit (see the Appendix). In that case, the cloner that clones equally well two
maximally-conjugate bases in a Hilbert space of dimension 2 can be shown to clone
equally well all the states of an equator of the Bloch sphere. In the present case, the
cloner that clones equally well two plus one maximally-conjugate bases clones
equally well the generalized equator, i.e. a 1þ 1-dimensional variety that contains
all the states of the form j 0i ¼ 1ffiffi

3
p ðj0i þ exp ði�j1i þ exp ðiýÞj2i.

It can be shown that the general solution of equation (48) is a probability
matrix pm;n of the form
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ðpm;nÞ ¼
v2 x2 x2

y2 y2 y2

z2 z2 z2

0BB@
1CCA: ð50Þ

For instance, we have that

p1;0 þ p2;0 ÿ ðp1;1 þ p2;1Þ ¼ ðp1;1 þ p2;2 þ p1;2 þ p2;1Þ=2ÿ ðp1;2 þ p2;0 þ p1;0 þ p2;2Þ=2

¼ ðp1;1 þ p2;1 ÿ ðp2;0 þ p1;0ÞÞ=2;
so that p1;0 þ p2;0 ¼ p1;1 þ p2;1. But we have p0;0 þ p1;0 þ p2;0 ¼ p0;0 þ p1;1 þ p2;2, so
that p2;1 ¼ p2;2. We deduce in a similar way that one must have p2;0 ¼ p2;1 ¼ p2;2,
p1;0 ¼ p1;1 ¼ p1;2, and p0;1 ¼ p0;2. It is easy to check that these conditions are also
sufficient conditions.

4.1. Symmetric cloner
Let us now consider the symmetric state-dependent cloner that clones equally

well the final three bases and is characterized by the amplitude matrix

ðam;nÞ ¼
xþ yþ z xþ �yþ �2z xþ �2yþ �z

y y y

z z z

0BB@
1CCA ð51Þ

where x, y, and z are real parameters and with the normalization condition
3x2 þ 6x2 þ 6z2 ¼ 1. This matrix corresponds to the probability matrix
pm;n ¼ a2m;n. It is easy to check that this cloner results in the same fidelity (and
same disturbance) for all basis states of the final three bases fj0 0i; j1 0i; j2 0ig,
fj0 00i; j1 00i; j2 00ig and fj0Fi; j1Fi; j2Fig:

F 0 ¼ F 00 ¼ FF ¼ x2 þ 2y2 þ 2z2 þ 2xyþ 2yzþ 2xz; ð52Þ

D 0
1;2 ¼ D 00

1;2 ¼ DF1;2 ¼ x2 þ 2y2 þ 2z2 ÿ xyÿ yzÿ xz: ð53Þ
Of course we have F þD1 þD2 ¼ 1. By equations (5), (7), and (6):

ðaFm;nÞ ¼
1ffiffiffi
3

p
3x 3y 3z

3y 0 0

3z 0 0

0BBB@
1CCCA; ð54Þ

ðbFm;nÞ ¼ ðaFm;nÞ; ð55Þ

ðbm;nÞ ¼ ðam;nÞ; ð56Þ
which shows that this cloner is symmetric. The cloner is optimal when the fidelity
x2 þ 2y2 þ 2z2 þ 2xyþ 2yzþ 2xz is maximal under the constraint that
x2 þ 2y2 þ 2z2 ¼ 1=3. By the method of Lagrange, we obtain that the fidelity is
extremal when the following equations are satisfied:
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yþ z ¼ �x

xþ z ¼ 2�y

xþ y ¼ 2�z; ð57Þ

where � is a Lagrange multiplier. From the last two equations, we deduce that
either � ¼ ÿ 1

2 or y ¼ z. If � ¼ ÿ 1
2, then x ¼ 0, y ¼ ÿz and F ¼ 1

6 which is a

minimum. If y ¼ z, then � ¼ 1� ffiffiffiffi17p
4 and F ¼ 5� ffiffiffiffi17p

12 . The maximal fidelity is thus
equal to

Fmax ¼ 5þ ffiffiffiffiffiffi
17

p

12
’ 0:760: ð58Þ

This corresponds to an amplitude matrix

ðam;nÞ ¼

xþ 2y xÿ y xÿ y

y y y

y y y

0BBBB@
1CCCCA ð59Þ

with x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
17ÿ ffiffiffiffi17p
102

q
and y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ ffiffiffiffi17p
408

q
. It should be noted that this symmetric cloner

exactly coincides with the so-called double-phase covariant qutrit cloner that was
independently derived in [14].

4.2. Asymmetric cloner
Let us now consider the asymmetric state-dependent cloner that clones equally

well the final three maximally-conjugate bases, and is characterized by the
amplitude matrix

ðam;nÞ ¼

v y y

x x x

x x x

0BBBB@
1CCCCA ð60Þ

where v, x, and y are real parameters and with the normalization condition
v2 þ 6x2 þ 2y2 ¼ 1. This matrix corresponds to the probability matrix
pm;n ¼ a2m;n. It is easy to check that this cloner results in the same fidelity (and
same disturbances) for all basis states of the final three bases
fj0 0i; j1 0i; j2 0ig; fj0 00i; j1 00i; j2 00ig and fj0Fi; j1Fi; j2Fig:

F 0 ¼ F 00 ¼ FF ¼ v2 þ 2x2; ð61Þ

D 0
1;2 ¼ D 00

1;2 ¼ DF1;2 ¼ 2x2 þ y2: ð62Þ

Of course, we have again F þD1 þD2 ¼ 1. By use of equations (5), (6) and (7) we
get
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ðaFm;nÞ ¼
1ffiffiffi
3

p
vþ 2y vÿ y vÿ y

3x 0 0

3x 0 0

0BBB@
1CCCA; ð63Þ

ðbFm;nÞ ¼
1ffiffiffi
3

p
vþ 2y 3x 3x

vÿ y 0 0

vÿ y 0 0

0BBB@
1CCCA; ð64Þ

ðbm;nÞ ¼ 1

3

vþ 6xþ 2y vÿ 3xþ 2y vÿ 3xþ 2y

vÿ y vÿ y vÿ y

vÿ y vÿ y vÿ y

0BBB@
1CCCA: ð65Þ

Hence, for the second clone, the matrix bm;n has again the same form as am;n with
the substitution

v! ðvþ 6xþ 2yÞ=3; ð66Þ
x! ðvÿ yÞ=3; ð67Þ
y! ðvÿ 3xþ 2yÞ=3; ð68Þ

so that the states of the final three bases are all copied onto the second clone with
the same fidelity (and same disturbances):

~FF ¼ ðv2 þ 12x2 þ 2y2 þ 4vxþ 8xyÞ=3; ð69Þ
~DD1;2 ¼ ðv2 þ 3x2 þ 2y2 ÿ 2vxÿ 4xyÞ=3: ð70Þ

For the optimal cloner, we need to maximize ~FF for a given value of F using the
normalization condition, just as before. However, in contrast with the case of the
asymmetric cloner for two maximally-conjugate bases, we have found no simple
analytical solution for this problem. A numerical solution and its connections with
quantum cryptography will be discussed elsewhere. Note that an asymmetric
state-dependent cloner could be constructed for which the final three bases are all
copied equally well but with a more general matrix am;n than in equation (60). It
can be shown however, that the optimal such cloner must necessarily obey equation
(60) so that this possibility will not be considered here.

5. Optimal cloner of all the maximally-conjugate bases
Let us finally consider an asymmetric cloner that copies equally well all four

maximally-conjugate bases and for which D1 ¼ D2. We have already shown that
the constraints (48) must be obeyed to clone equally well the final three maximally-
conjugate bases. In order to clone the fourth basis equally well, we must impose
the additional constraints:
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p0;1 þ p0;2 ¼ p1;0 þ p2;0

p1;0 þ p1;2 ¼ p0;1 þ p2;1

p2;0 þ p2;1 ¼ p0;2 þ p1;2: ð71Þ

Equivalently, using equation (50), we have

2x2 ¼ y2 þ z2

2y2 ¼ x2 þ z2

2z2 ¼ x2 þ y2: ð72Þ

Hence, x2 ¼ y2 ¼ z2, and pm;n must be of the form

ðpm;nÞ ¼
v2 x2 x2

x2 x2 x2

x2 x2 x2

0BB@
1CCA: ð73Þ

It is thus natural to consider the following amplitude matrix:

ðam;nÞ ¼
v x x

x x x

x x x

0BB@
1CCA ð74Þ

where v and x are real parameters that satisfy the normalization condition

v2 þ 8x2 ¼ 1. This matrix corresponds to the probability matrix pm;n ¼ a2m;n. By

use of equations (5), (6) and (7), we have

ðaFm;nÞ ¼
1ffiffiffi
3

p

vþ 2x vÿ x vÿ x

3x 0 0

3x 0 0

0BBB@
1CCCA; ð75Þ

ðbFm;nÞ ¼
1ffiffiffi
3

p

vþ 2x 3x 3x

vÿ x 0 0

vÿ x 0 0

0BBB@
1CCCA; ð76Þ

ðbm;nÞ ¼ 1

3

vþ 8x vÿ x vÿ x

vÿ x vÿ x vÿ x

vÿ x vÿ x vÿ x

0BBB@
1CCCA; ð77Þ
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so that, for the second clone, the matrix bm;n has the same form as am;n with the
substitution:

v! vþ 8x

3
; ð78Þ

x! vÿ x

3
: ð79Þ

It is convenient here to change the variables v and x into � and ý according to

v ¼ �þ ý

3

x ¼ ý

3
ð80Þ

so that we have

ðam;nÞ ¼

�þ ý

3

ý

3

ý

3

ý

3

ý

3

ý

3

ý

3

ý

3

ý

3

0BBBBBBBBB@

1CCCCCCCCCA
; ð81Þ

ðbm;nÞ ¼

ý þ �

3

�

3

�

3

�

3

�

3

�

3

�

3

�

3

�

3

0BBBBBBBB@

1CCCCCCCCA
: ð82Þ

It is easy to check that this cloner results in the same fidelity (and same disturb-
ance) for any qutrit state:

F ¼ �2 þ 2
�ý

3
þ ý2

3
; ð83Þ

D1;2 ¼ ý2

3
: ð84Þ

Of course we have F þD1 þD2 ¼ 1. This is the special case of a state-independent
(or universal) N-dimensional cloner [8, 9], which can be obtained simply by letting

am;n ¼ ��m;0�n;0 þ ý=N; ð85Þ

bm;n ¼ ý�m;0�n;0 þ �=N: ð86Þ
This is consistent with equation (4) since the constant function 1=N is the Fourier
transform of �m;0 �n;0. Thus, � ¼ 1ðý ¼ 0Þ is the case where the first clone is perfect,
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whereas ý ¼ 1ð� ¼ 0Þ is the case where the second clone is perfect. The normal-
ization relation implies that

j�j2 þ 2

N
Re ð�ý�Þ þ jýj2 ¼ 1; ð87Þ

which characterizes the balance between the quality of the two clones. In par-
ticular, the symmetric universal N-dimensional cloner corresponds to the case
where

�2 ¼ ý2 ¼ N

2ð1þNÞ : ð88Þ

Using equation (14) for the cloning fidelity in the computational basis (since all
states are copies with the same fidelity), we recover the standard formula for the
universal cloner [6–9]

F ¼ �þ ý

N

� �2

þðN ÿ 1Þ ý

N

� �2

¼ 3þN

2ð1þNÞ : ð89Þ

In particular, the symmetric universal qutrit cloner ðN ¼ 3Þ is characterized by a
fidelity of 3/4.

6. Conclusion
We have investigated several categories of 1! 2 cloning transformations for a

three-dimensional system (a qutrit). First, we have analysed cloners that optimally
copy the states of any two of the four maximally-conjugate bases. The symmetric
cloner of this class has a cloning fidelity of 1

2þ 1ffiffiffiffi
12

p ’ 0:789. Second, we studied
cloners that copy equally well and with the highest fidelity three maximally-
conjugate bases. These cloners can be shown to copy all states of the form
1ffiffi
3

p ðj0i þ exp ði�Þj1i þ exp ðiýÞj2iÞ with the same fidelity for any � and ý, so they
are the natural extension of the phase-covariant qubit cloners. The symmetric
cloner of this class copies all these states with a fidelity 5þ ffiffiffiffi17p

12 ’ 0:760, and coincides
with the so-called double-phase covariant qutrit cloner analysed independently in
[14]. Finally, cloners that optimally copy all four maximally-conjugate bases can be
shown to copy all states of a qutrit equally well, so they simply correspond to
universal qutrit cloners. The symmetric universal qutrit cloner has a fidelity of 3/4,
in accordance with [6, 7]. We conclude thus that, quite naturally, the cloning
fidelity decreases when we put a stronger requirement on the cloner (namely two,
three or four bases must be copied optimally). The study also suggests that there is
still much room for further investigation of multi-level non-universal quantum
cloning.
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Appendix. Phase-covariant cloner for a qubit
In this Appendix, we show that the phase-covariant qubit cloner [13] can be

obtained in just a few lines by using the general characterization of Pauli cloners
[8–11]. The phase-covariant qubit cloner is defined as a transformation that
optimally copies all states of the form 1ffiffi

2
p ðj0i þ exp ði�j1iÞ for any �. Here, we

rather look for a qubit cloner that copies any two maximally-conjugate bases. In
the Hilbert space of a qubit, there are three maximally-conjugate bases, which
correspond to the eigenstates of the three Pauli matrices:

j0i; j1i; ðA1Þ

j0 0i ¼ 1ffiffiffi
2

p ðj0i þ j1iÞ; j1 0i ¼ 1ffiffiffi
2

p ðj0i ÿ j1iÞ; ðA2Þ

j0 00i ¼ 1ffiffiffi
2

p ðj0i þ ij1iÞ; j1 00i ¼ 1ffiffiffi
2

p ðij0i þ j1iÞ: ðA3Þ

The universal qubit cloning machine [5] copies the states of each of these three
bases with the same fidelity. In contrast, the cloner we are interested in here is
required to optimally copy only the first two bases with the same (and maximum)
fidelity. This is equivalent to requiring that the states on the ‘equatorial’ plane
xÿ z of the Bloch sphere are all shrunk by the same factor. (Note that, con-
ventionally, the phase-covariant qubit cloner is rather required to optimally copy
the final two bases, or, by extension, all states of the equatorial plane xÿ y [13].)
The cloning fidelity can be higher than that of the universal cloner, but this is at
the expense of cloning fidelity for the third basis, which must be lower.

Let us calculate the fidelity of this phase-covariant cloner. Consider the effect
of the error operators on the elements of the two first bases. We have

U0;0

j0i ! j0i
j1i ! j1i

U0;1

j0i ! j0i
j1i ! ÿj1i

U1;0

j0i ! j0i
j1i ! j0i

U1;1

j0i ! j0i
j1i ! ÿj0i

ðA4Þ

so the elements of the first basis are left unchanged (up to a sign) by the error
operators U0;0 and U0;1. Similarly, we have

U0;0

j0 0i ! j0 0i
j1 0i ! j1 0i

U0;1

j0 0i ! j1 0i
j1 0i ! j0 0i

U1;0

j0 0i ! j0 0i
j1 0i ! ÿj1 0i

U1;1

j0 0i ! ÿj0 0i
j1 0i ! ÿj0 0i

ðA5Þ

so the elements of the second basis are left unchanged (up to a sign) underU0;0 and
U1;0. Now, using the general formula for the cloning fidelity equation (13), we find
that the elements j0i and j1i of the first basis are cloned with the fidelity

F ¼ p0;0 þ p0;1; ðA6Þ
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while the elements j0 0i and j1 0i of the second basis are cloned with the fidelity

F 0 ¼ p0;0 þ p1;0: ðA7Þ
The requirement of having a phase covariant cloner ðF þ F 0Þ can thus be written
simply as p0;1 ¼ p1;0. Consequently, we consider a cloner characterized by the
amplitude matrix

ðam;nÞ ¼ v x
x y

� �
ðA8Þ

where x, y and v are real and positive, and with the normalization condition
v2 þ 2x2 þ y2 ¼ 1. The fidelity F (and disturbance D ¼ 1ÿ F) of the first clone are
thus given in both bases by

F ¼ F 0 ¼ v2 þ x2; ðA9Þ

D ¼ D 0 ¼ x2 þ y2: ðA10Þ
For the second clone, equation (4) (or, equivalently, equation (7)), implies that the
matrix bm;n has the same form as am;n with the substitution

v! ðvþ 2xþ yÞ=2; ðA11Þ
x! ðvÿ yÞ=2; ðA12Þ
y! ðvÿ 2xþ yÞ=2; ðA13Þ

so that the states of the two conjugate bases are again copied all with the same
fidelity (and the same disturbance):

~FF ¼ ðv2 þ 2x2 þ y2 þ 2vxþ 2xyÞ=2 ¼ 1=2þ vxþ xy; ðA14Þ
~DD ¼ ðv2 þ 2x2 þ y2 ÿ 2vxÿ 2xyÞ=2 ¼ 1=2ÿ vxÿ xy: ðA15Þ

We are now interested in finding the cloner that maximizes the fidelity of the
second clone ~FF for a given fidelity of the first clone F. A simple constrained
maximization calculation yields the solution

v ¼ F; ðA16Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð1ÿ FÞ

p
; ðA17Þ

y ¼ 1ÿ F; ðA18Þ
so that the maximum fidelity of the second clone can be written as a function of the
fidelity of the first clone:

~FF ¼ 1
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð1ÿ FÞp

: ðA19Þ
This expresses the balance between the quality of the two clones in the case of a
phase-covariant qubit cloner. As expected, F ¼ 1 yields ~FF ¼ 1=2, and conversely.
The symmetric phase-covariant cloner yields two clones of equal fidelity:

F ¼ ~FF ¼ 1

2
þ 1ffiffiffi

8
p ’ 0:854; ðA20Þ
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in agreement with [13]. As expected, this fidelity is slightly higher than the fidelity
of the universal qubit cloner, namely F ¼ 5=6. In contrast, the third basis is now
copied with a fidelity equal to 3/4, that is, lower than the fidelity of the universal
cloner.
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