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Quantum search by local adiabatic evolution
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The adiabatic theorem has been recently used to design quantum algorithms of a new kind, where the
quantum computer evolves slowly enough so that it remains near its instantaneous ground state, which tends to
the solution. We apply this time-dependent Hamiltonian approach to Grover’s problem, i.e., searching a marked
item in an unstructured database. We find that by adjusting the evolution rate of the Hamiltonian so as to keep
the evolution adiabatic on each infinitesimal time interval, the total running time is of orderAN, whereN is the
number of items in the database. We thus recover the advantage of Grover’s standard algorithm as compared
to a classical search, scaling asN. This is in contrast with the constant-rate adiabatic approach of Farhiet al.
~e-print quant-ph/0001106!, where the requirement of adiabaticity is expressed only globally, resulting in a
time of orderN.
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INTRODUCTION

Although quantum computation is still mostly a theore
cal concept today, many proposals for experimental quan
computing have appeared over the last few years, which h
focused on different implementations of elementary quan
gates as well as on the potential scalability of these imp
mentations~see@1# for a recent review!. On the theoretical
side, several quantum algorithms have been designed
shown to outperform all known classical algorithms, there
giving a strong motivation for the development of quantu
computers. Probably the most spectacular result is Sh
algorithm @2#, which can factor a large number with a com
putation time polynomial in the size of the number, where
all known classical algorithms require a~sub-! exponential
time. Another remarkable algorithm, due to Grover, conce
the problem of searching in an unsorted database@3#. Sup-
pose we have a database ofN items, one of which is marked
The goal is to find this unknown marked item by access
the database a minimum number of times. Classically,N/2
items must be tested, on average, before finding the r
one. Grover’s quantum algorithm performs the same t
with a complexity of orderAN, giving rise to a quadratic
speed up.

While Grover’s algorithm was originally presented with
the standard paradigm for quantum computation, that is,
ing a discrete sequence of unitary logic gates, we will tu
here to another type of quantum computation where the s
of the quantum register evolves continuously under the
fluence of some driving Hamiltonian. This concept of qua
tum computation viewed as a continuous time evolution w
pioneered by Farhi and Gutmann in@4#, where they proposed
an ‘‘analog’’ version of Grover’s algorithm based on a tim
independent Hamiltonian applied for a timeT. Their algo-
rithm requiredT to be of orderAN, which thus gives the
same complexity as Grover’s algorithm. In a more rec
paper with co-workers, they considered an alternative c
of continuous-time quantum algorithms based on a tim
dependent Hamiltonian that effects anadiabaticevolution of
the quantum register@5# ~the concept of adiabatic quantu
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computing is also explored in@6#!. If the evolution of a quan-
tum system is governed by a Hamiltonian that varies slow
enough, this system will stay near its instantaneous gro
state. This adiabatic evolution can then be used to sw
gradually from an initial Hamiltonian, whose ground state
known, to a final Hamiltonian, whose ground state enco
the unknown solution. The time required for this switching
remain globally adiabatic determines the computation tim
Farhi et al. have solved Grover’s search problem using t
adiabatic evolution approach, but this unfortunately resul
in a complexity of orderN, which is no better than a classica
algorithm that simply checks all possible solutions@5#.

In the present article, we show that one can recover
quadratic speed-up of Grover’s original algorithm by co
tinuously adjusting the rate with which the initial Hami
tonian is switched to the final Hamiltonian so as to fulfill th
condition of adiabaticitylocally, i.e. at each time. Interest
ingly, this local adiabatic-evolution approach makes it po
sible to improve the scaling law of the complexity of th
quantum-search algorithm simply by varying the speed
this adiabatic sweep. This offers the perspective of speed
up more sophisticated adiabatic-evolution algorithms, s
as those applied toNP-complete problems@7#. It might also
be used to design an adiabatic-evolution version of
nested quantum-search technique proposed in@8# for solving
structured problems.

ADIABATIC THEOREM

Consider a quantum system in a stateuc(t)&, which
evolves according to the Schro¨dinger equation

i
d

dt
uc~ t !&5H~ t !uc~ t !&, ~1!

whereH(t) is the Hamiltonian of the system~we let \51).
If this Hamiltonian is time independent and the system
initially in its ground state, then it will remain in this state
The adiabatic theorem~see, e.g.,@9#! states that if the Hamil-
tonian varies slowly enough, roughly speaking, the state
©2002 The American Physical Society08-1
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the system will stay close to the instantaneous ground s
of the Hamiltonian at each timet. More specifically, let
uEk ;t& be the eigenstates ofH(t) satisfying

H~ t !uEk ;t&5Ek~ t !uEk ;t&, ~2!

whereEk(t) are the corresponding eigenvalues andk labels
the eigenstates (k50 labels the ground state!. We define the
minimum gap between the lowest two eigenvalues as

gmin5 min
0<t<T

@E1~ t !2E0~ t !# ~3!

and the maximum value of the matrix element ofdH/dt
between the two corresponding eigenstates as

Dmax5 max
0<t<T

U K dH

dt L
1,0
U ~4!

with ^dH/dt&1,05^E1 ;tudH/dtuE0 ;t&. The adiabatic theo-
rem states that if we prepare the system at timet50 in its
ground stateuE0 ;0& and let it evolve under the Hamiltonia
H(t), then

u^E0 ;Tuc~T!&u2>12«2 ~5!

provided that

Dmax

gmin
2

<«, ~6!

where«!1. In particular, this implies that the minimum ga
cannot be lower than a certain value if we require the stat
time t to differ from the instantaneous ground state by
negligible amount~a smaller gap implies a higher transitio
probability to the first excited state!. This result can be use
to design a new type of quantum algorithm based on a ti
dependent Hamiltonian@5#. Assume we can build a Hamil
tonian for which we know that the ground state encodes
solution of a problem. Then, it suffices to prepare the sys
in the ground state of another Hamiltonian, easy to build,
change progressively this Hamiltonian into the other one
order to get, after measurement, the sought solution wi
large probability. The adiabatic theorem imposes the m
mum time it takes for this switching to be adiabatic, and t
time can be thought of as the algorithm complexity.

GLOBAL VS LOCAL ADIABATIC EVOLUTION FOR
SOLVING THE QUANTUM-SEARCH PROBLEM

We now apply this adiabatic-evolution method to t
problem of finding an item in an unsorted database. Bef
describing our local adiabatic-search algorithm, we first su
marize the method of@5#, based on a global adiabatic evol
tion. Consider a set ofN items among which one is marked
the goal being to find it in minimum time. We usen qubits to
label the items, so that the Hilbert space is of dimensionN
52n. In this space, the basis states are written asu i &, with
i 50, . . . ,N21, while the marked state is denoted byum&. As
we do not knowum& a priori, we use as an initial state a
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equal superposition of all basis states

uc0&5
1

AN
(
i 51

N21

u i &. ~7!

More precisely, the Hamiltonian of the system is initial
chosen as

H05I 2uc0&^c0u, ~8!

whose ground state isuc0& with energy zero. Let us suppos
we are also able to apply to our system the Hamiltonian

Hm5I 2um&^mu, ~9!

whose ground state, the marked stateum&, is unknown. The
fact thatHm can be applied without explicitly knowingm is
equivalent to the assumption, in the standard description
Grover’s algorithm, that a quantum ‘‘oracle’’ is availab
~evolving the system withHm during a certain time interva
is roughly equivalent to applying the quantum oracle; s
@10# for a detailed discussion of Grover’s algorithm as
oracle-based algorithm!. The time-dependent Hamiltonia
underlying the algorithm is a linear interpolation betwe
these two Hamiltonians, that is,

H~ t !5~12t/T!H01t/THm , ~10!

or, with s5t/T,

H̃~s!5~12s!H01sHm . ~11!

The algorithm consists in preparing the system in the s
uc(0)&5uc0& and then applying the HamiltonianH(t) dur-
ing a timeT.

Now that our HamiltonianH(t) is well defined, we can
solve the eigenproblem~2! to find the eigenvaluesEk(t) and
eigenstatesuEk ;t&, and then to evaluate the gap~3! and the
matrix element in Eq. ~4!. The eigenvalues ofH̃(s)
5H(sT) are plotted as a function ofs in Fig. 1. The highest
eigenvalueE251 is (N22) times degenerated, while th
two lowest onesE0 and E1 have a degeneracy 1 and a
separated by a gap

g~s!5A124S 12
1

ND s~12s!. ~12!

We note that the minimum gapgmin51/AN is attained fors
51/2.

The matrix element in Eq.~4! can be reexpressed by usin

K dH

dt L
1,0

5
ds

dt K dH̃

dsL
1,0

5
1

T K dH̃

dsL
1,0

~13!

with dH̃/ds5Hm2H0. Bounding the matrix element from
above using

U K dH̃L U<1, ~14!

ds

1,0

8-2
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FIG. 1. Eigenvalues of the

time-dependent HamiltonianH̃(s)
as a function of the reduced times
for N564. ~With the convention
\51, the energy as well as th
reduced time are dimensionles
quantities.!
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we conclude that the adiabatic condition~6! is verified pro-
vided that

T>
N

«
. ~15!

Thus, the computation time is of orderN, and there is no
advantage of this method compared to a classical searc

Now, let us show how to improve on this adiabati
evolution method. One should note that by applying Eq.~6!
globally, i.e., to the entire time intervalT, we impose a limit
on the evolution rate during the whole computation wh
this limit is only severe arounds51/2, where the gapg is
minimum. Thus, by dividingT into infinitesimal time inter-
vals dt and applying the adiabaticity condition locally t
each of these intervals, we can vary the evolution rate c
tinuously in time, thereby speeding up the computation.
other words, we do not use a linear evolution functions(t)
any more, but we adapt the evolution rateds/dt to the local
adiabaticity condition~in a very different context, namely
nuclear magnetic resonance, a similar method known
adiabatic fast passage has been widely used@11#!. Let us find
the optimums(t) with the boundary conditionss(0)50 and
s(T)51. Applying Eq. ~6! to each infinitesimal time inter
val, we get the new condition

Uds

dtU<«
g2~s!

U K dH̃

dsL
1,0
U ~16!

for all times t. Using Eqs.~12! and~14!, we choose to make
the Hamiltonian evolve at a rate that is a solution of

ds

dt
5«g2~s!5«F124

N21

N
s~12s!G , ~17!
04230
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where«!1. After integration, we find

t5
1

2«

N

AN21
@arctan$AN21~2s21!%1arctanAN21#.

~18!

By inverting this function, we obtains(t) as plotted in Fig. 2,
which shows the gradual change in the switching betw
H0 andHm .

We see thatH(t) is changing faster when the gapg(s) is
large while it evolves slower whens is close to 1/2, that is,
where the gap is minimum. We may now evaluate the co
putation time of our new algorithm by takings51, which
gives

T5
1

«

N

AN21
arctanAN21. ~19!

With the approximationN@1, we get

T.
p

2«
AN, ~20!

improving upon Eq.~15!. As a consequence, we obtain
quadratic speed-up with respect to a classical search, so
this algorithm can be viewed as the adiabatic-evolution v
sion of Grover’s algorithm. One can actually perform a mo
accurate calculation that takes into account the exact exp
sion for ^dH̃/ds&1,0 as a function ofs, but this simply
changes the prefactor in Eq.~20! to p/(4«). We have
checked numerically thatT scales asAN for a given error
probability «2 by solving the time-dependent Schro¨dinger
equation up toN5105. It is worth noting that this scaling is
robust against a change in the evolution functions(t). In
particular, if one adds a small component«gmin

2 in Eq. ~17!,
the scaling remains unchanged while the prefactor in
8-3
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FIG. 2. Dynamic evolution of
the Hamiltonian that drives the
initial ground state to the solution
state: plot of the evolution func-
tion s(t) for N564. The global
adiabatic-evolution method of@5#
would appear here as a straig
line betweens(0)50 and s(1)
51.
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of
~20! is increased. In the Appendix, we show that our alg
rithm is optimal, that is, the computation time cannot
shorter thanO(AN) using any other evolution functions(t).

Finally, let us prove that our algorithm can be extended
the case where there is more than one solution~see Fig. 3!.
Let M be the number of solutions. Equation~9! then becomes

Hm5I 2 (
mPM

um&^mu, ~21!

where M is the ensemble of solutions~of size M ). The
HamiltonianH̃(s) remains defined as in Eq.~11! but it has a
new eigenvalueE3, which is (M21) times degenerated
04230
-

o

while E251 is now (N2M21) times degenerated. The e
genvaluesE0 and E1 still have degeneracy 1, but they a
now separated by the gap

g~s!5A124S 12
M

N D s~12s!. ~22!

When applying the adiabatic theorem to this case, one d
not have to consider the eigenstates corresponding toE2 and
E3 because they are totally uncoupled from the ground
first excited states. This is due to the fact that the Hami
nians H0 and Hm are symmetric under the permutation
any two solution states~or two nonsolution states!, and that
the eigenstates corresponding toE0 andE1 are the only ones
e

FIG. 3. Eigenvalues of the

time-dependent HamiltonianH̃(s)
as a function of the reduced times
in the case where there is mor
than one solution, forN564 and
M54.
8-4
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to have this symmetry. Therefore, we see that our previ
reasoning can be applied to this case simply by replacinN
by N/M . The minimum gap is nowgmin5AM /N. By apply-
ing the adiabatic condition~6! globally, we find the following
bound for the computation time:

T>
N

«M
, ~23!

while a local adiabatic evolution reduces this bound to

T.
p

2«
AN

M
. ~24!

CONCLUSION

In this article, we have applied the adiabatic-evoluti
technique of@5# to design a quantum algorithm for solvin
Grover’s problem, i.e., the search for a marked item in
unstructured database. We have shown that applying
adiabatic theorem globally~as in@5#! imposes a running time
of orderN, whereN is the number of items in the databas
whereas adjusting the evolution rate of the Hamiltonian c
tinuously in time so as to fulfill the adiabaticity conditio
locally results in a time of orderAN. We, therefore, recove
the advantage of Grover’s usual algorithm compared t
classical search@3#. This result also extends to the case o
problem with M solutions, for which we obtain a time o
order AN/M . We should notice that this speed up w
achieved by switching the Hamiltonian according to E
~18!, which is only possible because the gapg(s) can be
derived analytically here, and does not depend on the s
tion um& of the problem. As long as these conditions a
satisfied, such a local adiabatic-evolution method could
applied to more complicated—and more realistic—proble
such asNP-complete problems, treated using either a qu
tum adiabatic-evolution algorithm@7# or a nested version o
Grover’s algorithm exploiting the problem structure@8#.
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APPENDIX: PROOF OF OPTIMALITY

In this appendix, we show that using our algorithm,
other choice of the evolution functions(t) could lead to a
better complexity than Eq.~20!. This proof follows closely
the lines of the optimality proof of the ‘‘analog’’ Grover’
algorithm based on a time-independent Hamiltonian@4#.

Let ucm ,t& be the state of our quantum register during t
computation when the solution state isum&. After the com-
putation timeT, the states corresponding to different so
tions (m andm8) must be sufficiently different,

12u^cm ,Tucm8 ,T&u2>« ; mÞm8. ~A1!
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Let us decompose the HamiltonianH̃(s) into two parts

H̃~s!5H̃1~s!1H̃2m~s!, ~A2!

where

H̃1~s!5I 2~12s!uc0&^c0u, ~A3!

H̃2m~s!52sum&^mu. ~A4!

ucm& and ucm8& are solutions of the Schro¨dinger equations

i
d

dt
ucm ,t&5~H11H2m!ucm ,t&, ~A5!

i
d

dt
ucm8 ,t&5~H11H2m8!ucm8 ,t& ~A6!

with initial conditions

ucm,0&5ucm8,0&5uc0&. ~A7!

We will now derive a necessary condition onT for Eq. ~A1!
to be satisfied. Using Eqs.~A5! and ~A6!, we have

d

dt
@12u^cm ,tucm8 ,t&u2# ~A8!

52 Im@^cm ,tuH2m2H2m8ucm8 ,t&^cm8 ,tucm ,t&#
~A9!

<2u^cm ,tuH2m2H2m8ucm8 ,t&uu^cm8 ,tucm ,t&u
~A10!

<2@ u^cm ,tuH2mucm8 ,t&u1u^cm ,tuH2m8ucm8 ,t&u#.
~A11!

Summing overm andm8, we get

d

dt (
m,m8

@12u^cm ,tucm8 ,t&u2# ~A12!

<4 (
m,m8

u^cm ,tuH2mucm8 ,t&u ~A13!

<4 (
m,m8

iH2mucm ,t&iiucm8 ,t&i ~A14!

<4N(
m

iH2mucm ,t&i , ~A15!

where we have used the Cauchy-Schwartz inequality al
with the fact thatucm8 ,t& is normalized. The property

(
m

iH2muc,t&i25s2⇒(
m

iH2muc,t&i<ANs ~A16!
8-5
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then leads to

d

dt (
m,m8

@12u^cm ,tucm8 ,t&u2#<4NANs. ~A17!

We may now integrate this inequality using the initial con
tions ~A7!,

(
m,m8

@12u^cm ,tucm8 ,t&u2#<4NANE
0

T

s~ t !dt.

~A18!

Finally, using condition~A1! and 0<s(t)<1, we find
on
for

y

rin

04230
T>
«

4

N21

AN
~A19!

or, with N@1,

T>
«

4
AN. ~A20!

We conclude that in order to be able to distinguish betwe
states corresponding to different solutions («.0), the com-
putation must last a minimum time of orderAN, which is
what we found in Eq.~20!. Our choice ofs(t) is thus
optimal.
en,
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