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Quantum cloning of orthogonal qubits
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An optimal universal cloning transformation is derived that producesM copies of an unknown qubit from a
pair of orthogonal qubits. ForM.6, the corresponding cloning fidelity is higher than that of the optimal
copying of a pair of identical qubits. It is shown that this cloning transformation can be implemented proba-
bilistically via parametric down conversion by feeding the signal and idler modes of a nonlinear crystal with
orthogonally polarized photons.
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Unlike classical information, quantum information cann
be copied. This so-calledno-cloningtheorem@1#, which is a
direct consequence of the linearity of quantum theory, sta
that it is impossible to prepare several exact copies~or
clones! of an unknown quantum stateuc&. Although exact
cloning is forbidden, one can design various quantum cl
ing machines producing approximate clones. Much atten
has been devoted to the optimal universal cloning mach
for qubits, which prepareM identical approximate clones ou
of N replicas of an unknown qubit, and such that the fide
of the clones is state independent@2#. Cloning machines for
states in ad-dimensional Hilbert space were also inves
gated@3#, as well as continuous-variable cloning machin
@4# for coherent states.

In the limit of an infinite number of clones, the optim
cloning reduces to the optimal quantum measurement. In
context, a very interesting observation has been made
Gisin and Popescu@5#: the information about a direction in
space is better encoded into two orthogonal qubits than
two identical ones. If we possess a two-qubit stateuc,c'&
with ^cuc'&50, then we can estimateuc& with a fidelity
F'5(111/A3)/2'0.789@5,6#. This slightly exceeds the fi
delity of the optimal measurement on a qubit pairuc,c&,
F uu53/4. A similar situation occurs for continuous quantu
variables. A~randomly chosen! position in phase space i
better encoded into a pair of phase-conjugate coherent s
ua,a* & than into a pair of identical statesua,a& @7#. Simi-
larly, ua,a* & gives an advantage when cloning cohere
states: forM large enough,M identical approximate clones o
a coherent stateua& can be prepared with a higher fidelit
from the stateua,a* & than fromua,a& @8#.

Motivated by this result, we were naturally led to tack
the following question: CanM clones of a qubituc& be pro-
duced from an orthogonal qubit pairuc,c'& with a higher
fidelity than from an identical pairuc,c&? In this Rapid
Communication, we answer this question by an affirmati
We present a universal cloning machine acting on an
thogonal qubit pair that approximately implements the tra
formation uc&uc'&→uc& ^ M with the optimal fidelity. Then,
we show that this cloning transformation can be imp
mented probabilistically in quantum optics by use of pa
metric down conversion. Our proposed setup extends
scheme of Simonet al. @9# by feeding both the signal an
idler modes of a nonlinear crystal withuc& anduc'&, respec-
tively.
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Let us first provide a simple argument on why we c
expect the stateuc,c'& to be better cloned thanuc,c&. With
an optimal measurement ofuc,c'&, we can prepareM iden-
tical clones ofuc&, each with a fidelityF' . In contrast, with
a 2→M optimal universal cloning machine, we getF uu(M )
5(3M12)/(4M ) @2#. Clearly, F uu(M ),F' for sufficiently
largeM. Hence, this~nonoptimal! measurement-based clon
ing of uc,c'& is better than the standard cloning ofuc,c&.

Let us now seek for a unitary transformation whichopti-
mally approximates the transformationuc&uc'&→uc& ^ M.
Since we seek a transformation such that the final state o
clones is left invariant by permutations amongst them,
will suppose that the clones lie in the symmetricM-qubit
space. Our motivation, when making this simplifying h
pothesis, is that in the case of quantum cloning, an opti
universal machine can always be chosen to be of this fo
@2#. Moreover, since the set of all states of the formuc&uc'&
span the whole Hilbert space of two qubits, the most gen
transformation is of the form

u i &u j &uR&→(
k50

M

uM ,k&uRi jk&, i , j 50,1, ~1!

whereuR& anduRi jk&, respectively, denote the initial and fina
states of the ancilla, whileuM ,k& (k50, . . . ,M ) denotes a
symmetricM-qubit state withk qubits in stateu0& and M
2k qubits in stateu1&.

The arbitrary state of a qubituc& can be conveniently
written as uc&5d(V)u0&5( idi0(V)u i &, where the matrix
d(V) is given by

d~V!5S cos
q

2
e2 ifsin

q

2

eifsin
q

2
2cos

q

2

D , ~2!

with q andf denoting the usual polar and azimuthal ang
pointing in directionV. The linearity of Eq.~1! implies that
an arbitrary pair of orthogonal qubits transforms according

uc&uc'&→uCout~c!&5(
i jk

di0~V!dj 1~V!uM ,k&uRi jk&. ~3!
©2002 The American Physical Society02-1
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We will measure the quality of the transformation by t
average single-clone fidelityF'(M ). Denoting by Tr1,ancthe
partial trace over the ancilla and all the clones but the fi
one, we get

F'~M !5E dV^cu Tr1,anc@ uCout~c!&^Cout~c!u#uc&

5 (
i 8 j 8k8

(
i jk

^Ri 8 j 8k8uRi jk&Ai jk
i 8 j 8k8 , ~4!

where

Ai jk
i 8 j 8k85(n,n8^n8uTr1@ uM ,k&^M ,k8u#un&*dV dn0~V!

3dn80
* ~V!di0~V!dj 1~V!di 80

* ~V!dj 81
* ~V!.

The coefficientsAi jk
i 8 j 8k8 can be considered as matrix elemen

of an operatorA acting on the spaceH^ K, whereH denotes
the Hilbert space of the two input qubits andK denotes the
Hilbert space of symmetric states ofM output qubits. Simi-

larly, x i jk
i 8 j 8k85^Ri jk uRi 8 j 8k8& define matrix elements of an op

eratorx also acting onH^ K. The formula~4! for the fidelity
thus simplifies to F'(M )5TrH,K@xA#. The operatorx
uniquely represents the completely positive cloning m
which transforms operators supported onH onto operators
supported onK. By definition, the operatorsA and x are
Hermitian and positive semidefinite,A>0 andx>0.

Of course, the transformation~1! should be unitary, which
reads(k^Ri 8 j 8kuRi jk&5d i 8 id j 8 j . This is equivalent to

TrK@x#51H , ~5!

where1H is the identity operator onH. Thus, introducing a

set of Lagrange multipliersl i j
i 8 j 8 for these unitarity con-

straints, our problem amounts to extremize the quantityW
5TrH,K@(A2L)x# under the constraintx>0, whereL5l
^ 1K and l is the matrix of Lagrange multipliers (1K is the
identity operator onK). VaryingW with respect to the eigen
states of the operatorx, we get the extremal equation

~A2L!x50 ~6!

for the optimalx. Following @10#, this equation can be fur
ther transformed into a form suitable for numerical soluti
via repeated applications of

x5L21AxAL21, l5~TrK@AxA# !1/2. ~7!

Note that the matrixl.0 is determined from the unitarity
constraints.

By numerically solving Eq.~7! for M52, . . . ,15, we
have guessed the general solution of Eq.~7!. The transfor-
mation we obtain is

uc,c'&→(
j 50

M

a j ,Mu~M2 j !c, j c'& ^ u~M2 j !c' , j c&, ~8!

where
04030
t

,

a j ,M5~21! jF 1

A2~M11!
1

A3~M22 j !

A2M ~M11!~M12!
G , ~9!

with u j c,(M2 j )c'& denoting a totally symmetric state ofM
qubits wherej qubits are in stateuc& andM2 j qubits are in
stateuc'&. The first M output qubits contain the clones o
stateuc& while the otherM qubits contain the clones ofuc'&
~or anticlones!. We shall prove below that this transformatio
is indeed optimal.

We stress here that the cloning transformation~8! is uni-
tary. Since this is by no means obvious from Eq.~8!, let us
present a proof of this. We can expand any stateu j c,(M
2 j )c'& in the basisuM ,k& as

u j c,~M2 j !c'&5 (
k50

M

ei ( j 2k)fDk j
M~q!uM ,k&. ~10!

We will not need an explicit expression for the functio
Dk j

M(q) here, but will only use some of their propertie
Since the functionsDk j

M(q) are elements of a~real! unitary
matrix, they satisfy the orthogonality relation,

(
j 50

M

Dk j
M~q!Dl j

M~q!5dkl . ~11!

We will also use the following recurrence formula@11#:

~2 j 2M !Dk j
M~q!5~2k2M !cosq Dk j

M~q!

1sinqA~k11!~M2k! Dk11,j
M ~q!

1sinqAk~M2k11! Dk21,j
M ~q!. ~12!

For the purpose of the proof it is convenient to app
( isy)

^ M on the lastM qubits at the output of the clone
Thus, u(M2 j )c' , j c&→(21) j u(M2 j )c* , j c'

* & where
uc* &5( idi0* u i &. Next we expandu(M2 j )c, j c'& and u(M
2 j )c* , j c'

* & in the basisuM ,k& according to Eq.~10!, and
then utilize the recurrence formula~12!. Finally, we can
carry out the sum overj with the help of Eq.~11!, resulting in

uFout~c!&5 (
k50

M

@aM1bM~2k2M !#cos2
q

2
uM ,k& ^ uM ,k&

1 (
k50

M

@aM2bM~2k2M !#sin2
q

2
uM ,k& ^ uM ,k&

1eif(
k50

M

bMA~M2k!~k11!sinquM ,k&

^ uM ,k11&1e2 if(
k50

M

bMAk~M2k11!

3sinquM ,k& ^ uM ,k21&, ~13!

where the coefficientsaM andbM read
2-2
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aM5
1

A2~M11!
, bM5

A3

A2M ~M11!~M12!
.

The four terms on the right-hand side of Eq.~13! are propor-
tional to the output states for the four input basis statesu01&,
u10&, u00&, andu11&, respectively. It is then easy to prove th
the transformation uc,c'&→uFout(c)& preserves scala
products, hence is unitary.

Let us now calculate the fidelity of the clones. We can s
from Eq. ~8! that the cloning machine preserves the symm
try of the input stateuc,c'&, so the clones of both statesuc&
and uc'& have the same fidelity. This state-independ
single-qubit fidelity can be obtained by summing a series

F'~M !5(
j 50

M
M2 j

M
a j ,M

2 . ~14!

After some algebra, we arrive at the expression

F'~M !5 1
2 ~11A~M12!/3M ! . ~15!

Upon comparing this fidelity to that of the optimal cloner f
a pair of identical qubitsF uu(M ), we see thatF uu(M )
>F'(M ) for M<6, while F'(M ).F uu(M ) for M.6 and
the cloner~8! outperforms the standard cloner. We also n
that forM→`, the fidelityF'(M ) tends to the optimal mea
surement fidelityF' , as expected.

The optimality of the cloner can be proved with the he
of techniques adapted from the theory of semidefinite p
gramming@12#. We observe that the trace of Lagrange m
tiplier l provides an upper bound on the achievable fide
F'(M )5TrH,K@xA#. If l ^ 1K2A>0 then it holds for any
x>0 that TrH,K@xl ^ 1K#>TrH,K@xA#. It follows from the
unitarity constraint TrK@x#51H that TrH,K@xl ^ 1K#
5TrH@l# does not depend onx. Thus, TrH@l#
>TrH,K@xA#. From the numerical solution of Eqs.~7! we
have in basisu00&, u11&, u01&, u10&,

l5
F'~M !

6 S 1 0 0 0

0 1 0 0

0 0 2 21

0 0 21 2

D . ~16!

The block-diagonal matrixl ^ 1K2A is positive semidefinite
and has three different eigenvalues which readm1

51/12A(M12)/3M , m251/3A(M12)/3M , and m350.
Since the upper bound TrH@l#5F'(M ) is saturated by our
cloning machine, we conclude that our cloner is optimal.

In the rest of this paper, we will show that the clonin
transformation~8! can be implemented probabilistically vi
stimulated parametric down conversion~PDC!. As we shall
see, many technical difficulties would arise when achiev
this implementation. Nevertheless, our main concern her
to stress that our cloner is, at least in principle, achieva
The experimental setup under consideration is shown in
1. This scheme is a straightforward extension of the se
suggested by Simonet al. @9# where the qubits are repre
04030
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sented by the polarization state of photons. We can iden
u0& with vertical polarization andu1& with horizontal polar-
ization states. In optical PDC, a ‘‘blue’’ photon can split in
a pair of ‘‘red’’ photons. ~This occurs with a probability
which is typically of order 1023.! Traditionally, these daugh
ter photons are referred to as signal and idler, respectively
our setup, three nonlinear crystalsC1 , C2, and C3 are
pumped by a strong laser beam. In crystalsC1 andC2, pairs
of photons can be produced, so we can verify the presenc
signal photons by detecting the idler photons emerging fr
C1 andC2. If a single idler photon is detected on each sid
then we have one signal photon in each beam. The state
these two photons can be manipulated with the help of ph
shifters and polarization rotators in order to prepare the
sired input stateuc,c'&. The two photons then feed the sig
nal and idler modes of a third nonlinear crystalC3, whereM
clones are generated due to the stimulated PDC.

In the limit of strong coherent pumping, the effectiv
Hamiltonian describing the interaction inC3 can be written
as follows@9#:

H5 i\g~aV1
† aH2

† 2aH1
† aV2

† !1H.c., ~17!

where aV1
† and aH1

† denote bosonic creation operators f
photons in the first mode with vertical~V! or horizontal~H!
polarization, and similarlyaV2

† and aH2
† are creation opera

tors for photons in the second spatial mode. The constag
denotes the parametric gain. The time evolution is thus g
erned by the unitary transformationU5exp(2iHt/\). With
the help of the disentangling theorem, we can write the
eratorU in a factorized form

U5eGaV1
† aH2

†
~coshg!2(aV1

† aV11aH2
† aH211)e2GaV1aH2

3e2GaH1
† aV2

†
~coshg!2(aH1

† aH11aV2
† aV211)eGaH1aV2,

whereg5gt and G5tanhg. The Hamiltonian~17! has the
important property of being invariant under general simul
neous SU~2! transformations on the polarization vecto
(aV ,aH! for modes 1 and 2@9#. It is thus sufficient to con-
sider the evolution of a basis stateu1&V1u0&H1u0&V2u1&H2 ~a
single vertically polarized photon in mode 1 and a sing
horizontally polarized photon in mode 2) which represe

FIG. 1. Setup for the cloning of orthogonal qubits via stimulat
parametric down conversion. For a detailed description, see te
2-3
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the input stateuc,c'&[u01&. Making use of the factorized
form of U, we obtain the state at the output of the crystalC3
in the form

(
M50

`

GM21~12G2!(
j 50

M

~21! j@~M2 j !~12G2!2G2#

3uM2 j &V1u j &H1u j &V2uM2 j &H2 , ~18!

where uk& l with l 5V1, H1, V2, and H2 denote the usua
Fock states. For a fixed numberM of photons in each mode
1 and 2, the output state~18! closely resembles the outpu
state of the universal cloning machine~8! with the coeffi-
cients a j ,M(G)'@(M2 j )(12G2)2G2#(21) j . If we mea-
sure the number of photons in mode 2 and detectM photons,
then we know thatM photons representingM approximate
clones of the input qubituc& are present in mode 1. Note th
the output ofC3 is not properly anM-qubit state but ratherM
indistinguishable photons distributed amongst two polari
tion modes. Still, upon using an array of beam-splitt
amongstM different modes, one can probabilistically obta
a properM-qubit state.

In order to calculate the fidelity of these clones, we ins
the properly normalizeda j ,M(G) into formula ~14!. After
some algebra, we obtain

F~M ,y!5
3y222y~2M11!1 3

2 M ~M11!

6y226My1M ~2M11!
, ~19!

where we have introducedy5G2/(12G2)[sinh2g for nota-
tional convenience. The cloning fidelity thus depends on
parametric gaing, so we must optimize this gain in order t
achieve the highest possible fidelity. Upon solvi
]F(M ,y)/]y50 for y, we find that

yopt5
M

2
2

1

2
AM ~M12!

3
. ~20!

By insertingyopt into Eq. ~19!, we recover the optimal fidel
ity ~15!. Furthermore, it can be verified by direct calculati
that with the optimal gain, the postselectedM-photon state at
the output of the crystalC3 coincides with the output of the
cloning machine~8!.
k,

04030
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Even for as low a number of clones as two, the ampl
cation gain corresponding toyopt is significantly larger than
what is achievable with current technology. Moreover, th
is a danger that the parametric approximation yielding
Hamiltonian~17! could fail for such large gains. Fortunatel
one can easily verify that the functionF(M ,y) is slowly
varying with respect toy, that is, nearly optimal cloning
devices can be achieved with realistic gains. For instan
F(2,0)50.9 instead ofF(2,yopt)50.908.

We also would like to note that another difficulty of ou
setup is that it requires overlapping amongst three differ
wave packets. This difficulty is also encountered in the P
implementation of quantum cloning ofN identical qubits.
Techniques to overcome this difficulty are discussed in@9#
and references therein.

This approach of cloning based on PDC can be furt
extended to the approximate realization of the general c
ing transformationuc& ^ Nuc'& ^ N8→uc& ^ M. For N851, we
have been able to derive the optimal fidelity for anyN and
M>N by a similar calculation,

F'~N,M !5
N11

N13
1

3~N21!1AP/~N12!

2M ~N13!
~21!

with P5(N21)(N2215N218)18M (N11)(M132N).
It can be checked that there is again a value ofM above
which this cloner outperforms the standard (N11)→M
cloner. For largeN, however, the advantage becomes m
ginal.

In summary, we have derived a universal cloning tra
formation for orthogonal qubit pairs, and a correspond
probabilisitic experimental scheme has been proposed.
have shown that this transformation achieves a higher fi
ity for M.6 than the standard cloner and thus conclude t
the advantage of orthogonal qubits over identical qubits t
was discovered in the context of measurement also exte
to cloning.

N.J.C. is grateful to C. Simon for helpful discussions. J
acknowledges support from Grant No LN00A015 of t
Czech Ministry of Education, S.I. from the Belgian FRI
foundation, and N.C and S.M. from the European Union u
der Project No. IST-FET-EQUIP.
s

@1# W.K. Wootters and W.H. Zurek, Nature~London! 299, 802
~1982!; D. Dieks, Phys. Lett.92A, 271 ~1982!.
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