
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 10065–10076 PII: S0305-4470(02)25747-9

Quantum key distribution using multilevel encoding:
security analysis

Mohamed Bourennane1,2, Anders Karlsson3, Gunnar Björk3,
Nicolas Gisin4 and Nicolas J Cerf5,6

1 Sektion Physik, Ludwig-Maximilians-Universität, D-80797 München, Germany
2 Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
3 Department of Microelectronics and Information Technology, Royal Institute of Technology
(KTH), Electrum 229, SE-164 40 Kista, Sweden
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Abstract
We propose an extension of quantum key distribution based on encoding the
key into quNits, i.e. quantum states in an N-dimensional Hilbert space. We
estimate both the mutual information between the legitimate parties and the
eavesdropper, and the error rate, as a function of the dimension of the Hilbert
space. We derive the information gained by an eavesdropper using optimal
incoherent attacks and an upper bound on the legitimate party error rate that
ensures unconditional security when the eavesdropper uses finite coherent
eavesdropping attacks. We also consider realistic systems where we assume
that the detector dark count probability is not negligible.

PACS numbers: 03.67.Dd, 03.67.Hk, 03.67.−a, 03.65.Ta

1. Introduction

Quantum cryptographyaims to provide an unconditionally secure key distribution between two
parties, Alice and Bob. Bennett and Brassard (BB84) proposed a quantum key distribution
protocol where Alice and Bob choose randomly between two complementary (conjugate)
bases and in each basis the ‘information’ is encoded using two orthogonal quantum states
(qubits) [1]. Since the basis is unknown to the eavesdropper (by convention called Eve),
she cannot copy the sent states perfectly (the non-cloning theorem). The use of a random
choice of complementary bases furthermore implies that if the sender Alice prepares a state
in one basis, the outcome of a measurement by Bob or Eve in a complementary basis will
yield a totally random outcome. These features guarantee that any eavesdropping attempt will
invariably introduce errors, which can be detected by the legitimate communicating parties.
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An extension to the BB84 protocol was made by Bruß [2] and by Bechmann-Pasquinucci and
Gisin [3] into a six-state, three complementary bases protocol. The security analysis of the
six-state protocol shows that Eve’s information gain for a given impaired error rate is lower
than in the BB84 protocol [2, 3]. Recently two other extensions were proposed where the
authors have considered schemes using four states and two bases [4], and three states and four
bases [5]. In an earlier work we generalized the BB84 protocol using an N-level system and
M � N + 1 complementary bases [6]. We have analysed some specific and rather simple, but
realistic, eavesdropping attacks.

The goal of this work is to find an ultimate and practical condition for the security of
N-level quantum key distribution protocols, sufficiently general to encompass most types of
eavesdropping. We will also derive the upper permissible limit for Bob’s error rate to ensure
unconditional security when Eve uses incoherent and finite coherent eavesdropping attacks
(defined in section 5).

The paper is organized as follows: in section 2, we give a brief introduction to our
protocol. In section 3, we reiterate the secrecy capacity of a channel and derive the results
for an intercept–resend eavesdropping attack. In sections 4 and 5, we analyse the optimal
individual and finite coherent eavesdropping attacks, respectively. In section 6, we consider
realistic systems where we assume that the detector dark count probability is not negligible.
Finally, in section 7 we present our conclusions.

2. A multibases multistate quantum key distribution protocol

In the BB84 protocol [1], Alice first randomly chooses between one of the two complementary
bases to prepare her qubit, and secondly she randomly decides which of the two orthogonal
qubits in the chosen basis to send. Extending this protocol to an N-level system in
N-dimensional Hilbert space HN , where the ‘information’ encoded by the chosen state will
from hereon be denoted as quNits. Each symbol sent by Alice in one of the M bases is chosen
randomly among N possible symbols with equal probability, i.e. each of the possible NM

states appears with probability 1/(MN). We first define the bases {ψA} and {ψB} over an
N-dimensional space to be mutually complementary if the inner products between all possible
pairs of vectors, with one state from each basis, have the same magnitude:

|A〈ψi |ψj 〉B | = 1/
√

N ∀i, j. (1)

If a quantum state is prepared in the {ψA} basis, and measured in the complementary {ψB}
basis, the outcome is completely random. Wootters and Fields have shown [7] that when
N = pk , where p is a prime and k is a positive integer, to which we restrict ourselves here,
then there exists a set of M = N + 1 mutually complementary bases [7].

To estimate the amount of mutual information between Alice and Bob or Alice and Eve,
the relevant information measure is the Shannon information of the sifted symbols, i.e. the
symbols for which Alice and Bob have used the same bases. For simplicity, we choose to
measure this information in bits. From the receiver’s (Bob’s or Eve’s) point of view, there
will be an a priori p(x) and an a posteriori p(x|y) probability, the latter being the conditional
probability of the sending party (Alice) having sent the symbol x, given that the receiver (Eve
or Bob) measured the result y. The receiver’s mean information gain from Alice’s symbol,
IN
AY , where Y = B,E denotes either Bob or Eve, equals his or her entropy decrease:

IN
AY = HN

apri − HN
apost. (2)
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The a priori probability for Alice’s symbol is uniform (since the protocol dictates that Alice
must chooses randomly the symbols she sends), leading to HN

apri = log(N). The a posteriori
entropy is defined as

HN
apost =

∑
y

p(y)
∑

x

p(x|y) log(p(x|y)) (3)

where the a posteriori probability of symbol y, given the observer’s result x, is expressed by
Bayes’ theorem:

p(x|y) = p(y|x)p(x)

p(y)
(4)

with p(y) = ∑
x p(y|x)p(x). The mutual information between Bob and Alice as a function of

Bob’s error rate is derived by using equation (2) and the symmetry properties of the protocol,
i.e. Alice and Bob choose independently to prepare and measure in one of the N + 1 bases,
respectively. We also suppose that Bob’s measurement errors are uniform for all quNits sent
by Alice and for Eve’s eavesdropping attacks:

IN
AB

(
eN
B

) = log(N) +
(
1 − eN

B

)
log

(
1 − eN

B

)
+ eN

B log

(
eN
B

N − 1

)
(5)

where eN
B is Bob’s error rate, i.e. the probability that he measures a symbol erroneously. Note

that expressions (2) and (5) refer to both the information and the errors contained in the sifted
symbols. These errors are due to a possible eavesdropping disturbance and system noise and
not due to Bob’s random choice of measurement basis.

3. Eavesdropping

In an ideal system, after the quNit string has been transmitted, measured and sifted, Alice
and Bob will share a common key. However, in real systems there are always some errors,
and some of these errors may be due to an eavesdropper. Alice and Bob need to use error
correction through a classical channel in order to establish an error-free and identical key,
and privacy amplification in order to obtain a secret common key [8, 9]. The eavesdropping
attacks by Eve will introduce errors. In the case of simple intercept–resend attacks, Eve
obtains one of the NM possible results. After Alice and Bob have announced their choice of
bases, the probabilities are p(x = y|{ψA} = {ψE}) = 1, p(x �= y|{ψA} = {ψE}) = 0 and
p(y|{ψA} �= {ψE}) = 1/N, ∀x, y. Therefore, according to (2) and (5), Eve’s information
gain is IAE = log(N)/M and Bob’s error rate becomes eN

B = (1 − 1/M)(1 − 1/N).
Csiszár and Körner [10] have given a lower bound for the secrecy capacity, that is, the

maximum rate at which Alice can reliably send random symbols to Bob so that the rate at
which Eve obtains information about the symbols is arbitrarily small. Below we give their
result as a theorem and the proof of this theorem is given in [10].

Theorem 1. Alice and Bob can establish a secret key (using one-way classical communication)
if, IN

AB � IN
AE or IN

AB � IN
BE , where IN

AB , IN
AE and IN

BE are the mutual information between
Alice and Bob, Alice and Eve, and Bob and Eve, respectively.

Taking into account the sifting, error correction and privacy amplification, we can define
an effective transmission rate as

RN
AB

(
eN
B

) = 1

M

(
IN
AB

(
eN
B

) − IN
AE

(
eN
B

))
. (6)

In the following sections,we will discuss the different eavesdropping strategies and present
a security analysis. First, we consider individual attacks where Eve attaches independent
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probes to each quNit and measures her probes separately. Second, we consider coherent
attacks in which Eve processes several quNits jointly.

4. Individual eavesdropping attacks: universal quantum cloning machine

Below we discuss an individual eavesdropping strategy based on the use of an asymmetric
version of the N-dimensional symmetric universal quantum cloning machine (UQCM),
introduced by Bužek and Hillery [11]. This asymmetric cloner [12, 13] can be used to
obtain two copies of Alice’s quantum state that are not of the same fidelity. Eve then keeps
one of the copies (typically, the bad one) for herself, and passes the other copy (typically,
the good one) to Bob. Then, after Bob and Alice have announced their chosen bases among
M = N + 1 mutually complimentary bases, Eve does the same measurement as Bob did; i.e.,
she measures her copy in the same basis as Alice and Bob. The asymmetry parameter of the
cloner allows her to adjust the amount of information she gained, and thereby the amount of
information Bob lost. The asymmetric cloner is universal, just as the UQCM [11], so that all
input states are copied equally well (Bob’s fidelity and Eve’s fidelity depend on neither Alice’s
chosen state nor chosen basis). Note that the quantum circuit that implements this asymmetric
cloner is shown in [14].

In order to extract maximum information on Alice’s quantum state, Eve can exploit the
state of her copy and also that of the cloning machine (or ancilla). In particular, she can make
a coherent measurement on the state of the cloning machine and her copy in order to infer
whether she introduced an error at Bob’s station (and precisely what error) [3]. For increasing
disturbance, the fidelity FN

AB between the sent state and the state inferred by Bob (defined on
the sifted symbols) that governs the probability that he and Alice will accept the transmitted
state decreases, while Eve’s probability of correctly guessing the symbol increases.

Let us analyse the situation when Eve uses an N-dimensional copying machine such as
described in [12, 13]. If Alice sends the state |ψk〉, the output state is given by

|ψk〉A →
N−1∑

m,n=0

am,nUm,n|ψk〉B |�m,N−n〉EM (7)

where the amplitudes am,n (with m,n = 0, . . . , N − 1) characterize the cloner and A,B,E

and M stand for Alice, Bob, Eve and the cloning machine, respectively. Here, the states
|�m,n〉EM are the generalization of the Bell states, that is, a set of N2 orthonormal maximally-
entangled states of two N-dimensional systems:

|�m,n〉EM = 1√
N

N−1∑
l=0

e2π i(ln/N)|ψl〉E |ψl+m〉M (8)

where the indices m and n (m, n = 0, . . . , N − 1) label the N2 states. Note, here and below,
that in the ket labels the additions are taken modulo N. The operators Um,n, defined as

Um,n =
N−1∑
k=0

e2π i(kn/N)|ψk+m〉〈ψk | (9)

form a group of error operators on N-dimensional states, generalizing the Pauli matrices for
qubits: m labels the ‘shift’ errors (generalizing the bit flip σx) while n labels the phase errors
(generalizing the phase flip σz). Using the definition of the states |�m,n〉 and operators Um,n,
equation (7) can be reexpressed as

|ψk〉A → 1√
N

N−1∑
m=0

|ψk+m〉B
N−1∑
l=0

cm,k−l |ψl〉E |ψl+m〉M (10)
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where

cm,j =
N−1∑
n=0

am,n e2π i(jn/N). (11)

Tracing the output joint state as given by equation (7) over E and M, it is easy to check that
Alice’s state |ψk〉A gets transformed, at Bob’s station, into the mixture

ρB =
N−1∑

m,n=0

|am,n|2|ψk+m〉〈ψk+m|. (12)

Thus, the state undergoes a Um,n error with probability pm,n = |am,n|2 (with
∑

m,n pm,n = 1).
Note that U0,0 = 11, the identity operator, implying that the state is left unchanged with
probability p0,0. The phase errors (n �= 0) clearly do not play any role in the above mixture,
so the fidelity for Bob can be expressed as

FB = 〈ψk|ρB |ψk〉 =
N−1∑
n=0

|a0,n|2. (13)

Now, we will impose that the cloner described above is universal, that is [12, 13]

am,n = αδm,0δn,0 +
β

N
(14)

with the normalization relation

α2 +
2

N
αβ + β2 = 1 (15)

where the balance α versus β parametrizes the asymmetry of the cloner (α = 1 and β = 0
correspond to the case where Bob gets all the information, whereas α = 0 and β = 1
correspond to Eve getting all the information). This implies that

cm,j = αδm,0 + βδj,0 (16)

so that we obtain for the cloning transformation

|ψk〉A → 1√
N

N−1∑
m=0

|ψk+m〉B
(

αδm,0

N−1∑
l=0

|ψl〉E |ψl〉M + β|ψk〉E |ψk+m〉M
)

= |ψk〉B
(

α√
N

N−1∑
l=0

|ψl〉E |ψl〉M +
β√
N

|ψk〉E |ψk〉M
)

+
N−1∑
m=1

|ψk+m〉B
(

β√
N

|ψk〉E |ψk+m〉M
)

(17)

where the first term on the rhs corresponds to Bob having no error, while the (N − 1) other
terms correspond to all possible errors for Bob.

Eve’s strategy is as follows. She first measures both her copy E and the ‘cloning machine’
M in the good basis (after the chosen basis is disclosed by Alice and Bob). If the two outcomes
coincide, then she knows for sure that Bob has no error (m = 0), so that the state she has is the
first term on the rhs of equation (17). Otherwise, she knows Bob had an error (m > 0), and
she gets one of the other terms on the rhs of equation (17). Let us consider these two cases:

(i) m = 0. The joint probability that Eve obtains m = 0 with the right value of k is

pm=0(k) = (α + β)2

N
(18)
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while the probability that she obtains m = 0 with any other of the (N − 1) possibilities
l �= k is

pm=0(l) = α2

N
. (19)

(ii) m �= 0. Then, a measurement of her copy gives Eve the right value of k with certainty.
Thus, the joint probability that Eve obtains any of the N − 1 values of m �= 0 together
with the good k is

pm�=0(k) = β2

N
. (20)

The fidelity of Bob is given by

FB = pm=0(k) +
∑
l �=k

pm=0(l)

= (α + β)2

N
+ (N − 1)

α2

N

= 1 − N − 1

N
β2. (21)

The corresponding mutual information between Alice and Bob is given by

I (A:B) = log(N) − H

[
FB,

1 − FB

N − 1
, . . . ,

1 − FB

N − 1

]

= log(N) + FB log[FB ] + (1 − FB) log

[
1 − FB

N − 1

]
. (22)

Consider now the mutual information between Alice and Eve. Conditionally on
Eve’s measured value of m (i.e. conditionally on Bob’s error), this information can be
expressed as

I (A:E|m = 0) = log(N) − H

[
(α + β)2

NFB

,
α2

NFB

, . . . ,
α2

NFB

]
(23)

I (A:E|m �= 0) = log(N).

Thus, the average mutual information between Alice and Eve is

I (A:E) = FBI (A:E|m = 0) + (1 − FB)I (A:E|m �= 0)

= log(N) − FBH

[
(α + β)2

NFB

,
α2

NFB

, . . . ,
α2

NFB

]

= log(N) +
(α + β)2

N
log

[
(α + β)2

NFB

]
+

N − 1

N
α2 log

[
α2

NFB

]
.

(24)

This information can also be reexpressed, using Eve’s fidelity

FE = 1 − N − 1

N
α2 (25)

as

I (A:E) = log(N) − FBH

[
FB + FE − 1

FB

,
1 − FE

(N − 1)FB

, . . . ,
1 − FE

(N − 1)FB

]

= log(N) + (FB + FE − 1) log

[
FB + FE − 1

FB

]

+ (1 − FE) log

[
1 − FE

(N − 1)FB

]
. (26)
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Figure 1. The information rate RAB , defined by equation (6), as a function of Bob’s error rate eN
B

for different Hilbert space dimensions N, assuming that M = N + 1, using the universal quantum
cloning machine eavesdropping strategy.

As shown in [11] the maximal fidelity of copying a quNit is obtained using the UQCM. This
maximal value of the fidelity corresponds precisely to the fidelity of the optimal incoherent
eavesdropping strategy, as Bechmann-Pasquinucci and Gisin have shown explicitly for the
(N = 2,M = 3) case [3]. From the symmetry of the problem it follows that for M = N + 1,
the fidelity of the optimal incoherent eavesdropping is accomplished using a UQCM.

In figure 1, we plot the information rate RN
AB , defined by equation (6), as a function of

Bob’s error rate for different values of N. For each N, the intersection between the graphs RN
AB

and the horizontal axis corresponds to the upper permissible bound for Bob’s error rate to
enable secure key distribution. In all cases, the UQCM gives the best performance (from the
viewpoint of the eavesdropper), so Alice and Bob should use the UQCM model to estimate
the ‘leakage’ of information to Eve when applying privacy amplification.

5. Finite coherent eavesdropping attacks

In the previous section we have assumed only individual attacks, i.e. Eve manipulates and
performs measurements on each quNit separately. In this section we address the case where
Eve manipulates coherently finitely many quNits, that is, Eve attacks coherently an arbitrary
large but fixed and finite number of quNits. We call such strategies finite coherent attacks. We
like to stress that the length of the key must be much longer than the number of coherently
manipulated quNits and that Eve applies the same strategy independently to all the blocks of
quNits. This is a very reasonable assumption even assuming a very powerful Eve. In this
way Alice and Bob have a long series of independent realization of random variables to which
theorem 1 applies. The question then is: what is the maximum rate of errors detected by Bob
that allows Alice and Bob to still apply error correction and privacy amplification to extract a
secure key? Already in 1996, Mayers presented ideas on how to prove such a bound [16], even
when the block size tends to infinity. Now several proofs exist [16–24] for security against
coherent attacks, but they are all specific to a particular protocol. In contrast, here we shall
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present the proof in a form quite different from the previous ones, which is fairly general as it
does not depend on the number M of bases used and is not limited in dimension.

Theorem 2. In N-dimensional Hilbert space, two users Alice and Bob can establish a secret
key (using one-way classical communication) when the adversary Eve is restricted to finite
coherent attacks if Bob’s error rate satisfies the inequality

(
1 − eN

B

)
log

(
1 − eN

B

)
+ eN

B log

(
eN
B

N − 1

)
> −1

2
log(N), (27)

where eN
B is Bob’s error rate.

Thus this gives a sufficient (but not necessary) condition for the generation of a secure
key regardless of the number of mutually complimentary bases (M � 2), the only restriction
being that finite-length blocks of quNits are attacked. To prove this theorem we need another
theorem due to Hall [15] that sets a limit on the sum of the mutual information between Alice
and Bob and the mutual information between Alice and Eve:

Theorem 3. Let B̂ and Ê be symbol observables for Bob and Eve, respectively, in an N-
dimensional Hilbert space so that the maximum possible overlap between any two eigenvectors
|ψi〉B and |ψj 〉E corresponding to these observables is C = Maxi,j {|B〈ψi |ψj 〉E |}. Then the
mutual information Alice–Bob and Alice–Eve satisfy the following inequality:

IN
AB + IN

AE � 2 log2(NC). (28)

Now we are ready to prove theorem 2.

Proof of theorem 2. Suppose Alice sent a large number of quNit symbols, and that Bob
performed this measurement on n quNits of them using the correct basis. The Hilbert space
dimension of the total sifted symbol space is thus Nn. Let us now relabel the bases for each
of the n quNits such that, by definition, Alice used all n times the {ψB} basis. Hence, using
this relabelling, Bob’s observable is the n-time tensor product B̂1 ⊗ · · · ⊗ B̂n. Since Eve had
no way to know the correct bases, her optimal information on the correct ones is precisely the
same as her optimal information on the incorrect ones. Hence, one can bound her information
assuming she measures Ê1 ⊗ · · · ⊗ Ên, where Êi is a complementary observable to B̂i . It
follows that C = N−n/2. By applying theorem 3, we obtain the following inequality:

IN
AB + IN

AE � n log2(N). (29)

By using the inequality IN
AB � IN

AE of theorem 1 and equation (29), we obtain

IN
AB � n

2
log2(N). (30)

For a string of n symbols, the mutual information between Alice and Bob becomes

IN
AB

(
eN
B

) = n

(
log(N) +

(
1 − eN

B

)
log

(
1 − eN

B

)
+ eN

B log

(
eN
B

N − 1

))
. (31)

Using equations (30) and (31), we obtain theorem 2. �

In figure 2, we plot the upper bound for Bob’s error rate as a function of N in the case
of the optimal incoherent and finite coherent eavesdropping attacks. For N = 2 we recover
the results for coherent attacks by Shor and Preskill, e2

B = 11% [19]. We would like to
stress again that we have considered the case of coherent attacks on fixed and finite number
of quNits and a key much longer than n. In contrast, in Mayers, Lo, and Shor and Preskill
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Figure 2. Bob’s error rate eN
B as a function of the dimension of the Hilbert space N for optimal

incoherent and coherent eavesdropping strategies.

proofs, the coherent attacks are more general and unlimited. For the qubit, Shor and Preskill
have used for their proof Calderbank–Shor–Steane (CSS) quantum error correction codes.
The security of their protocol depends on the fact that for low error rate, a CSS code transmits
the encoded information with very little information leaked to Eve. Therefore a secure key
can be established if the error rate is low enough for the CSS codes to achieve a nonvanishing
asymptotic rate [19]. One can generalize the Shor and Preskill security proof to quNits [25].
In a recent result due to Harrington and Preskill, an achievable rate for quNit CSS codes is
estimated in [26] (equation (76)). It is given by

Rd = k

N
� 1 − 2Hd(Px) − 2px logd(d − 1) (32)

where d is the dimension of Hilbert space and px is the error probability. By using the
definition of the entropy and logd(x) = log2(x)

log2(d)
, we obtain

1 − 2Hd(Px) − 2px logd(d − 1)

= 1 + 2(1 − px) logd(1 − px) + 2(px) logd(px) − 2px logd(d − 1)

= log2(d)

(
1 + 2(1 − px) log2(1 − px) + 2(px) log2

(
px

d − 1

))
(33)

and changing px to eN
B and N to d

RN � 1

2 log2(N)

(
1

2
log2

(
eN
B

)
+

(
1 − eN

B

)
log2

(
1 − eN

B

)
+

(
eN
B

)
log2

(
eN
B

N − 1

))
. (34)

This bound again coincides with our bound (equation (27)). Note, however, that our bound
is derived straightforwardly from an information-theoretic Heisenberg uncertainty principle,
even though the argument is limited to finite-length coherent attacks. It would be interesting
to have a transparent demonstration of the equivalence between these two apparently different
approaches.

6. Realistic systems

The attacks presented in the previous sections assume perfect eavesdropping and measurement
apparatus, ideal single quNit sources and a noise-free channel. In real secret key distribution
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Figure 3. The information rate RAB , defined by equation (6), as a function of the transmission
distance L (the distance L is related to the quantum bit error rate by equation (38)). Curves are
plotted for different dimensions of the Hilbert space N, assuming that M = N + 1 and that the
universal cloning machine eavesdropping strategy is used.

systems there are several limitations: the sources can emit more than one photon, some photons
never get to Bob’s detector (channel loss), the detector quantum efficiency is limited and the
dark count probability (counts not produced by photons) of the detectors is not negligible. For
an N-dimensional Hilbert space where we assume that we have ideal single quNit sources, the
optical noise remains negligible even for large N and the only source of noise is the dark count
of the detectors. Under these assumptions the experimental QBER (quantum bit error rate) is
given by

QBER = Pincorrect

Pincorrect + Pcorrect
≈ Pincorrect

Pcorrect
(35)

where it was assumed that the QBER is small and where

Pcorrect = µηD e−αL 1

M
. (36)

In equation (36), µ is the average photon number per symbol, η is the detector quantum
efficiency, α is the channel attenuation coefficient, L is the transmission length and
qbasis = 1/M is a factor which depends inversely on the number of bases used in the protocol.
The probability of incorrect counts, when we assume that all incorrect counts come from the
detectors and they have the same dark count probability, is given by

Pincorrect ≈ Pdark(N − 1)
1

M
(37)

where Pdark is the probability of dark counts by the detector. The QBER becomes

QBER ≈ Pdark(N − 1)

µη e−αL
. (38)

In figure 3 we plot the information rate RAB as a function of the transmission distance.
The intersection of the two curves gives the maximal distance allowed between Alice and
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Bob so that they can establish a secret key with typical parameter values ηD = 20%, α =
0.2 dB km−1, µ = 0.1 and Pdark = 10−5.

Very recently, for the qubits, Inamori et al have given the unconditional security proof
when the practical signal sources contain multiphoton contributions [27] and they have shown
that the combination of multiphoton signals of the source together with a lossy quantum
channel in the presence of errors leads to limitations of the rate [27]. The same practical
problem was also analysed in a pragmatic way by Felix et al [28].

7. Discussion and conclusions

In this work we have considered an extension of Bennett and Brassard’s seminal quantum key
distribution protocol into an N-dimensional Hilbert space. We have obtained bounds on Bob’s
permissible error rate in the case of individual and finite coherent eavesdropping attacks,
and we have given the limits for the transmission distances in non-ideal systems. Using
similar arguments and methods one could also generalize Ekert’s quantum cryptographic
protocol [30], based on quantum entanglement and the test of Bell inequality to detect the
eavesdropping, to an N-dimensional Hilbert space. Recently, Kaszlilowski et al have shown
[31] that the violation of local realism by two entangled quNits is stronger than the violation
for two entangled qubits. We conjecture that this would also imply a higher degree of security
in entanglement-based multilevel quantum cryptography. One should also extend our security
analysis for N-dimensional quantum key distribution by considering weak coherent sources
which contain multiphoton states.

Very recently Gottesman and Lo have shown that when Alice and Bob use two-way
classical communications, the protocol allows a higher key generation rate [29]. For the BB84
protocol, they have found that the allowed error rate is about 17%, which is higher than the
11% obtained by using one-way classical communication. Unfortunately, we cannot extend
our proof to include two-way classical communication because to our knowledge there is no
theorem for two-way classical communication equivalent to theorem 1 in classical information
theory. We can only conjecture that for higher dimensional Hilbert space, the bound on the
error rate will be higher when Alice and Bob use two-way classical communication.
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Note added in proof. It has been shown recently (in the 5th revised version of [24], which appeared on the quant-ph
preprint server after completion of this work) that a slightly higher threshold can be put on the error rate at 12.7%
for the 6-state protocol with one-way classical communication. This does not contradict our bound at 11% (nor the
bound of Shor and Preskill [19]) since it is general and therefore applies to BB84 as well as to the 6-state protocol.
As far as we know, no better bound is known today for BB84.
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