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Quantum cloning of orthogonal qubits
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An optimal universal cloning transformation is derived that prodiMdepies of an unknown qubit from a
pair of orthogonal qubits. FOM >6, the corresponding cloning fidelity is higher than that of the optimal
copying of a pair of identical qubits. It is shown that this cloning transformation can be implemented proba-
bilistically via parametric down conversion by feeding the signal and idler modes of a nonlinear crystal with
orthogonally polarized photons.
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Unlike classical information, quantum information cannot Let us first provide a simple argument on why we can
be copied. This so-calledo-cloningtheorem[1], whichisa  expect the statpy, ¢, ) to be better cloned thauy, ). With
direct consequence of the linearity of quantum theory, stategn optimal measurement of, 1, ), we can prepar® iden-
that it is impossible to prepare several exact cofi@s tical clones of/ ), each with a fidelityF, . In contrast, with
cloneg of an unknown quantum statg/). Although exact 3 2_.M optimal universal cloning machine, we get(M)
cloning is forbidden, one can design various quantum clon=— 3 +2)/(4M) [2]. Clearly, F|(M)<F, for sufficiently
ing machines producing approximate clones. Much attentlor[brgeM_ Hence, thisnonoptimal measurement-based clon-
has been devoted to the optimal universal cloning machine':?lgl of |4,4, ) is better than the standard cloning|ef, ).
for qubits, which prepar# identical approximate clones out Let us’ ntw seek for a unitary transformation Wh'ttqmi-
of N replicas of an unknown qubit, and such that the fidelitymaIIy approximates the transformatiofy)| v, )— |)®™M.

of the clones is state independé@i. Cloning machines for _. : :
states in ad-dimensional Hilbert space were also investi- Since we seek a transformation such that the final state of the
clones is left invariant by permutations amongst them, we

gated[3], as well as continuous-variable cloning machines™'. S . .
[4] for coherent states. will suppose that the clones lie in the symmethtqubit

In the limit of an infinite number of clones, the optimal SPace. Our motivation, when making this simplifying hy-
cloning reduces to the optimal quantum measurement. In thigothesis, is that in the case of quantum cloning, an optimal
context, a very interesting observation has been made iversal machine can always be chosen to be of this form
Gisin and Popesc[b]: the information about a direction in [2]. Moreover, since the set of all states of the fdwm| ¢, )
space is better encoded into two orthogonal qubits than ispan the whole Hilbert space of two qubits, the most general
two identical ones. If we possess a two-qubit sfatgy, )  transformation is of the form
with (|, )=0, then we can estimatgs) with a fidelity
F, =(1+1/3)/2~0.789[5,6]. This slightly exceeds the fi- o o
delity of the optimal measurement on a qubit paj, ), |'>|J>|R>—’Z IM,K)[Rij), 1,j=0,1, 1)
F||=3/4. A similar situation occurs for continuous quantum k=0

variables. A(randomly chosenposition in phase space is . I .
- ir of Dhase-coni h ere|R) and|Rin>, respectively, denote the initial and final
better encoded into a pair of phase-conjugate coherent stat}égtes of the ancilla, whiltM k) (k=0, ... M) denotes a

|@,a*) than into a pair of identical statés,«) [7]. Simi- _ . . o
larly, |>a a*) gives an advantage when clczning coherentsymme'[.”cM'quIt state withk qubits in state0) and M
P —k qubits in statg1).

states: foM large enoughiM identical approximate clones of . .
g g PP The arbitrary state of a qubjts) can be conveniently

a coherent stat can be prepared with a higher fidelity . . )

from the Statdle> than from| e, @) [8]. written as_|¢)=d(Q)|0)=Eidi0(Q)|l>, where the matrix
Motivated by this result, we were naturally led to tackle 9(€2) is given by

the following question: CaiM clones of a qubiti) be pro-

M

d_ucgd from an orthogpnal _qubit p_eiiqf/, &) with a highgr cosﬁ efigbsinﬁ
fidelity than from an identical pait,#)? In this Rapid _ 2 2
Communication, we answer this question by an affirmative. d()= . 9 | @
We present a universal cloning machine acting on an or- e"f’sinE —cosE

thogonal qubit pair that approximately implements the trans-
formation|¢)| ¢, )—| )M with the optimal fidelity. Then,
we show that this cloning transformation can be imple
mented probabilistically in quantum optics by use of para
metric down conversion. Our proposed setup extends th
scheme of Simoret al. [9] by feeding both the signal and

igllelr modes of a nonlinear crystal witiy) and|, ), respec- [ i ) — W o ¢)>:2 diO(Q)djl(Q)|Mak>|Rijk>- (3)
tively. ik

_with J and ¢ denoting the usual polar and azimuthal angles
Jpointing in direction(). The linearity of Eq.(1) implies that
an arbitrary pair of orthogonal qubits transforms according to
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We will measure the quality of the transformation by the

average single-clone fidelity, (M). Denoting by Tf ,..the

partial trace over the ancilla and all the clones but the first

one, we get
FL(M):J' dQ<‘/’| Trl,anc[|q,out(’p)><qf0ut($)|]|$>

E 2 <R| ]’k’|RIJk>A:j,k/k/’

i’k ik

(4)

where

ik
ALK =

ij T (0 [Tra[[MLK)(M K[ ]]n) A€ do(©2)

X dy,o(0)dig(Q)d;1(Q)df, o(Q)d, Q).
The coefficients];}
of an operatoA acting on the spacH ® K, whereH denotes
the Hilbert space of the two input qubits akddenotes the
Hilbert space of symmetric states Bf output qubits. Simi-
larly, xii"* = (Rij|Rij ) define matrix elements of an op-
eratory also acting or{® K. The formula(4) for the fidelity
thus simplifies toF, (M)=Try x[xA]. The operatory

uniquely represents the completely positive cloning map,

which transforms operators supported Anonto operators
supported onk. By definition, the operatoré& and y are
Hermitian and positive semidefinitd=0 andy=0.

Of course, the transformatigi) should be unitary, which
read32k< Ri i ’k| Rijk> = 5i ’i 5] - This is equivalent to

Trclx1=1y, ©)

wherel,, is the identity operator oft{. Thus, introducing a
set of Lagrange muItipIier&}j'J' for these unitarity con-
straints, our problem amounts to extremize the quarnity
=Tr L (A—A)x] under the constraing=0, whereA =\

® 1l and\ is the matrix of Lagrange multipliersif is the
identity operator ork). Varying W with respect to the eigen-
states of the operator, we get the extremal equation

(A=A)x=0 (6)

for the optimaly. Following [10], this equation can be fur-

can be considered as matrix elements
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V3(M—2j)
V2M(M+1)(M+2) ]|’

(€)

ajm=(-1)

V2(M+1)

with |j ¢, (M —j) ¢, ) denoting a totally symmetric state bf
qubits wherg qubits are in statgy) andM — j qubits are in
state|, ). The firstM output qubits contain the clones of
state| ) while the otheiM qubits contain the clones ¢f, )
(or anticlones We shall prove below that this transformation
is indeed optimal.

We stress here that the cloning transformati®nis uni-
tary. Since this is by no means obvious from E8), let us
present a proof of this. We can expand any staig (M
=)&) in the basigM k) as

M
|jw,<M—j>«m>=k§0ei“*kWDm(ﬂnM,k» (10)

We will not need an explicit expression for the functions

kl(wt}) here, but will only use some of their properties.
Since the functlonsDk](f}) are elements of &eal unitary
matrix, they satisfy the orthogonality relation,

<

>

DY (D (9)= 6. (11

We will also use the following recurrence formylal]:

(2j —M)D}j(9) = (2k—M)cosd Dyj(9)

+sin9/(k+1)(M—k) Dy, 1 (9)
+sind k(M —k+1) D5 (9).

For the purpose of the proof it is convenient to apply
(ioy )M on the lastM qubits at the output of the cloner.
Thus, (M=) ¢ i —(=D|[(M=])g*,jyT) where
|y*)==,d5|i). Next we expand(M—j)¢,j¢, ) and|(M

- y* jl,/ll> in the basigM k) according to Eq(10), and
then utilize the recurrence formulé@?2). Finally, we can
carry out the sum ovgrwith the help of Eq(11), resulting in

(12

M

ther transformed into a form suitable for numerical solution |®  (y))= E [ay+by(2k— M)]co§—|M k)®|M,k)

via repeated applications of

x=A"AYAATL,  A=(Tr [AxADY2 7
Note that the matrixx >0 is determined from the unitarity
constraints.

By numerically solving Eq.(7) for M=2,...,15, we
have guessed the general solution of Ef). The transfor-
mation we obtain is

M
)= 2 il (M=Dwju)elM=Dgiv). @

where

M

+2 [aM—bM(Zk—M)]sinz§|M,k>®|M,k)

M

+ei¢k20 by V(M —K)(k+1)sin9|M,k)

M

®[M,k+1)+e ¢ byVk(M—k+1)
k=0

X sind|M,k)®|M,k—1), (13

where the coefficienta,, andby, read
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ay= ; . by= \/5 ] Mirror Trigger
2(M+1) V2M(M +1)(M+2) < Clones
3
The four terms on the right-hand side of E#3) are propor- Pump i Model
tional to the output states for the four input basis stfiés,
[10), |00), and|11), respectively. It is then easy to prove that M"dez

the transformation |y, ¢, )—|®o(#)) preserves scalar
products, hence is unitary.

Let us now calculate the fidelity of the clones. We can see  Mirror
from Eg. (8) that the cloning machine preserves the symme-
try of the input statéy, ¢, ), so the clones of both statgs) FIG. 1. Setup for the cloning of orthogonal qubits via stimulated
and |, ) have the same fidelity. This state-independentparametric down conversion. For a detailed description, see text.
single-qubit fidelity can be obtained by summing a series,

Antl—Clones

Trigger

M ) sented by the polarization state of photons. We can identify
F M= M- o2 (14) |0) with vertical polarization andl1) with horizontal polar-
L = M M ization states. In optical PDC, a “blue” photon can split into
a pair of “red” photons. (This occurs with a probability
After some algebra, we arrive at the expression which is typically of order 103.) Traditionally, these daugh-
ter photons are referred to as signal and idler, respectively. In
Fi (M)= %(1+ V(M +2)/3M). (15)  our setup, three nonlinear crystals;, C,, and C; are

pumped by a strong laser beam. In crystajsandC,, pairs

Upon comparing this fidelity to that of the optimal cloner for of photons can be produced, so we can verify the presence of
a pair of identical qubitsF (M), we see thatF (M) signal photons by detecting the idler photons emerging from
=F, (M) for M6, while FL(M)>F (M) for M>6 and C; andC,. If a single idler photon is detected on each side,
the cloner(8) outperforms the standard cloner. We also notethen we have one signal photon in each beam. The states of
that forM — o, the fidelityF, (M) tends to the optimal mea- these two photons can be manipulated with the help of phase
surement fidelityF, , as expected. shifters and polarization rotators in order to prepare the de-

The optimality of the cloner can be proved with the helpsired input statgy, 1, ). The two photons then feed the sig-
of techniques adapted from the theory of semidefinite pronal and idler modes of a third nonlinear crysta, whereM
gramming[12]. We observe that the trace of Lagrange mul-clones are generated due to the stimulated PDC.
tiplier A provides an upper bound on the achievable fidelity In the limit of strong coherent pumping, the effective
FL(M)=Try [ xA]. If A\®@1,—A=0 then it holds for any Hamiltonian describing the interaction @ can be written
x=0 that Tr, [ xA®1]=Try [ xA]. It follows from the  as follows[9]:
unitarity constraint  Tg[x]=1;;, that T [ xA®1]
=Try[N] does not depend ony. Thus, Ti[\] — LIPS S S
>Tr:,,C[XA]. From the numerical solution of Eq(;?bi)i we H=1hg(av1an,~ anav) +H.C. a7

have in basig00), |11), |01), |10), . . _ _
where a,;; and a; denote bosonic creation operators for

1 0 O 0 photons in the first mode with vertic&/) or horizontal(H)
F M0 1 0 0 polarization, and_S|m|IarIy51V2 and ay;, are creation opera-
= (16)  tors for photons in the second spatial mode. The congtant
6 (00 2 -1 denotes the parametric gain. The time evolution is thus gov-
0O 0 —1 2 erned by the unitary transformatidsi=exp(—iHt/4). With

the help of the disentangling theorem, we can write the op-

The block-diagonal matrix ® 1,,— A is positive semidefinite eratorU in a factorized form
and has three different eigenvalues which read
:.1/12 (M+2)/3M, u,=1/3y(M+ 2){3M , and u3=0. U= eFa\TuaLz(coshy)—(a\T/lavﬁaLzaHﬁ1)e—Fav1aHz
Since the upper bound A\ ]=F (M) is saturated by our
cloning machine, we conclude that our cloner is optimal.

In the rest of this paper, we will show that the cloning
transformation(8) can be implemented probabilistically via
stimulated parametric down conversi@@DC). As we shall where y=gt and I'=tanhy. The Hamiltonian(17) has the
see, many technical difficulties would arise when achievingmportant property of being invariant under general simulta-
this implementation. Nevertheless, our main concern here igeous SW(2) transformations on the polarization vectors
to stress that our cloner is, at least in principle, achievable(ay ,ay) for modes 1 and 29]. It is thus sufficient to con-
The experimental setup under consideration is shown in Figsider the evolution of a basis stdtk)\1|0)1]|0)v2| 1)k, (@
1. This scheme is a straightforward extension of the setupingle vertically polarized photon in mode 1 and a single
suggested by Simost al. [9] where the qubits are repre- horizontally polarized photon in mode 2) which represents
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the input statd, ¢, y=|01). Making use of the factorized Even for as low a number of clones as two, the amplifi-

form of U, we obtain the state at the output of the cry€lgl  cation gain corresponding g, is significantly larger than

in the form what is achievable with current technology. Moreover, there
is a danger that the parametric approximation yielding the

o0 M
_ . ) Hamiltonian(17) could fail for such large gains. Fortunately,
MZO v 1(1—1“2)]2,0 (=DM =) (1-T*~T?] one can easily verify that the functioR(M,y) is slowly
varying with respect toy, that is, nearly optimal cloning
XIM = vl ialidvelM =i duz, (18  devices can be achieved with realistic gains. For instance,
_ F(2,0)=0.9 instead of(2,y,p) =0.908.
where k), with 1=V1, H1,V2, andH2 denote the usual  "\ye also would like to note that another difficulty of our

Fock states. For a fixed numbkt of photons in each mode  getyp is that it requires overlapping amongst three different
1 and 2, the output state8) closely resembles the output \aye packets. This difficulty is also encountered in the PDC
state of the universal .clomngzmacgnﬁ&) Wj!th the coeffi-  jmplementation of quantum cloning df identical qubits.
cients aj () ~[(M—[)(1-T")—T"](-1)". If we mea-  Techniques to overcome this difficulty are discussed9h
sure the number of photons in mode 2 and deféghotons,  gnd references therein.

then we know thaM photons representinlyl approximate This approach of cloning based on PDC can be further
clones of the input qubi) are present in mode 1. Note that extended to the approximate realization of the general clon-
the output ofC; is not properly arM-qubit state but rathev! ing transformation|¢)®N| ¢l>®N'H| M. ForN'=1, we

indistinguishable photons distributed amongst two poIarizahave been able to derive the optimal fidelity for axyand
tion modes. Still, upon using an array of beam—splitterslvI>N by a similar calculation

amongstM different modes, one can probabilistically obtain

a properM-qubit state. N+1 3(N—1)++P/(N+2)
In order to calculate the fidelity of these clones, we insert =
y FLNM)= 03— 2miN+3) (21)

the properly normalizedy; y(I") into formula (14). After

some algebra, we obtain with P=(N—1)(N2— 15N —18)+8M(N+1)(M +3—N).

3y2—2y(2M+1)+ 2 M(M+1) It can be checked that there is again a valuevbfibove

F(M,y)= . (19 which this cloner outperforms the standarbtl+1)— M
6y2—6My+M(2M+1) cloner. For largeN, however, the advantage becomes mar-
) ) ginal.
where we have introduceg=1"?/(1—T'?)=sintty for nota- In summary, we have derived a universal cloning trans-

tional convenience. The cloning fidelity thus depends on th@ormation for orthogonal qubit pairs, and a corresponding
parametric gainy, so we must optimize this gain in order to probabilisitic experimental scheme has been proposed. We
achieve the highest possible fidelity. Upon solvinghave shown that this transformation achieves a higher fidel-

dF(M,y)/9y=0 fory, we find that ity for M>6 than the standard cloner and thus conclude that
the advantage of orthogonal qubits over identical qubits that
y :M_ }, /M(M +2) (20) was discovered in the context of measurement also extends
o2 2 3 to cloning.
By insertingy, into Eq.(19), we recover the optimal fidel- N.J.C. is grateful to C. Simon for helpful discussions. J.F.

ity (15). Furthermore, it can be verified by direct calculation acknowledges support from Grant No LNOOAO15 of the
that with the optimal gain, the postselectdephoton state at Czech Ministry of Education, S.I. from the Belgian FRIA
the output of the crystal; coincides with the output of the foundation, and N.C and S.M. from the European Union un-

cloning maching8). der Project No. IST-FET-EQUIP.
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