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Quantum search by local adiabatic evolution
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The adiabatic theorem has been recently used to design quantum algorithms of a new kind, where the
guantum computer evolves slowly enough so that it remains near its instantaneous ground state, which tends to
the solution. We apply this time-dependent Hamiltonian approach to Grover’s problem, i.e., searching a marked
item in an unstructured database. We find that by adjusting the evolution rate of the Hamiltonian so as to keep
the evolution adiabatic on each infinitesimal time interval, the total running time is of dﬂ,ewhereN is the
number of items in the database. We thus recover the advantage of Grover’s standard algorithm as compared
to a classical search, scaling ldsThis is in contrast with the constant-rate adiabatic approach of Eadi
(e-print quant-ph/0001106where the requirement of adiabaticity is expressed only globally, resulting in a
time of orderN.
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INTRODUCTION computing is also explored {i6]). If the evolution of a quan-
tum system is governed by a Hamiltonian that varies slowly
Although quantum computation is still mostly a theoreti- enough, this system will stay near its instantaneous ground
cal concept today, many proposals for experimental quanturstate. This adiabatic evolution can then be used to switch
computing have appeared over the last few years, which hawgradually from an initial Hamiltonian, whose ground state is
focused on different implementations of elementary quantunknown, to a final Hamiltonian, whose ground state encodes
gates as well as on the potential scalability of these implethe unknown solution. The time required for this switching to
mentations(see[1] for a recent review On the theoretical remain globally adiabatic determines the computation time.
side, several quantum algorithms have been designed arkdhrhi et al. have solved Grover’s search problem using this
shown to outperform all known classical algorithms, therebyadiabatic evolution approach, but this unfortunately resulted
giving a strong motivation for the development of quantumin a complexity of ordeN, which is no better than a classical
computers. Probably the most spectacular result is Shoriglgorithm that simply checks all possible solutid5s.
algorithm[2], which can factor a large number with a com-  In the present article, we show that one can recover the
putation time polynomial in the size of the number, whereagjuadratic speed-up of Grover’s original algorithm by con-
all known classical algorithms require (auby exponential tinuously adjusting the rate with which the initial Hamil-
time. Another remarkable algorithm, due to Grover, concerngonian is switched to the final Hamiltonian so as to fulfill the
the problem of searching in an unsorted dataj83eSup-  condition of adiabaticitylocally, i.e. at each time. Interest-
pose we have a databaseMitems, one of which is marked. ingly, this local adiabatic-evolution approach makes it pos-
The goal is to find this unknown marked item by accessingsible to improve the scaling law of the complexity of the
the database a minimum number of times. ClassicAllz ~ quantum-search algorithm simply by varying the speed of
items must be tested, on average, before finding the rigthis adiabatic sweep. This offers the perspective of speeding
one. Grover’s quantum algorithm performs the same taskip more sophisticated adiabatic-evolution algorithms, such
with a complexity of orderyN, giving rise to a quadratic as those applied thiP-complete problem§7]. It might also
speed up. be used to design an adiabatic-evolution version of the
While Grover’s algorithm was originally presented within nested quantum-search technique proposé¢8é]ifor solving
the standard paradigm for quantum computation, that is, usstructured problems.
ing a discrete sequence of unitary logic gates, we will turn
here to another type of quantum computation where the state ADIABATIC THEOREM
of the quantum register evolves continuously under the in-
fluence of some driving Hamiltonian. This concept of quan- Consider a quantum system in a staigt)), which
tum computation viewed as a continuous time evolution wagVvolves according to the Scldiager equation
pioneered by Farhi and Gutmann[4], where they proposed
an “analog” version of Grover’s algorithm based on a time-
independent Hamiltonian applied for a tinfe Their algo-
rithm requiredT to be of orderyN, which thus gives the
same complexity as Grover’'s algorithm. In a more recenwhereH(t) is the Hamiltonian of the systefe letZ=1).
paper with co-workers, they considered an alternative clasg this Hamiltonian is time independent and the system is
of continuous-time quantum algorithms based on a timeinitially in its ground state, then it will remain in this state.
dependent Hamiltonian that effects adiabaticevolution of ~ The adiabatic theorerfsee, e.g.[9]) states that if the Hamil-
the quantum regist€i5] (the concept of adiabatic quantum tonian varies slowly enough, roughly speaking, the state of
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the system will stay close to the instantaneous ground statqual superposition of all basis states

of the Hamiltonian at each timé More specifically, let N1
|Ey;t) be the eigenstates &f(t) satisfying 1«

|1//o>:\/_—2 ). (7)

H(DIEq ) =Ex(D)]Ex:t), 2 N =t

WhereEk(t) are the Corresponding eigenva|ues &nldbels More preCisely, the Hamiltonian of the system is |n|t|a”y
the eigenstatesk 0 labels the ground stateWe define the ~ chosen as
minimum gap between the lowest two eigenvalues as

Ho=1—[to){#ol, (8)
in= min [E(t) —Eg(t 3
Grmin OstsT[ 1)~ Eolt)] ® whose ground state |8/,) with energy zero. Let us suppose

we are also able to apply to our system the Hamiltonian
and the maximum value of the matrix element difl/dt

between the two corresponding eigenstates as Hp=1—|m){m|, (9
whose ground state, the marked state, is unknown. The
) fact thatH,,, can be applied without explicitly knowingn is

dH
dt/
’ equivalent to the assumption, in the standard description of
with (dH/dt); o=(E;;t|dH/dt|Eq;t). The adiabatic theo- Grovers algorithm, that a quantum “oracle” is available
rem states that if we prepare the system at ttm@® in its  (evolving the system witl ,, during a certain time interval

ground statéE,;0) and let it evolve under the Hamiltonian S roughly equivalent to applying the quantum oracle; see
H(t), then [10] for a detailed discussion of Grover's algorithm as an

oracle-based algorithm The time-dependent Hamiltonian
(Eq;T|(T))|?=1—¢2 (5)  underlying the algorithm is a linear interpolation between
these two Hamiltonians, that is,

D hax= max
o=t=T

provided that

H(t)=(1—t/T)Ho+t/THp, (10
D
<e, (6)  or, with s=t/T,
gmin
wheree<1. In particular, this implies that the minimum gap H(S)=(1=S)Ho+SHn. @y

cannot be lower than a certain value if we require the state althe algorithm consists in preparing the system in the state

time t to differ from the instantaneous ground state by a e . N s
negligible amounta smaller gap implies a higher transition !#éoa)ii?ntb'? and then applying the Hamiltonia(t) dur

probability to the first excited stateThis result can be used Now that our HamiltoniarH(t) is well defined, we can

to design a new type of quantum algorithm based on a time- . . .
depengent Hamili/(?niaEB?. Assume \?ve can build a Hamil- solve the eigenproblerf?) to find the eigenvalue,(t) and

tonian for which we know that the ground state encodes thg'ge?State$Ek’t>’ .and then to evalugte the g&p) anij the
solution of a problem. Then, it suffices to prepare the systenflalrix _element in Eq.(4). The eigenvalues ofH(s)

in the ground state of another Hamiltonian, easy to build, and= H(sT) are plotted as a function afin Fig. 1. The highest
change progressively this Hamiltonian into the other one irfigenvalueE;=1 is (N—2) times degenerated, while the
order to get, after measurement, the sought solution with §v0 lowest onesE, and E; have a degeneracy 1 and are
large probability. The adiabatic theorem imposes the minisSeparated by a gap
mum time it takes for this switching to be adiabatic, and this

time can be thought of as the algorithm complexity. g(s)= \/1_4( 1- N) s(1—s). (12)

GLOBAL VS LOCAL ADIABATIC EVOLUTION FOR o _ )

SOLVING THE QUANTUM-SEARCH PROBLEM We note that the minimum gag,,=1/\N is attained fors
=1/2.

We now apply this adiabatic-evolution method to the The matrix element in Eq4) can be reexpressed by using
problem of finding an item in an unsorted database. Before ~ ~
describing our local adiabatic-search algorithm, we first sum- d_H :d_s d_H :1 d_H (13)
marize the method df5], based on a global adiabatic evolu- dt 10 dt\ ds 10 T\ ds 10

tion. Consider a set dfl items among which one is marked,

the goal being to find it in minimum time. We usequbits to  ith gF/ds=H,,—H,. Bounding the matrix element from

label the items, so that the Hilbert space is of dimenfon  46ve using

=2". In this space, the basis states are writteni pswith

i=0,...N—1, while the marked state is denoted|by). As ‘ <d~H>
1,0

we do not know|m) a priori, we use as an initial state an ds <1, (14
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we conclude that the adiabatic conditi(8) is verified pro- wheree<1. After integration, we find
vided that

N t= X L[arctaﬁ{ JYN—1(2s—1)}+arctanyN—1].
;.

T= (15) 2e \N—-1 19

Thus, the computation time is of ord&, and there is no By inverting this function, we obtais(t) as plotted in Fig. 2,

advantage of this method compared to a classical search. Which shows the gradual change in the switching between
Now, let us show how to improve on this adiabatic- Ho andHp,.

evolution method. One should note that by applying &. We see thaH(t) is changing faster when the gags) is

globally, i.e., to the entire time interval we impose a limit  large while it evolves slower whesiis close to 1/2, that is,

on the evolution rate during the whole computation whilewhere the gap is minimum. We may now evaluate the com-

this limit is only severe around=1/2, where the gag is  putation time of our new algorithm by taking=1, which

minimum. Thus, by dividingT into infinitesimal time inter-  gives

vals dt and applying the adiabaticity condition locally to

each of these intervals, we can vary the evolution rate con-

tinuously in time, thereby speeding up the computation. In

other words, we do not use a linear evolution functgt)

any more, but we adapt the evolution ratg/dt to the local  With the approximatiolN>1, we get

adiabaticity condition(in a very different context, namely,

nuclear magnetic resonance, a similar method known as ™

adiabatic fast passage has been widely (i&&f. Let us find T= Z\/ﬁ

the optimums(t) with the boundary conditions(0)=0 and

s(T)=1. Applying Eq.(6) to each infinitesimal time inter- improving upon Eq.(15). As a consequence, we obtain a

1 N
€ JyN—-1

arctan/N—1. (19

(20

val, we get the new condition guadratic speed-up with respect to a classical search, so that
this algorithm can be viewed as the adiabatic-evolution ver-
ds g%(s) sion of Grover’s algorithm. One can actually perform a more

’a <e (16)  accurate calculation that takes into account the exact expres-

<d_H> sion for (dH/ds); o as a function ofs, but this simply
ds/ changes the prefactor in Eq20) to w/(4e). We have
checked numerically thaf scales as/N for a given error
for all timest. Using Egs(12) and(14), we choose to make probability ¢? by solving the time-dependent ScHinger
the Hamiltonian evolve at a rate that is a solution of equation up tdN=10. It is worth noting that this scaling is
robust against a change in the evolution functggn). In
particular, if one adds a small compones?,  in Eq. (17),
the scaling remains unchanged while the prefactor in Eq.

N—-1
1-4——5(1-5)

N , (17

ds )
ar°9Y (s)=e
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S state: plot of the evolution func-
tion s(t) for N=64. The global
0.4 r ] adiabatic-evolution method ¢6]
would appear here as a straight
line betweens(0)=0 and s(1)
0.2 | ] =1.
0 1 1 1 1 1
0 2 4 6 8 10

(20) is increased. In the Appendix, we show that our algo-while E,=1 is now (N—M —1) times degenerated. The ei-
rithm is optimal, that is, the computation time cannot begenvaluesE, and E; still have degeneracy 1, but they are
shorter tharO(\/N) using any other evolution functios(t). now separated by the gap

Finally, let us prove that our algorithm can be extended to

the case where there is more than one solutsae Fig. 3. _ \/ M
Let M be the number of solutions. Equati®) then becomes g(s)=\1-4{ 1~ N s(1-s).

(22

When applying the adiabatic theorem to this case, one does
Hp=1— 2 |m)(m], (21 not have to consider the eigenstates corresponditig, tand
meM E; because they are totally uncoupled from the ground and
first excited states. This is due to the fact that the Hamilto-
where M is the ensemble of solution®f size M). The  njansH, and H,, are symmetric under the permutation of
HamiltonianH (s) remains defined as in E4L1) butithasa any two solution stater two nonsolution statgsand that
new eigenvalueE;, which is (M —1) times degenerated, the eigenstates correspondingggandE; are the only ones

1 .2 T T T T
1 -+ -+ HH-+
0.8 f S -
\ /,——"'/ FIG. 3. Eigenvalues of the
E 06 | T - EQ —— 4 time-dependent Hamiltonialf (s)
E1 - as a function of the reduced tinse
E2 + in the case where there is more
04 [fe J—— i than one solution, foN=64 and
. M=4,
02 r 4
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
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to have this Symmetry. Therefore, we see that our preViOUEet us decompose the Ham”toni&}(s) into two parts
reasoning can be applied to this case simply by replaking

by N/M. The minimum gap is now,,=+vM/N. By apply- H(s)=Hy(s)+Hon(s), (A2)
ing the adiabatic conditio(®6) globally, we find the following
bound for the computation time: where
- 23 Hi(s)=1=(1=9)|vo)(wol. (A3)
cM
Ham(s)=—s/m)(m|. (A4)

while a local adiabatic evolution reduces this bound to

B W\/ﬁ
T= i (24

CONCLUSION

|my and| i) are solutions of the Schdinger equations

d
i&|‘/’m1t>:(Hl+H2m)|¢mvt>v (A5)

d

In this article, we have applied the adiabatic-evolution iahﬂm’ ANy=(H1+Hom) | mr ,t) (AB)
technique of{5] to design a quantum algorithm for solving
Grover’s problem, i.e., the search for a marked item in anyith initial conditions
unstructured database. We have shown that applying the
adiabatic theorem globallias in[5]) imposes a running time
of orderN, whereN is the number of items in the database, |0 = | 0 = | ). (A7)
whereas adjusting the evolution rate of the Hamiltonian con-
tinuously in time so as to fulfill the adiabaticity condition \we will now derive a necessary condition @rfor Eq. (A1)
locally results in a time of ordey/N. We, therefore, recover to be satisfied. Using Eq$A5) and (A6), we have
the advantage of Grover’s usual algorithm compared to a
classical searcf3]. This result also extends to the case of a d 5
problem with M solutions, for which we obtain a time of a[1—|<¢m,t|¢/m/ 7] (A8)
order YN/M. We should notice that this speed up was
achieved by switching the Hamiltonian according to Eq. — _ N ,
(18), which is only possible because the ggfs) can be 2 1ML (Yrm 1 Hom = Hom [ )bt o )] 9)
derived analytically here, and does not depend on the solu-
tion |m) of the problem. As long as these conditions are <2|(thmt|Ham— Hom | O o t] thm 1)
satisfied, such a local adiabatic-evolution method could be (A10)
applied to more complicated—and more realistic—problems
such asNP-complete problems, treated using either a quan- < 2[|( ¢ ,t|Homl ¥m s O]+ [{ b t | Home | s ]
tum adiabatic-evolution algorithifi¥] or a nested version of (A
Grover'’s algorithm exploiting the problem structy&.

Summing ovemrm andm’, we get
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APPENDIX: PROOF OF OPTIMALITY

In this appendix, we show that using our algorithm, no <4 2 IH 2| o O] e O] (A14)
m,m

other choice of the evolution functiog(t) could lead to a

better complexity than Eq20). This proof follows closely

the lines of the optimality proof of the “analog” Grover’s s4NE [Hom| om0l (A15)
algorithm based on a time-independent Hamiltorjiéh m

Let|¢n,,t) be the state of our quantum register during the ) ]
computation when the solution state|is). After the com- where we have used the Cauchy-Schwartz inequality along

putation timeT, the states corresponding to different solu-With the fact thaf i, ,t) is normalized. The property
tions (m andm’) must be sufficiently different,

2_2 -
Tl e ¥ mem. @D S [Hanl #0IP=5= 3 [Hanl i) < Ns (A16)
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then leads to e N—1
T=— — Al
d 4 N (A19)
gt 2 [1= [ tlym DIPI=4NVNS. (AL7)
m,m’ or, with N>1,
We may now integrate this inequality using the initial condi- e
tions (A7), T= Z\/N : (A20)

We conclude that in order to be able to distinguish between

states corresponding to different solutiorzs<0), the com-
(A18)  putation must last a minimum time of ordgiN, which is

what we found in EQq.(20). Our choice ofs(t) is thus

.
2 1=t ,t>|2]s4ijo s(tydt.

Finally, using condition/Al) and O<s(t)<1, we find optimal.
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