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Bell inequalities resistant to detector inefficiency
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We derive both numerically and analytically Bell inequalities and quantum measurements that present
enhanced resistance to detector inefficiency. In particular, we describe several Bell inequalities which appear to
be optimal with respect to inefficient detectors for small dimensionalityd52,3,4 and two or more measure-
ment settings at each side. We also generalize the family of Bell inequalities described by Collinset al. @Phys.
Rev. Lett. 88, 040404~2002!# to take into account the inefficiency of detectors. In addition, we consider the
possibility for pairs of entangled particles to be produced with probability less than 1. We show that when the
pair production probability is small, one should in general use different Bell inequalities than when the pair
production probability is high.
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I. INTRODUCTION

A striking feature of quantum entanglement is nonlocal
Indeed, as first shown by Bell in 1964@1# classical local
theories cannot reproduce all the correlations exhibited
entangled quantum systems. This nonlocal character of
tangled states is demonstrated in Einstein-Podolsky-Ro
~EPR! type experiments through the violation of Bell in
equalities. However due to experimental imperfections a
technological limitations, Bell tests suffer from loophol
that allow, in principle, the experimental data to be rep
duced by a local realistic description. The most famous
these loopholes are the locality loophole and the detec
loophole @17#. Experiments carried on photons have clos
the locality loophole@2# and recently Roweet al. closed the
detection loophole using trapped ions@3#. But so far, 30
years since the first experiments, both loopholes have
been closed in asingleexperiment.

The purpose of this paper is to study how one can de
new tests of nonlocality capable of lowering the detec
efficiency necessary to reject any local realistic hypothe
This could be a way towards a loophole-free test of B
inequalities and is important for several reasons. First,
quantum entanglement is the basic ingredient of quan
information processing, it is highly desirable to possess
disputable tests of its properties such as nonlocality. Eve
one is convinced~as we almost all are! that nature is quan
tum mechanical, we can imagine practical situations wher
would be necessary to perform loophole-free tests of B
inequalities. For example, suppose you buy a quantum c
tographic device based on the Ekert protocol. The securit
your cryptographic apparatus relies on the fact that you
violate Bell inequalities with it. But if the detectors efficien
cies are not sufficiently high, the salesman can exploit it a
sell to you a classical device that will mimic a quantu
device but which will enable him to read all your correspo
dence@4#. Other reasons to study the resistance of quan
tests to detector inefficiencies are connected to the clas
cation of entanglement. Indeed an important classification
entanglement is related to quantum nonlocality. One p
1050-2947/2002/66~5!/052112~12!/$20.00 66 0521
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posed criterion to gauge how much nonlocality is exhibit
by quantum correlations is the resistance to noise. Thi
what motivated the series of works@5,6# that led to the gen-
eralization of the CHSH inequality@12# to higher-
dimensional systems@7#. The resistance to inefficient detec
tors is a second and different criterion that we analyze in
paper. It is closely related to the amount of classical comm
nication required to simulate quantum correlations@8#.

The idea behind the detection loophole is that in the pr
ence of unperfect detectors, local hidden variable theo
can ‘‘mask’’ results in contradiction with quantum mechani
by telling the detectors not to fire. This is at the origin
several local hidden variable models able to reproduce
ticular quantum correlations if the detector efficiencies
below some threshold valueh* ~see Refs.@9–11#, for ex-
ample!.

In this paper, we introduce two parameters that determ
whether a detector will fire or not:h, the efficiency of the
detector, andl, the probability that the pair of particles i
produced by the source of entangled systems. This last
rameter may be important, for instance, for sources involv
parametric down-conversion, wherel is typically less than
10%. So far, discussions on the detection loophole were c
centrating onh, overlookingl. However we will show be-
low that both quantities play a role in the detection looph
and clarify the relation between these two parameters
particular, we will introduce two different detector thres
olds: h

*
l , the value above which quantum correlations e

hibit nonlocality for givenl, and h
*
;l , the value above

which quantum correlations exibit nonlocality for anyl.
We have written a numerical algorithm to determine the

two thresholds for given quantum state and quantum m
surements. We concentrated on the two extreme casesh

*
l51

and h
*
;l. We searched for optimal measurements such

h
*
l51 andh

*
;l acquire the lowest possible value.

In the case of bipartite two dimensional systems the m
important test of nonlocality is the CHSH inequality@12#.
Quantum mechanics violates it if the detector efficiencyh is
above 52/(A211)'0.8284 for the maximally entangle
state of two qubits. In the limit of large-dimensional system
and large number of settings, it is shown in Ref.@8# that the
©2002 The American Physical Society12-1
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efficiency threshold can be arbitrarily lowered. This sugge
that the way to devise optimal tests with respect to the re
tance to detector inefficiencies is to increase the dimen
of the quantum systems and the number of differents m
surements performed by each party on these systems.~This
argument is presented in more details in Ref.@11#!. We have
thus performed numerical searches for increasing dimens
and number of settings starting from the two-qubit, tw
settings situation of the CHSH inequality. Our results co
cern a specific kind of measurement, namely ‘‘multipo
beam-splitter measurements’’@13#, performed on maximally
entangled states. They are summarized in Table I. Par
these results are accounted for by existing Bell inequalit
the other part led us to introduce new Bell inequalities.

The main conclusions that can be drawn from this wo
are as follows:

~1! Even in two dimensions, one can improve the res
tance to inefficient detectors by increasing the number
settings.

~2! One can further increase the resistance to detec
inefficiencies by increasing the dimension.

~3! There are different optimal measurements settings
Bell inequalities for a source that produces entangled p
ticles with high probability (l'1) and one that produce
them extremely rarely (l→0). Bell inequalities associate
with this last situation provide a detection threshold that d

TABLE I. Optimal threshold detector efficiency for varying d
mensiond and number of settings (Na3Nb) for the detectors.h

*
l51

is the threshold efficiency for a source such that the pair produc
probabilityl51, whileh

*
;l is the threshold efficiency independe

of l. The columnp gives the amount of white noisep that can be
added to the entangled state so that it still violates locality~we use
for p the same definition as that given in Refs.@5,6#!. The last
column refers to the Bell inequality that reproduces the detec
threshold. Except for the cased5`, these thresholds are the resu
of a numerical optimization carried out over the set of multip
beam-splitter measurements.

d Na3Nb h
*
l51 h

*
;l p Bell inequality

2 232 0.8284 0.8284 0.2929 CHSH
2 333 0.8165 0.2000 Present paper

~see also Refs.@1,19#!
2 333 0.8217 0.2859 Present paper
2 334 0.8216 0.2862 Present paper
2 434 0.8214 0.2863 Present paper
3 232 0.8209 0.8209 0.3038 Based on Ref.@7#

3 233 0.8182 0.8182 0.2500 Present paper
~related to Ref.@18#!

3 333 0.8079 0.2101 Present paper
3 333 0.8146 0.2971 Present paper
4 232 0.8170 0.8170 0.3095 Based on Ref.@7#

4 233 0.8093 0.2756 Present paper
4 333 0.7939 0.2625 Present paper
5 232 0.8146 0.8146 0.3128 Based on Ref.@7#

6 232 0.8130 0.8130 0.3151 Based on Ref.@7#

7 232 0.8119 0.8119 0.3167 Based on Ref.@7#

` 232 0.8049 0.8049 0.3266 Based on Ref.@7#
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not depend on the value of the pair production probabilit
~4! For the measurement scenarios numerically acc

sible, only small improvements in threshold detector e
ciency are achieved. For instance the maximum chang
threshold detector efficiency we found is'4%

The paper is organized as follows. First, we review brie
the principle of an EPR experiment in Sec. II A and und
which condition such an experiment admits a local-realis
description in Sec. II B. In Sec. II C we clarify the rol
played byh andl in the detection loophole. We then prese
the technique we used to perform the numerical searche
Sec. II D and to construct the Bell inequalities presented
this paper in Sec. II E. Section III contains our results.
particular in, Sec. III A we generalize the family of inequa
ties introduced in Ref.@7# to take into account detection in
efficiencies and in Sec. III C we present the two differe
Bell inequalities associated with the two-dimensional 333
settings measurement scenario. In the Appendix, we co
all the measurement settings and Bell inequalities we h
obtained.

II. GENERAL FORMALISM

A. Quantum correlations

Let us review the principle of an a EPR experiment: tw
parties, Alice and Bob, share an entangled staterAB . We
take each particle to belong to ad-dimensional Hilbert space
The parties carry out measurements on their particles. A
can choose betweenNa different von Neumann measure
mentsAi ( i 51, . . . ,Na) and Bob can choose betweenNb
von Neumann measurementsBj ( j 51, . . . ,Nb). Let k and l
be Alice’s and Bob’s outcomes. We suppose that the num
of possible outcomes is the same for each party and tha
values ofk and l belong to$0, . . . ,d21%. To each measure
ment Ai is thus associated a complete set ofd orthogonal
projectorsAi

k5uAi
k&^Ai

ku and similarly forBj . Quantum me-
chanics predicts the following probabilities for the outcom

Pkl
QM~Ai ,Bj !5Tr@~Ai

k
^ Bj

l !rab#,

Pl
QM~Bj !5Tr@~1A^ Bj

l !rab#,

Pk
QM~Ai !5Tr@~Ai

k
^ 1B!rab#. ~1!

In a real experiment, it can happen that the measurem
gives no outcome due to detector inefficiencies, losses
because the pair of entangled states has not been prod
To take into account these cases in the most general way
enlarge the space of possible outcomes and add a new
come, the ‘‘no-result outcome,’’ which we label 0”. Quantum
mechanics now predicts a modified set of correlations:

Plh
QM~Ai5k,Bj5 l !5lh2Pkl

QM~Ai ,Bj !, k,lÞ0”,

Plh
QM~Ai50”,Bj5 l !5lh~12h!Pl

QM~Bj !, lÞ0”,

Plh
QM~Ai5k,Bj50”!5lh~12h!Pk

QM~Ai !, kÞ0”,

Plh
QM~Ai50”,Bj50”!512l1l~12h!2, ~2!

n

n

t
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whereh is the detector efficiency andl is the probability
that a pair of particles is produced by the source of entang
systems. By detection efficiencyh we mean the probability
that the detector gives a result if a particle was produced,
h includes not only the ‘‘true’’ efficiency of the detector bu
also all possible losses of the particle on the path from
source to the detectors.

B. Local hidden variable theories and Bell inequalities

Let us now define when the results~2! of an EPR experi-
ment can be explained by a local hidden variable~LHV !
theory. In a LHV theory, the outcome of Alice’s measur
ment is determined by the settingAi of Alice’s measuremen
apparatus and by a random variable shared by both parti
This result should not depend on the setting of Bob’s m
surement apparatus if the measurements are carried o
spatially separated locations. The situation is similar
Bob’s outcome. We can describe without loss of genera
such a local variable theory by a set of (d11)Na1Nb prob-
abilities pK1•••KNa

L1•••LNb
, where Alice’s local variablesKi

P$0, . . . ,d21,0”% specify the result of the measurementAi
and Bob’s variablesL jP$0, . . . ,d21,0”% specify the result of
measurementBj . The correlationsP(Ai5K,Bk5L) are ob-
tained from these joint probabilities as marginals. The qu
tum predictions can then be reproduced by the LHV theor
and only if the following NaNb(d11)2 equations are
obeyed:

(
KL

pKL dKi ,KdL j ,L5Plh
QM~Ai5K,Bj5L !, ~3!

with the conditions

(
KL

pKL 51, ~4!

pKL >0, ~5!

where we have introduced the notationK5K1 . . . KNa
and

L5L1 . . . LNb
. Note that Eqs.~3! are not all independen

since quantum and classical probabilities share additio
constraints such as the normalization conditions

(
K,L

P~Ai5K,Bj5L !51, ~6!

or the no-signalling conditions

P~Ai5K !5(
L

P~Ai5K,Bj5L ! ; j , ~7!

and similarly forBj .
An essential result is that the necessary and sufficient c

ditions for a given probability distributionPQM to be repro-
ducible by a LHV theory can be expressed, alternatively
the Eqs.~3!, as a set of linear inequalities forPQM, the Bell
inequalities@22#. They can be written as
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I 5I rr 1I 0”r1I r0”1I 0”0”<c, ~8!

where

I rr 5(
i , j

(
k,lÞ0”

ci j
klP~Ai5k,Bj5 l !,

I 0”r5(
i , j

(
lÞ0”

ci j
0” l P~Ai50”,Bj5 l !,

I r0”5(
i , j

(
kÞ0”

ci j
k0”P~Ai5k,Bj50”!,

I 0”0”5(
i , j

ci j
0”0”P~Ai50”,Bj50”!. ~9!

For certain values ofh andl, quantum mechanics can vio
late one of the Bell inequalities~8! of the set. Such a viola-
tion is the signal for experimental demonstration of quant
nonlocality.

C. Detector efficiency and pair production probability

For a given quantum-mechanical probability distributi
PQM and given pair production probabilityl, the maximum
value of the detector efficiencyh for which there exists a
LHV variable model will be denotedh

*
l (PQM). It has been

argued@9,14# that h* should not depend onl. The idea
behind this argument is that the outcomes (0”,0”) obtained
when the pair of particles is not created are trivial and he
it seems safe to discard them. A more practical reason is
the pair production rate is rarely measurable in experime
Whatever the case, the logical possibility exists that the L
theory can exploit the pair production rate. Indeed, we w
show below that this is the case when the number of sett
of the measurement apparatus is larger than two. This m
vates our definition of threshold detection efficiency valid f
all values ofl,

h
*
;l5max

lÞ0
~h

*
l !5 lim

l→0
h

*
l . ~10!

The second equality follows from the fact that if a LH
model exists for a given value ofl it trivially also exists for
a lower value ofl.

Let us study now the structure of the Bell expressi
I (QM) given by quantum mechanics. This will allow us
derive an expression forh

*
;l . Inserting the quantum prob

abilities ~2! into the Bell expression of Eq.~8!, we obtain

I (QM)5lh2I rr
QM1lh~12h!I 0”r

QM1lh~12h!I r0”
QM

1@11l~h222h!#(
i , j

ci j
0”0” , ~11!

where I rr
QM is obtained by replacingP(Ai5k,Bj5 l ) with

Pkl
QM(Ai ,Bj ) in I rr and I 0”r

QM by replacingP(Ai50”,Bj5 l )
with Pl

QM(Bj ) in I 0”r and similarly forI r0”
QM .
2-3
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For h50, we know there exists a trivial LHV model an
so the Bell inequalities cannot be violated. Replacingh by 0
in Eq. ~11! we therefore deduce that

(
i , j

ci j
0”0”<c. ~12!

This divides the set of Bell inequalities into two group
those such that( i , j ci j

0”0”,c and those for which( i , j ci j
0”0”5c.

Let us consider the first group. For smalll, these inequali-
ties will cease to be violated. Indeed, takeh51 ~which is the
maximum possible value of the detector efficiency!, then Eq.
~11! reads

I (QM)5lI rr
QM1~12l!(

i , j
ci j

0”0” . ~13!

The condition for violation of the Bell inequality isI (QM)
.c. But since( i , j ci j

0”0”,c, for sufficiently smalll we will
have I (QM),c and the inequality will not be violated
These inequalities can therefore not be used to deriv
thresholdh

*
;l that does not depend onl, but they are still

interesting and will provide a thresholdh
*
l depending onl.

Let us now consider the inequalities such that( i , j ci j
0”0”5c.

Thenl cancels in Eq.~11! and the condition for violation of
the Bell inequality is thath must be greater than

h
*
;l~PQM!5

2c2I 0”r
QM2I r0”

QM

c1I rr
QM2I 0”r

QM2I r0”
QM

~14!

independently ofl
It is interesting to note that if quantum mechanics viola

a Bell inequality for perfect sourcesl51 and perfect detec
tors h51, then there exists a Bell inequality that will b
violated forh,1 andl→0. That is there necessarily exis
a Bell inequality that is insensitive to the pair producti
probability. Indeed the violation of a Bell inequality in th
casel51, h51 implies that there exists a Bell expressi
I rr such thatI rr (QM).c with c the maximum value ofI rr
allowed by LHV theories. Then let us build the followin
inequality:

I 5I rr 1I r0”1I 0”r1(
i , j

ci j
0”0”P~Ai50”,Bj50”!<c, ~15!

where ( i , j ci j
0”0”5c and we take inI r0” and I 0”r sufficiently

negative terms to ensure thatI<c. For this inequality,
h

*
;l5(2c2I 0”r

QM2I r0”
QM)/(c1I rr

QM2I 0”r
QM2I r0”

QM),1, which
shows that Bell inequalities valid;l always exist. One can
in principle, optimize this inequality by takingI r0” and I 0”r as
large as possible while ensuring that Eq.~15! is obeyed.

From the experimentalist’s point of view, Bell tests i
volving inequalities that depend onl need all events to be
taken into account, including (0”,0”) outcomes, while in tests
involving inequalities insensitive to the pair production pro
ability, it is sufficient to take into account events where
least one of the parties produces a result, i.e., double n
detection events (0”,0”) can be discarded. Indeed, first no
05211
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that one can always use the normalization conditions~6! to
rewrite a Bell inequality such as Eq.~8! in a form where the
term I 0”0” does not appear. Second, when( i , j ci j

0”0”5c, this
yields an inequality of the formI rr 1I 0”r1I r0”<0 which we
can rewrite as (I rr 1I 0”r1I r0”) / [l„12(12h)2

…]<0 where
l„12(12h)2

…5P(AiÞ0” or BjÞ0”) is the probability that at
least one detector clicks. Thus we obtain a new inequa
expressed in term of the ratios [P(Ai5k,Bj5 l )] / [ P(Ai
Þ0” or BjÞ0”)] , so that to check it one need only consid
events where at least one detector fires.

D. Numerical search

We have carried numerical searches to find measurem
such that the thresholdsh

*
l51 and h

*
;l acquire the lowest

possible value. This search is carried out in two steps. F
of all, for given quantum-mechanical probabilities, we ha
determined the maximum value ofh for which there exists a
local hidden variable theory. Second we have searched
the set of multiport beam-splitter measurements to find
minimum values ofh* .

In order to carry out the first step, we have used the f
that the question of whether there are classical joint pr
abilities that satisfy Eq.~3! with the conditions~4!,~5! is a
typical linear optimization problem for which there exist e
ficient algorithms@15#. We have written a program tha
given l, h and a set of quantum measurements, determ
whether Eq.~3! admits a solution or not.h

*
l is then deter-

mined by performing a dichotomic search on the maxim
value ofh, so that the set of constraints is satisfied.

However when searching forh
*
;l it is possible to dis-

pense with the dichotomic search by using the followi
trick. First of all because all the equations in Eq.~3! are not
independent, we can remove the constraints that involve
the right-hand side the probabilitiesP(Ai50”,Bj50”). Sec-
ond we define rescaled variablesl@12(12h)2# p̃KL
5pKL . Inserting the quantum probabilities, Eq.~2!, we ob-
tain the set of equations

(
KL

p̃KL dKi ,kdL j ,l5aPkl
QM~Ai ,Bj !, k,lÞ0”,

(
KL

p̃KL dKi ,0”dL j ,l5S 12
a

2 D Pl
QM~Bj !, lÞ0”,

(
KL

p̃KL dKi ,kdL j ,0”5S 12
a

2 D Pk
QM~Ai !, kÞ0”, ~16!

with the normalization

(
KL

p̃KL 5
1

l

1

12~12h!2 , ~17!

wherea5h2/@12(12h)2#. Note thatl only appears in the
last equation. We want to find the maximuma such that
these equations are obeyed for alll. Since 0,l<1 @21# we
can replace the last equation by the condition
2-4
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(
KL

p̃KL >1. ~18!

We thus are led to search for the maximuma such that Eqs.
~16! are satisfied and that thep̃KL are positive and obey
condition~18!. In this form the search forh

*
;l has become a

linear optimization problem and can be efficiently solv
numerically.

Given the two algorithms that computeh
*
l51 andh

*
;l for

given settings, the last part of the program is to find
optimal measurements. In our search over the space of q
tum strategies we considered the maximally entangled s
C5(m50

d21 um&aum&b in dimensiond. The possible measure
ments Ai and Bj we considered are the multiport beam
splitter measurements described in Ref.@13# and which have
in previous numerical searches yielded highly nonlocal qu
tum correlations@5,6#. These measurements are parametri
by d phases (fAi

1 , . . . ,fAi

d ) and (fBj

1 , . . . ,fBj

d ) and involve

the following steps: first each party acts with the pha
fAi

(m) or 2fBj
(m) on the stateum&, they both then carry

out a discrete Fourier transform. This brings the stateC to

C5
1

d3/2 (
k,l ,m50

d21

expF i S fAi
~m!2fBj

~m!

1
2p

d
m~k2 l ! D G uk&au l &b . ~19!

Alice then measuresuk&a and Bobu l &b . The quantum prob-
abilities ~1! thus take the form

Pkl
QM~Ai ,Bj !5

1

d3U (m50

d21

expF i S fAi
~m!2fBj

~m!

1
2pm

d
~k2 l ! D GU2

,

Pk
QM~Ai !51/d, Pl

QM~Bj !51/d. ~20!

The search for minimalh
*
l51 andh

*
;l then reduces to a

nonlinear optimization problem over Alice’s and Bob
phases. For this, we used the ‘‘amoeba’’ search proced
with its starting point fixed by the result of a randomiz
search algorithm. The amoeba procedure@16# finds the ex-
tremum of a nonlinear functionF of N variables by con-
structing a simplex ofN11 vertices. At each iteration, th
method evaluatesF at one or more trial point. The purpose
each iteration is to create a new simplex in which the pre
ous worst vertex has been replaced. The simplex is altere
reflection, expansion, or contraction, depending on whe
F is improving. This is repeated until the diameter of t
simplex is less than the specified tolerance.

Note that these searches are time consuming. Indeed
first part of the computation, the solution to the linear pro
lem, involves the optimization of (d11)Na1Nb parameters,
the classical probabilitiespKL ~the situation is even worse fo
hl , since the linear problem has to be solved several tim
*
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while performing a dichotomic search forh
*
l ). Then when

searching for the optimal measurements, the first part of
algorithm has to be performed for each phase setting. T
results in a rapid exponential growth of the time needed
solve the entire problem with the dimension and the num
of settings involved. A second factor that complicates
search for optimal measurements is that due to the relati
large number of parameters that the algorithm has to o
mize, it can fail to find the global minimum and converge
a local minimum. This is one of the reasons why we
stricted our searches to multiport beam-splitter measu
ments, since the number of parameters needed to des
them is much lesser than that for general von Neumann m
surements.

Our results for setups our computers could handle in r
sonable time are summarized in Table I. In two dimensio
we also performed more general searches using von Neu
measurements, but the results we obtained were the sam
for the multiport beam splitters described above.

E. Optimal Bell inequalities

Upon finding the optimal quantum measurements and
corresponding values ofh* , we have tried to find the Bel
inequalities which yield these threshold detector efficienc
This is essential to confirm analytically these numerical
sults and also in order for them to have practical significan
i.e., to be possible to implement them in an experiment.

To find these inequalities, we have used the approach
veloped in Ref.@7#. The first idea of this approach is to mak
use of the symmetries of the quantum probabilities and
search for Bell inequalitites which have the same symme
Thus, for instance, if P(Ai5k,Bj5 l )5P„Ai5k
1m (modd),Bj5 l 1m (modd)… for all mP$0, . . . ,d
21%, then it is useful to introduce the probabilities

P~Ai5Bj1n!5 (
m50

d21

P„Ai5m,Bj5n1m ~modd!…,

P~AiÞBj1n!5 (
m50
lÞn

d21

P„Ai5m,Bj5 l 1m ~modd!…

~21!

and to search for Bell inequalities written as linear combin
tions of P(Ai5Bj1n). This reduces considerably the num
ber of Bell inequalities among which one must search
order to find the optimal one. The second idea is to search
the logical contradictions which force the Bell inequality
take a small value in the case of LHV theories. Thus the B
inequality will contain terms with different weights, positiv
and negative, but the LHV theory cannot satisfy all the re
tions with large positive weights. Once we had identified
candidate Bell inequality, we ran a computer program t
enumerated all the deterministic classical strategies and c
puted the maximum value of the Bell inequality. The det
ministic classical strategies are those for which the probab
2-5
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tiespK1•••KNa
L1•••LNb

are equal either to 0 or to 1. In order t

find the maximum classical value of a Bell expression
suffices to consider them, since the other strategies are
tained as convex combinations of the deterministic ones@22#.

However when the number of settings,Na and Nb , and
the dimensionalityd increase, it becomes more and mo
difficult to find the optimal Bell inequalities using the abov
analytical approach. We therefore developed an alterna
method based on the numerical algorithm which is used
find the threshold detection efficiency.

The idea of this numerical approach is based on the
that the probabilities for which there exists a solutionpKL to
Eqs.~3!–~5! form a convex polytope whose vertices are t
deterministic strategies. The facets of this polytope are
perplanes of dimensionD21, whereD is the dimension of
the space in which lies the polytope@D is lower than the
dimension (d11)Na1Nb of the total space of probabilitie
due to constraints such as the normalizations conditions~4!
and the no-signalling conditions~7!#. These hyperplanes o
dimensionD21 correspond to Bell inequalities.

At the thresholdh* , the quantum probabilityPlh
*

QM be-
longs to the boundary, i.e., to one of the faces, of the po
tope determined by Eqs.~3!–~5!. The solutionpKL* to these
equations at the threshold is computed by our algorithm
it corresponds to the convex combinations of determini
strategies that reproduce the quantum correlations. From
solution it is then possible to construct a Bell inequali
Indeed, the faceF to which Plh

*

QM belongs is the plane pass
ing through the deterministic strategies involved in the c
vex combinationpKL* . Either this faceF is a facet, i.e., a
hyperplane of dimensionD21, or F is of dimension lower
thanD21. In the first case, the hyperplaneF corresponds to
the Bell inequality we are looking for . In the second ca
there is an infinity of hyperplanes of dimensionD21 pass-
ing throughF, indeed every vectorvW belonging to the space
orthogonal to the faceF determines such an hyperplane. T
select one of these hyperplanes lying outside the polyto
and thus corresponding effectively to a Bell inequality, w
took as vectorvW the component normal toF of the vector
that connects the center of the polytope~that is, the vector
which is an equal sum of all the deterministric strategies! and
the quantum probabilities whenh51: Pl,h51

QM . Though this

choice ofvW is arbitrary, it yields Bell inequalities which pre
serve the symmetry of the probabilitiesPQM.

As in the analytical method given above, we have verifi
by enumeration of the deterministic strategies that this
perplane is indeed a Bell inequality~i.e., that it lies on one
side of the polytope! and that it yields the threshold detectio
efficiencyh* .

III. RESULTS

Our results are summarized in Table I. We now descr
them in more detail.

A. Arbitrary dimension, two settings on each side
„NaÄNbÄ2…

For dimensions up to seven, we found numerically t
hl515h;l . The optimal measurements we found are ide
* *
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tical to those maximizing the generalization of the CHS
inequality to higher-dimensional systems@7#, thus confirm-
ing their optimality not only for the resistance to noise b
also for the resistance to inefficient detectors. Our values
h* are identical to those given in Ref.@6#, whereh

*
l51 has

been calculated for these particular settings for 2<d<16.
We now derive a Bell inequality that reproduces analy

cally these numerical results~which has also been derived b
Gisin @14#!. Our Bell inequality is based on the generaliz
tion of the CHSH inequality obained in Ref.@7#. We recall
the form of the Bell expression used in this inequality:

I rr
d,2325 (

k50

[d/2]21 S 12
2k

d21D „ @P~A15B11k!

1P~B15A21k11!1P~A25B21k!

1P~B25A11k!#2@P~A15B12k21!

1P~B15A22k!1P~A25B22k21!

1P~B25A12k21!#…. ~22!

For local theories,I rr
d,232<2 as shown in Ref.@7# where the

value of I rr
d,232(QM) given by the optimal quantum mea

surements is also described. In order to take into acco
no-result outcomes we introduce the following inequalitie

I d,2325I rr
d,2321

1

2 (
i , j

P~Ai50”,Bj50”!<2. ~23!

Let us prove that the maximal allowed value ofI d,232 for
local theories is 2. To this end it suffices to enumerate all
deterministic strategies. First, if all the local variables cor
spond to a ‘‘result’’ outcome, thenI rr

d,232<2 and I 0”0”
d,232

5 1
2 ( i , j P(Ai50”,Bj50”)50 so thatI d,232<2; if one of the

local variables is equal to 0” then againI rr
d,232<2 ~since the

maximal weight of a probability inI rr
d,232 is 1 and they are

only two such probabilities different from zero! and I 0”0”
d,232

50; if there are two 0” outcomes, thenI rr
d,232<1 andI 0”0”

d,232

<1; while if there are three or four 0” then I rr
d,23250 and

I 0”0”
d,232<2.

Note that the inequality~23! obeys the condition( i , j ci j
0”0”

5c, hence it will provide a bound onh
*
;l . Using Eq.~14!,

we obtain the value ofh
*
;l :

h
*
;l5

4

I rr
d,232(QM)12

. ~24!

Inserting the optimal values ofI rr
d,232(QM) given in Ref.@7#

this reproduces our numerical results and those of Ref.@6#.
As an example, for dimension 3,I rr

3,232(QM)52.873 so that
h

*
;l50.8209. Whend→`, Eq. ~24! gives the limit h

*
;l

50.8049.

B. Three dimensions, 2Ã3 settings

For three-dimensional systems, we found that adding
setting to one of the parties decreases bothhl51 and h;l
* *

2-6



n

e

r
m

n
t
-

t

-

en
in

pr
as

ris-

a-
ali-
ase.

ola-
he

ered

y to

,

y.
se
re-
the

es

lf

BELL INEQUALITIES RESISTANT TO DETECTOR . . . PHYSICAL REVIEW A 66, 052112 ~2002!
from 0.8209 to 0.8182~In the case ofd52, it is necessary to
take three settings on each side to get an improveme!.
The optimal settings involved are fA1

5(0,0,0),

fA2
5(0,2p/3,0), fB1

5(0,p/3,0), fB2
5(0,2p/3,2p/3),

fB3
5(0,2p/3,2p/3).

We have derived a Bell expression associated with th
measurements:

I rr
3,23351@P~A15B1!1P~A15B2!1P~A15B3!

1P~A25B111!1P~A25B212!1P~A25B3!#

2@P~A1ÞB1!1P~A1ÞB2!1P~A1ÞB3!

1P~A2ÞB111!1P~A2ÞB212!1P~A2ÞB3!#.

~25!

The maximal value ofI rr
3,233 for classical theories is two

since for any choice of local variables four relations with a1
can be satisfied, but then two with a2 are also satisfied. Fo
example, we can satisfy the first four relations but this i
pliesA25B211 andA25B311, which gives two2 terms.
The maximal value ofI rr

3,233 for quantum mechanics is give
for the settings described above and is equal
I rr

3,233(QM)510/3. To take into account detection ineffi
ciencies, consider the following inequality:

I 3,2335I rr
3,2331I 0”r

3,2331I 0”0”
3,233<2, ~26!

where

I 0”r
3,23352

1

3 (
i , j

P~Ai50”,BjÞ0”! ~27!

and

I 0”0”
3,2335

1

3 (
i , j

P~Ai50”,Bj50”! ~28!

(I r0” is taken equal to zero!. The principle used to show tha
I 3,233<2 is the same as that used to prove thatI d,232<2.
For example, ifA150”, then I rr

3,233<3, I 0”r
3,233521, and

I 0”0”
3,23350, so thatI 3,233<32152. From Eq.~26! and the

joint probabilities ~20! for the optimal quantum measure
ments, we deduce

h
*
;l5

6

10

3
14

5
9

11
.0.8182, ~29!

in agreement with our numerical result.
Note that in Ref.@18#, an inequality formally idendical to

Eq. ~25! has been introduced. However, the measurem
scenario involves two measurements on Alice’s side and n
binary measurements on Bob’s side. By grouping appro
ately the outcomes, this measurements scenario can be
ciated to an inequality formally identical to Eq.~25! for
which the violation reaches 2A3. According to Eq.~29!, this
result in a detection efficiency thresholdh

*
;l of 6/(2A3

14)'0.8038.
05211
t

se
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C. Three settings for both parties

For three settings per party, things become more surp
ing. We have found measurements that lowerh

*
l51 andh

*
;l

with respect to 232 or 233 settings. But contrary to the
previous situations,h

*
l51 is not equal toh

*
;l , and the two

optimal values are obtained for two different sets of me
surements. We present in this section the two Bell inequ
ties associated to each of these situations for the qubit c
Let us first begin with the inequality forh

*
l51 :

I rr
2,333,l5E~A1 ,B2!1E~A1 ,B3!1E~A2 ,B1!1E~A3 ,B1!

2E~A2 ,B3!2E~A3 ,B2!2
4

3
P~A1ÞB1!

2
4

3
P~A2ÞB2!2

4

3
P~A3ÞB3!<2, ~30!

where E(Ai ,Bj )5P(Ai5Bj )2P(AiÞBj ). As usual, the
fact thatI rr

2,333<2 follows from considering all deterministic
classical strategies. The maximal quantum-mechanical vi
tion for this inequality is 3 and is obtained by performing t
same measurements on both sidesA15B1 , A25B2 , A3
5B3 defined by the following phases:fA1

5(0,0), fA2

5(0,p/3), fA3
5(0,2p/3). It is interesting to note that this

inequality and these settings are related to those consid
by Bell @1# and Wigner@19# in the first works on quantum
nonlocality. But whereas in these works it was necessar
suppose thatAi and Bj are perfectly~anti! correlated when
i 5 j in order to derive a contradiction with LHV theories
here imperfect correlationsP(AiÞBi).0 can also lead to a
contradiction since they are included in the Bell inequalit

If we now consider no-result outcomes, we can u
I rr

2,333,l without adding extra terms, and the quantum cor
lations obtained from the optimal measurements violate
inequality if

lh2.
2

I rr
2,333,l(QM)

5
2

3
. ~31!

Taking l51, we obtainh
*
l515A2/3.0.8165. For smaller

values ofl, h
*
l increases untilh

*
l 516/19 is reached forl

.0.9401. At that point the contradiction with local theori
ceases to depend on the production ratel and one should
switch to the following inequality:

I rr
2,333,; l5

2

3
E~A1 ,B2!1

4

3
E~A1 ,B3!1

4

3
E~A2 ,B1!

1
2

3
E~A3 ,B1!2

4

3
E~A2 ,B3!2

2

3
E~A3 ,B2!

2
4

3
P~A1ÞB1!2

4

3
P~A2ÞB2!2

4

3
P~A3ÞB3!

<2. ~32!

This inequality is similar to the former one, Eq.~30!, but the
symmetry between theE(Ai ,Bj ) terms has been broken: ha
2-7
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of the terms have an additional weight of 1/3 and the oth
of 21/3. The total inequality involving no-result outcomes

I 2,333,; l5I rr
2,333,; l1I 0”r

2,333,; l1I r0”
2,333,; l1I 0”0”

2,333,; l<2.
~33!

The particular form of the termsI 0”r
2,333,; l , I r0”

2,333,; l , and
I 0”0”

2,333,; l is given in the Appendix. The important point
that ( i , j ,k(ci j

k0”1ci , j
0”k)528/3 and( i , j ci j

0”0”52. From Eqs.~14!,
~9!, and~20!, we thus deduce

h
*
;l5

41
4

3

I rr
2,333,(QM);l121

4

3

~34!

The measurements that optimize the former inequality~30!
give the thresholdh

*
;l516/19. However these measur

ments are not the optimal ones for Eq.~32!. The optimal
phase settings are given in the Appendix. Using these
tings it follows thatI rr

2,333,;l(QM)53.157 andh
*
;l.0.8217.

D. More settings and more dimensions

Our numerical algorithm has also yielded further im
provements when the number of settings increases or
dimension increases. These results are summarized in T
I. For more details, see the Appendix.

IV. CONCLUSION

In summary, we have obtained using both numerical a
analytical techniques, a large number of Bell inequalities a
optimal quantum measurements that exhibit an enhance
sistance to detector inefficiency. This should be contras
with the work ~reported in Refs.@5,6#! devoted to searching
for Bell inequalities and measurements with increased re
tance to noise. In this case only a single family has b
found involving two settings on each side despite extens
numerical searches~mainly unpublished, but see Ref.@15#!.
Thus the structure of Bell inequalities resistant to inefficie
detectors seems much richer. It would be interesting to
derstand the reason for such additional structure and cla
the origin of these inequalities.

It should be noted that for the Bell inequalities that w
have found, the amount by which the theshold detector e
ciencyh* decreases is very small, of the order of 4%. T
is tantalizing because we know that for sufficiently large
mension and sufficiently large number of settings, the de
tor efficiency threshold decreases exponentially. To incre
further the resistance to an inefficent detector, it would p
haps be necessary to consider more general measurem
than the one we considered in this work or use nonma
mally entangled states~for instance, Eberhard has shown th
for two-dimensional systems, the efficiency thresholdh* can
be lowered to 2/3 using nonmaximally entangled states@20#!.
There may thus be a Bell inequality of real practical imp
tance for closing the detection loophole just behind the c
ner.
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Note added in proof. Recently, we found numerically tha
for three dimensions (d53) and three measurement settin
at each site (Na3Nb5333), the lowest value ofh

*
;l is

attained for general von Neumann measurements, and no
multiport beam-splitter measurements. The lowest va
found numerically in this case ish

*
;l50.7951. This shows

that multiport beam-splitter measurements are not always
best measurements for exhibiting nonlocality.
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APPENDIX

For completeness, we present here in detail all the B
inequalities and optimal phase settings we have found. T
includes also the results of Table I which have not be
discussed in the text.

1. NAÄ2, NBÄ2, ; l

Bell inequality,

I d,2325 (
k50

[d/2]21 S 12
2k

d21D $1@P~A15B11k!

1P~B15A21k11!1P~A25B21k!

1P~B25A11k!#2@P~A15B12k21!

1P~B15A22k!1P~A25B22k21!

1P~B25A12k21!#%

1
1

2 (
i , j 51

2

P~Ai50”,Bj50”!<2.

Optimal phase settings,

fA1
~ j !50, fA2

~ j !5
p

d
j ,

fB1
~ j !5

p

2d
j , fB2

~ j !52
p

2d
j .

Maximal violation,

I d,232(QM)54d (
k50

[d/2]21 S 12
2k

d21D ~qk2q2k21!,

whereqk51/„2d3sin2@p(k11/4)/d#….
Detection threshold,
2-8
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h
*
;l5

4

I d,232(QM)
12.

2. dÄ2, NAÄ3, NBÄ3, l

Bell inequality,

I 2,333,l5E~A1 ,B2!1E~A1 ,B3!1E~A2 ,B1!1E~A3 ,B1!

2E~A2 ,B3!2E~A3 ,B2!2
4

3
P~A1ÞB1!

2
4

3
P~A2ÞB2!2

4

3
P~A3ÞB3!<2

whereE(Ai ,Bj )5P(Ai5Bj )2P(AiÞBj ).
Optimal phase settings,

fA1
5~0,0!, fA2

5~0,p/3!, fA3
5~0,2p/3!,

fB1
5~0,0!, fB2

5~0,p/3!, fB3
5~0,2p/3!.

Maximal violation,I 2,333,l(QM)53.
Detection threshold,h

*
l 5A2/3l.

3. dÄ2, NAÄ3, NBÄ3, ; l

Bell inequality,

I 2,333,;l5
2

3
E~A1 ,B2!1

4

3
E~A1 ,B3!1

4

3
E~A2 ,B1!

1
2

3
E~A3 ,B1!2

4

3
E~A2 ,B3!2

2

3
E~A3 ,B2!

2
4

3
P~A1ÞB1!2

4

3
P~A2ÞB2!2

4

3
P~A3ÞB3!

2
2

3
F0”~A1 ,B2!2

4

3
F0”~A2 ,B3!2

2

3
F0”~A3 ,B1!

1
2

3
F0”~A3 ,B2!1

4

3
P~A250”,B1Þ0”!

1
4

3
P~A1Þ0”,B350”!1

4

3
P~A150”,B150”!

1
4

3
P~A250”,B150”!1

4

3
P~A150”,B350”!<2,

where E(Ai ,Bj )5P(Ai5Bj )2P(AiÞBj ) and F0”(Ai ,Bj )
5P(Ai50”,BjÞ0”)1P(AiÞ0”,Bj50”)1P(Ai50”,Bj50”).

Optimal phase settings,

fA1
5~0,0!, fA2

5~0,1.3934!,

fA3
5~0,20.7558!,

fB1
5~0,0.5525!fB2

5~0,1.3083!
05211
fB3
5~0,20.8410!.

Maximal violation,I 2,333,;l(QM)53.157
Detection threshold,h

*
;l50.8217.

4. dÄ2, NAÄ3, NBÄ4, ; l

Bell inequality,

I 2,334,;l52P~A1ÞB2!2P~A1ÞB3!2P~A1ÞB4!

1P~A25B1!1P~A25B2!2P~A2ÞB3!

1P~A2ÞB4!2P~A35B1!1P~A35B2!

2P~A3ÞB2!1P~A3ÞB3!2P~A35B4!

1P~A1Þ0”,B150”!1P~A250”,B1Þ0”!

2P~A3Þ0”,B150”!2P~A150”,B2Þ0”!

1P~A150”,B150”!1P~A250”,B250”!<2.

Optimal phase settings,

fA1
5~0,0!, fA2

5~0,0.7388!,

fA3
5~0,2.1334!,

fB1
5~0,20.1347!, fB2

5~0,1.2938!,

fB3
5~0,20.0757!, fB4

5~0,21.0891!.

Maximal violation,I 2,334(QM)52.8683.
Detection threshold,h*

;l50.8216.

5. dÄ2, NAÄ4, NBÄ4, ; l

Bell inequality,

I 2,434,;l52P~A15B1!1P~A1ÞB3!2P~A25B1!

2P~A25B2!1P~A2ÞB4!1P~A3ÞB1!

2P~A3ÞB2!2P~A3ÞB3!2P~A4ÞB1!

2P~A45B2!2P~A45B3!1P~A4ÞB4!

1P~A1Þ0”,B450”!2P~A4Þ0”,B150”!

1P~A150”,B150”!1P~A150”,B450”!<2.

Optimal phase settings,

fA1
5~0,0!, fA2

5~0,0.0958!,

fA3
5~0,2.1856!, fA4

5~0,4.5944!,

fB1
5~0,4.0339!, fB2

5~0,3.3011!,

fB3
5~0,2.2493!, fB4

5~0,2.3454!.
2-9
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Maximal violation,I 2,434(QM)52.8697.
Detection threshold,h

*
;l50.8214.

6. dÄ3, NAÄ2, NBÄ3, ; l

Bell inequality,

I 3,233,l51@P~A15B1!1P~A15B2!1P~A15B3!

1P~A25B111!1P~A25B212!1P~A25B3!#

2@P~A1ÞB1!1P~A1ÞB2!1P~A1ÞB3!

1P~A2ÞB111!1P~A2ÞB212!1P~A2ÞB3!#

2
1

3 (
i , j

P~Ai50”,BjÞ0”!1
1

3 (
i , j

P~Ai50”,Bj50”!

<2.

Optimal phase settings,

fA1
5~0,0,0!, fA2

5~0,2p/3,0!,

fB1
5~0,p/3,0!, fB2

5~0,2p/3,2p/3!,

fB3
5~0,2p/3,2p/3!.

Maximal violation,I 3,233(QM)5 10
3 .

Detection threshold,h
*
;l5 9

11 .0.8182.

7. dÄ3, NAÄ3, NBÄ3, l

Bell inequality,

I 3,333,l5E1~A1 ,B2!1E2~A1 ,B3!1E2~A2 ,B1!

2E2~A2,B3!1E1~A3 ,B1!2E1~A3 ,B2!

2P~A1ÞB1!2P~A2ÞB2!2P~A3ÞB3!<2.

Optimal phase settings,

fA1
5~0,0,0!, fA2

5~0,2p/9,4p/9!,

fA3
5~0,22p/9,24p/9!,

fB1
5~0,0,0!, fB2

5~0,2p/9,4p/9!,

fB3
5~0,22p/9,24p/9!.

Maximal violation,I 3,333(QM)53.0642.
Detection threshold,h

*
l 52/3.0642l

8. dÄ3, NAÄ3, NBÄ3, ; l

Bell inequality,
05211
I 3,333,; l52
5

3
P~A15B1!2

4

3
P~A15B112!

1P~A15B2!1
5

3
P~A15B211!

2
5

3
P~A15B3!2P~A15B312!

1
5

3
P~A25B1!22P~A25B111!

2
5

3
P~A25B2!12P~A25B211!

2P~A25B311!2
5

3
P~A25B312!

2
11

3
P~A35B1!22P~A35B112!

1
2

3
P~A35B2!12P~A35B211!

1
5

3
P~A35B3!1P~A35B312!

1
5

3
P~A1Þ0”,B150”!2

5

3
P~A2Þ0”,B150”!

22P~A3Þ0”,B150”!12P~A1Þ0”,B250”!

1
5

3
P~A150”,B150”!12P~A150”,B250”!<11/3.

Optimal phase settings,

fA1
5~0,0,0!, fA2

5~0,1.4376,2.8753!,

fA3
5~0,0.5063,1.0125!,

fB1
5~0,2.0452,4.0904!, fB2

5~0,2.9758,20.3315!,

fB3
5~0,1.3839,2.7678!.

Maximal violation,I 3,333(QM)55.3358.
Detection threshold,h

*
;l50.8146.

9. dÄ4, NAÄ2, NBÄ3, ; l

Bell inequality,

I 4,233,;l5P~A15B111!12P~A15B112!

12P~A15B2!1P~A15B211!12P~A15B3!

12P~A25B111!1P~A25B112!

1P~A25B2!12P~A25B211!
2-10
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12P~A25B312!1
4

3 (
i

P~Ai50”,B1Þ0”!

1
1

3 (
i

P~Ai50”,B2Þ0”!

1
1

3 (
i

P~Ai50”,B3Þ0”!

1
5

3 (
i

P~A1Þ0”,B150”!

1
1

3 (
i

P~A2Þ0”,B150”!1
8

3
P~A150”,B150”!

1
5

3
P~A150”,B250”!1

5

3
P~A150”,B350”!s

1
4

3
P~A250”,B150”!1

1

3
P~A250”,B250”!

1
1

3
P~A250”,B350”!<8.

Optimal phase settings,

fA1
5~0,0,0,0!,

fA2
5~0,21.1397,2.0019,3.1416!,

fB1
5~0,1.7863,20.5698,2.3562!,

fB2
5~0,0.2155,5.7133,0.7854!,

fB3
5~0,1.0009,1.0009,0!.

Maximal violation,I 4,233(QM)59.4142.
Detection threshold,h

*
;l50.8093.

10. dÄ4, NAÄ3, NBÄ3, ; l

Bell inequality,
A

.

cu

05211
I 4,333,;l52P~A15B112!1P~A15B113!12P~A15B2

11!2P~A15B212!2P~A15B3!23P~A15B3

11!22P~A15B312!2P~A25B1!1P~A25B1

11!2P~A25B211!1P~A25B212!

12P~A25B313!12P~A35B111!

1P~A35B2!

22P~A35B212!2P~A35B213!

12P~A35B3!1P~A35B312!

1(
i

P~Ai50”,B1Þ0”!1P~A1Þ0”,B150”!

1P~A1Þ0”,B250”!2P~A150”,B3Þ0”!

1P~A350”,B3Þ0”!1P~A3Þ0”,B350”!

12P~A150”,B150”!1P~A150”,B250”!

1P~A250”,B150”!1P~A350”,B150”!

1P~A350”,B350”!<6.

Optimal phase settings,

fA1
5~0,0,0,0!,

fA2
5~0,21.2238,21.1546,3.9048!,

fA3
5~0,3.1572,3.8330,0.7070!,

fB1
5~0,20.9042,1.7066,0.8025!,

fB2
5~0,2.5844,3.6937,20.0051!,

fB3
5~0,4.1396,3.0022,7.1419!.

Maximal violation,I 4,333(QM)57.5576.
Detection threshold,h;l50.7939.
*
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zewski, and A. Zeilinger, Phys. Rev. Lett.85, 4418~2001!.
@6# T. Durt, D. Kaszlikowski, and M. Z˙ukowski, Phys. Rev. A64,

024101~2001!.
@7# D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popes

Phys. Rev. Lett.88, 040404~2002!.
.

,

@8# S. Massar, Phys. Rev. A65, 032121~2002!.
@9# N. Gisin and B. Gisin, Phys. Lett. A260, 323 ~1999!.

@10# E. Santos, Phys. Rev. A46, 3646~1992!.
@11# S. Massar and S. Pironio, e-print quant-ph/021013.
@12# J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, Phy

Rev. Lett.23, 880 ~1969!.
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