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Bell inequalities resistant to detector inefficiency
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We derive both numerically and analytically Bell inequalities and quantum measurements that present
enhanced resistance to detector inefficiency. In particular, we describe several Bell inequalities which appear to
be optimal with respect to inefficient detectors for small dimensiondlit?2,3,4 and two or more measure-
ment settings at each side. We also generalize the family of Bell inequalities described by &@ddlif$hys.

Rev. Lett. 88, 0404042002] to take into account the inefficiency of detectors. In addition, we consider the
possibility for pairs of entangled particles to be produced with probability less than 1. We show that when the
pair production probability is small, one should in general use different Bell inequalities than when the pair
production probability is high.
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[. INTRODUCTION posed criterion to gauge how much nonlocality is exhibited

by quantum correlations is the resistance to noise. This is
A striking feature of quantum entanglement is nonlocality. Wwhat motivated the series of works,6] that led to the gen-
Indeed, as first shown by Bell in 1964] classical local €ralization of the CHSH inequality[12] to higher-

theories cannot reproduce all the correlations exhibited biiimensional system’]. The resistance to inefficient detec-

entangled quantum systems. This nonlocal character of eA2"s is a second and different criterion that we analyze in this

: i : aper. It is closely related to the amount of classical commu-
Egllagl:l;dt s?tgs 'gr.?nz??sn?g?c}edh'r;hg'n%?;:.oio%?lsgélR.g_sﬁcation required to simulate quantum correlatip8k

_YPe experl ugh the violall o€l | The idea behind the detection loophole is that in the pres-
equalities. However due to experimental imperfections an%n

hnological limitati t ftor f loonhol ce of unperfect detectors, local hidden variable theories
technological limitations, Bell tests suffer from loopholes ;5 “mask” results in contradiction with quantum mechanics

that allow, in principle, the experimental data to be repro-y telling the detectors not to fire. This is at the origin of
duced by a local realistic description. The most famous okeyeral local hidden variable models able to reproduce par-
these loopholes are the locality loophole and the detectiofcylar quantum correlations if the detector efficiencies are

loophole[17]. Experiments carried on photons have closedthelow some threshold valug, (see Refs[9-11], for ex-
the locality loophole 2] and recently Rowet al. closed the  ample.

detection loophole using trapped iofi3]. But so far, 30 In this paper, we introduce two parameters that determine
years since the first experiments, both loopholes have nathether a detector will fire or noty, the efficiency of the
been closed in aingle experiment. detector, and\, the probability that the pair of particles is

The purpose of this paper is to study how one can devisproduced by the source of entangled systems. This last pa-
new tests of nonlocality capable of lowering the detectorrameter may be important, for instance, for sources involving
efficiency necessary to reject any local realistic hypothesisparametric down-conversion, whekeis typically less than
This could be a way towards a loophole-free test of Bell10%. So far, discussions on the detection loophole were con-
inequalities and is important for several reasons. First, agentrating onz, overlookingh. However we will show be-
quantum entanglement is the basic ingredient of quanturtPW that both quantities play a role in the detection loophole
information processing, it is highly desirable to possess unand clarify the relation between these two parameters. In
disputable tests of its properties such as nonlocality. Even ipartlcuLar, we will introduce two different detector thresh-
one is convincedas we almost all ajethat nature is quan- ©lds: 7 , the value above which qléantum correlations ex-
tum mechanical, we can imagine practical situations where ifibit nonlocality for given\, and 7,*, the value above
would be necessary to perform loophole-free tests of Belivhich quantum correlations exibit nonlocality for any
inequalities. For example, suppose you buy a quantum cryp- We have written a numerical algorithm to determine these
tographic device based on the Ekert protocol. The security g0 thresholds for given quantum state and quantum mea-
your cryptographic apparatus relies on the fact that you Caﬁuremvents. We concentrated on the two extreme cabes
violate Bell inequalities with it. But if the detectors efficien- and ,*. We searched for optimal measurements such that
cies are not sufficiently high, the salesman can exploit it andzy~* and »}* acquire the lowest possible value.
sell to you a classical device that will mimic a quantum In the case of bipartite two dimensional systems the most
device but which will enable him to read all your correspon-important test of nonlocality is the CHSH inequality2].
dence[4]. Other reasons to study the resistance of quanturQuantum mechanics violates it if the detector efficiemcis
tests to detector inefficiencies are connected to the classifabove =2/(\/2+1)~0.8284 for the maximally entangled
cation of entanglement. Indeed an important classification o$tate of two qubits. In the limit of large-dimensional systems
entanglement is related to quantum nonlocality. One proand large number of settings, it is shown in R&f that the
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TABLE I. Optimal threshold detector efficiency for varying di- not depend on the value of the pair production probability.
mensiond and number of settings\, X Ny) for the detectorsy)~* (4) For the measurement scenarios numerically acces-
is the threshold efficiency for a source such that the pair productiogible, only small improvements in threshold detector effi-
probability\ =1, while »}" is the threshold efficiency independent ciency are achieved. For instance the maximum change in
of N. The columnp gives the amount of white noigethat can be  threshold detector efficiency we found+s4%
added to the entangled state so that it still violates locélity use The paper is organized as follows. First, we review briefly
for p the same definition as that given in RefS.6]). The last e principle of an EPR experiment in Sec. 11 A and under
column refers to the Bell inequality that reproduces the detectior\lNhiCh condition such an experiment admits a local-realistic
threshold. Except for the cask=«, these thresholds are the result description in Sec. I1B. In Sec. IIC we clarify the role
of a numerical optimization carried out over the set of multiport played byz andx in. the detection.loophole We then present
beam-splitter measurements. the technique we used to perform the numerical searches in
Sec. I D and to construct the Bell inequalities presented in

d NxN A=t A Bell inequalit : _ . :
a0 7 P auatly this paper in Sec. Il E. Section Ill contains our results. In
2 2x2 0.8284 0.8284 0.2929 CHSH particular in, Sec. Ill A we generalize the family of inequali-
2 3x3 0.8165 0.2000 Present paper ties introduced in Ref[7] to take into account detection in-
(see also Refd1,19) efficiencies and in Sec. Il C we present the two different
2  3x3 0.8217 0.2859 Present paper Bell inequalities associated with the two-dimensionad 3
2 3%4 0.8216 0.2862 Present paper settings measurement scenario. In the Appendix, we collect
2 4x4 08214 0.2863 Present paper all the measurement settings and Bell inequalities we have
3 2x2 08209 0.8209 0.3038 Based on Réf| obtained.
3 2X3 0.8182 0.8182 0.2500 Present paper
(related to Ref[18]) Il. GENERAL FORMALISM
3 3X3 0.8079 0.2101 Present paper A. Quantum correlations
3 3%X3 0.8146 0.2971 Present paper . L. .
4 2x2 08170 08170 0.3095 Based on Ref Let us review the principle of an a EPR experiment; two
parties, Alice and Bob, share an entangled siatg. We
4 2X3 0.8093 0.2756 Present paper . . . .
take each particle to belong tadadimensional Hilbert space.
4 33 0.7939 = 0.2625 Present paper The parties carry out measurements on their particles. Alice
5 2x2 0.8146 0.8146 0.3128 Based on Réfl P Y . P :
6 2x2 08130 08130 0.3151 Based on R can choose betweeN, different von Neumann measure-
7 oxo 0'8119 0.8119 0'3167 Based mentsA; (i=1,... N,) and Bob can choose betweéh,
’ ) ’ ased on Rl von Neumann measuremers (j=1, ... Np). Letk andl
e 2X2 0.8049 0.8049 0.3266 Based on Réfl

be Alice’s and Bob’s outcomes. We suppose that the number
of possible outcomes is the same for each party and that the
efficiency threshold can be arbitrarily lowered. This suggestyalues ofk andl belong to{0, . . . d—1}. To each measure-
that the way to devise optimal tests with respect to the resishentA; is thus associated a complete setdobrthogonal
tance to detector inefficiencies is to increase the dimensioprojectorsAf=|Af)(A¥| and similarly forB;. Quantum me-

of the quantum systems and the number of differents meachanics predicts the following probabilities for the outcomes:
surements performed by each party on these systérhs

argument is presented in more details in R&1]). We have PRM (A, B) =TH (A{®B)pal,

thus performed numerical searches for increasing dimensions oM |

and number of settings starting from the two-qubit, two- Pr(Bj) =Tr{(1a®Bj)pabl,

settings situation of the CHSH inequality. Our results con-

cern a specific kind of measurement, namely “multiport PRM(A) =TI (Af®1g) pap]. (1)

beam-splitter measurementgl'3], performed on maximally , ,
entangled states. They are summarized in Table I. Part of N @ real experiment, it can happen that the measurement

these results are accounted for by existing Bell inequalitiesy/VeS no outcome due to detector inefficiencies, losses, or
the other part led us to introduce new Bell inequalities. because the pair of entangled states has not been produced.

The main conclusions that can be drawn from this work 10 take into account these cases in the most general way, we
are as follows: enlarge the space of possible outcomes and add a new out-
(1) Even in two dimensions, one can improve the resisc0mMe, the “no-result outcome,” which we label Quantum

tance to inefficient detectors by increasing the number off€chanics now predicts a modified set of correlations:
settings. M/ A v\ _2-0M

(2) One can further increase the resistance to detection ng (Ai=kBj=D)=\7y PRM(A Bj), kl=#0,
inefficiencies by increasing the dimension.

(3) There are different optimal measurements settings and
Bell inequalities for a source that produces entangled par-
ticles with high probability {~1) and one that produces
them extremely rarelyN—0). Bell inequalities associated oM )
with this last situation provide a detection threshold that does Pyy (Ai=0,Bj=0)=1-\+X(1-7)% )

PR (A=0,B;=1)=\n(1-n)P"(B)), 10,

POV(A=k,Bj=0)=\7(1-n)PZ"(A), k#0,

052112-2



BELL INEQUALITIES RESISTANT TO DETECT®.. . . PHYSICAL REVIEW A 66, 052112 (2002

where 7 is the detector efficiency and is the probability =l + g+t g=C, )
that a pair of particles is produced by the source of entangled

systems. By detection efficiency we mean the probability where

that the detector gives a result if a particle was produced, i.e.,

7 includes not only the “true” efficiency of the detector but K
also all possible losses of the particle on the path from the =2 cij P(Ai=k,B;=1),
source to the detectors. o

B. Local hidden variable theories and Bell inequalities loe =2 Cﬂlp(Ai =0,B;=1),

Let us now define when the resu(® of an EPR experi-
ment can be explained by a local hidden variatilélV)
theory. In a LHV theory, the outcome of Alice’s measure- lro= 2 cii’P(A=k,B;=0),
ment is determined by the settidg of Alice’s measurement ’
apparatus and by a random variable shared by both particles.
This result should not depend on the setting of Bol_:u’s mea- |00:E Cﬁwp(Ai:Q B;=0). (9)
surement apparatus if the measurements are carried out at 9]
spatially separated locations. The situation is similar for
Bob's outcome. We can describe without loss of generalityFor certain values ofy and\, quantum mechanics can vio-
such a local variable theory by a set af41)Na*No prob-  late one of the Bell inequalitie®) of the set. Such a viola-
abilities PR, Ky Ly Ly o where Alice’s local variable; tion is the signal for experimental demonstration of quantum

No nonlocality.

e{0, ... d—1,0 specify the result of the measuremext
and Bob’s variablet; € {0, . . . d— 1,0} specify the result of o _ ) N
measuremers; . The correlation® (A, =K,B,=L) are ob- C. Detector efficiency and pair production probability
tained from these joint probabilities as marginals. The quan- For a given quantum-mechanical probability distribution
tum predictions can then be reproduced by the LHV theory ifP°M and given pair production probability, the maximum
and only if the following N;N,(d+1)? equations are value of the detector efficiency for which there exists a
obeyed: LHV variable model will be denotedy} (P?M). It has been
argued[9,14] that », should not depend oh. The idea
> P 5Ki,K5L-,L:P)\Q7’;A(Ai:KrBj:L)i (3)  behind this argument is @hat the outcomdsQ][Qobtained
KL ! when the pair of particles is not created are trivial and hence
. N it seems safe to discard them. A more practical reason is that
with the conditions the pair production rate is rarely measurable in experiments.
Whatever the case, the logical possibility exists that the LHV
E Pl =1, (4) theory can exploit the pair production rate. Indeed, we will
KL show below that this is the case when the number of settings
of the measurement apparatus is larger than two. This moti-
Pk =0, (5)  vates our definition of threshold detection efficiency valid for
all values of\,
where we have introduced the notatiBn=Kj . . Kn, and

VN _ Ay i A

L=L;...Ly, Note that Eqs(3) are not all independent s _Tix 77*)_}!'2107’* : (10

since quantum and classical probabilities share additional

constraints such as the normalization conditions The second equality follows from the fact that if a LHV
model exists for a given value af it trivially also exists for

_ R a lower value ofx.
KZ‘L P(A=K.Bj=L)=1, © Let us study now the structure of the Bell expression

I (QM) given by quantum mechanics. This will allow us to

or the no-signalling conditions derive an expression fop?*. Inserting the quantum prob-
abilities (2) into the Bell expression of Eq8), we obtain

PASKI=2 PA=KB=L) Vie D QMy=n g2 P np(1= mI§ " nn(1— I
and similarly forB;. +[1+)\(,72_27,)]i§j: Cf}o, (11)

An essential result is that the necessary and sufficient con-
ditions for a given probability distributioP®M to be repro-
ducible by a LHV theory can be expressed, alternatively tgvhere I2" is obtained by replacind®(A;=k,B;=1) with
the Egs.(3), as a set of linear inequalities @M, the Bell PQ"(A,B;) in I, and Ig" by replacingP(A;=0,B,=1)
inequalities[22]. They can be written as with PRY(B;) in 1o and similarly forl 3" .
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For =0, we know there exists a trivial LHV model and that one can always use the normalization conditi@<o

so the Bell inequalities cannot be violated. Replacingy 0  rewrite a Bell inequality such as E) in a form where the

in Eq. (11) we therefore deduce that term |y does not appear. Second, Whé}a,jcﬁ'D:c, this
yields an inequality of the fornh,, + 14 +1,,<0 which we

(12) can rewrite as I(, + g +1,9) / [N(1—(1— 5)?)]<0 where
M(1—(1-n)?)=P(A;#0orB;#0) is the probability that at
least one detector clicks. Thus we obtain a new inequality

This divides the set of Bell inequalities into two groups: expressed in term of the ratio (A;=k,B;=1)]/ [ P(A;

those such thak; jcf’<c and those for whictE; ;cf’=c. %@ or B;#0)], so that to check it one need only consider

Let us consider the first group. For small these inequali- events where at least one detector fires.

ties will cease to be violated. Indeed, take 1 (which is the

maximum possible value of the detector efficienthen Eq.

(11) reads

cﬁ”s C.
i

D. Numerical search

We have carried numerical searches to find measurements
such that the thresholdg)~* and 77" acquire the lowest
possible value. This search is carried out in two steps. First
of all, for given quantum-mechanical probabilities, we have
The condition for violation of the Bell inequality i QM) determined the maximum value gffor which there exists a
>c. But sinceEi'jcf’-@<c, for sufficiently smallx we will local hidden vqriable theory. _Second we have search'ed over
have 1(QM)<c and the inequality will not be violated. the set of multiport beam-splitter measurements to find the
These inequalities can therefore not be used to derive BliNiMum values ofy, . _
threshold»"* that does not depend on but they are still In order to carry out the first step, we have used the fact
interesting and will provide a thresholg} depending on. ~ that the question of whether there are classical joint prob-
Let us now consider the inequalities such tiatc’=c. ?bl!melsl_that Satt'.SfY E?(S) Wltglthefcondrllt_lorr:st:(h4),(5) IS ? .
Then\ cancels in Eq(11) and the condition for violation of ypicallinear optimization probiem for Which there exist et-

the Bell inequality is thaty must be greater than f|9|ent algorithms[15]. We have written a program thaF,
given\, n and a set of quantum measurements, determines

2c_|QM_ QM wr_]ether Eq.(3) admits a s_olution or noty} is then deter_—
0 (14) mined by performing a dichotomic search on the maximal
value of , so that the set of constraints is satisfied.
. However when searching for;‘ﬁ it is possible to dis-
independently ok pense with the dichotomic search by using the following
It is interesting to note that if quantum mechanics violatesyick. First of all because all the equations in E8) are not
a Bell inequality for perfect sources=1 and perfect detec- jndependent, we can remove the constraints that involve on

tors »=1, then there exists a Bell inequality that will be he right-hand side the probabilitie®(A,=0,B. =0). Sec-
violated for <1 and\A—0. That is there necessarily exists ond we define rescaled variables[1—(1—7)2]px.

a Bell inequality that is insensitive to the pair production _ -
o o . L = . Inserting the quantum probabilities, , we ob-

probability. Indeed the violation of a Bell inequality in the taiFr)1KtLhe set o:‘ gquatigrl:s ump lities, E@, w

caser=1, »=1 implies that there exists a Bell expression

[, such thatl,,(QM)>c with ¢ the maximum value of,,

QM) =AM+ (1-\) > ¢ (13)
1)

72 (POM) =

M M M
c+IgM—1g¥ =13

allowed by LHV theories. Then let us build the following ;L: [ 5Ki,k5Lj,|=aP(|3|M(Ai Bj), k,I#0,
inequality:
~ o
I=lp+ 1ot lo+ 2 c'P(A=0,Bj=0)<c, (15 Y pKLﬁKi,oaL,.,|=(1—§) PRM(B)), 1+0,
B

where Ei,jcﬁ”:c and we take inl,y and 4 sufficiently ~ a
negative terms to ensure thatc. For this inequality, > Pu Sk, k0L, ,o:(l— 5) PRM(A), k#0, (16)
2 = (2c— 19— 1M /(c+1M— 19— 19" <1,  which “*
shows that Bell inequalities valid A always exist. One can,
in principle, optimize this inequality by takinig, andly, as
large as possible while ensuring that Ef#5) is obeyed.
From the experimentalist’s point of view, Bell tests in-
volving inequalities that depend on need all events to be
taken into account, including/(0) outcomes, while in tests
involving inequalities insensitive to the pair production prob-wherea= 7?/[1—(1— 7)?]. Note that\ only appears in the
ability, it is sufficient to take into account events where atlast equation. We want to find the maximum such that
least one of the parties produces a result, i.e., double northese equations are obeyed forallSince O<A<1 [21] we
detection events/(@) can be discarded. Indeed, first note can replace the last equation by the condition

with the normalization

- 1 1
%‘4 pKL:XT_n)Zr (17
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~ while performing a dichotomic search faf,). Then when
% P =1. (18 searching for the optimal measurements, the first part of the
algorithm has to be performed for each phase setting. This

We thus are led to search for the maximuansuch that Egs. results in a rapid exponential growth of the time needed to
(16) are satisfied and that the., are positive and obey solve t_he entlre problem with the dimension and the number
condition(18). In this form the search fop?* has become a of settings |n\_/olved. A second fagtor that complicates _the
linear optimization problem and can be efficiently soIvedIS’earCh for optimal measurements is that due to the relatively
numerically. arge number of parameters that the algorithm has to opti-

) . - mize, it can fail to find the global minimum and converge to
Given the two algorithms that compuig ~* and 7> for g g

a local minimum. This is one of the reasons why we re-

given settings, the last part of the program is to find thestricted our searches to multiport beam-splitter measure-

optimal measurements. In our search over the space of dUaRents, since the number of parameters needed to describe

tum strategies we considered the maximally entangled stat@ .. is much lesser than that for general von Neumann mea-
W=31_5/m)am)y, in dimensiond. The possible measure- ¢\rements.

ments A; and B; we considered are the multiport beam- oy results for setups our computers could handle in rea-
splitter measurements described in Ré8] and which have  gonaple time are summarized in Table I. In two dimensions,
in previous numerical searches yielded highly nonlocal quanye a1so performed more general searches using von Neuman
tum correlation$5,6]. Tf(]jese measurementds are parametrizegheasurements, but the results we obtained were the same as
by d phases §5,, . . . ,¢4) and (¢éj, .- ..#g) and involve  for the multiport beam splitters described above.

the following steps: first each party acts with the phase
$a(m) or — ¢Bj(m) on the statémy), they both then carry

out a discrete Fourier transform. This brings the sthtéo E. Optimal Bell inequalities
Upon finding the optimal quantum measurements and the
] corresponding values of, , we have tried to find the Bell
B d32 k |§:o ex;{ ! ( ba (M) — ¢’B,-(m) inequalities which yield these threshold detector efficiencies.
h This is essential to confirm analytically these numerical re-
2 sults and also in order for them to have practical significance,
+ Fm(k_l)”|k>a|l>b- (19  i.e., to be possible to implement them in an experiment.

To find these inequalities, we have used the approach de-

Alice then measurefk), and Bob|l),. The quantum prob- veloped in Ref[7]. The first idea of this approach is to make
abilities (1) thus take the form use of the symmetries of the quantum probabilities and to
search for Bell inequalitites which have the same symmetry.

d-—1

d-1 Thus, for instance, if P(A;=k,B;=1)=P(Ai=k
PRV(A Bj)=— > ex;{i ¢Ai(m)_¢81(m) +m (modd),Bj=I+m (modd)) for all me{0,...d
d*[m=0 —1}, then it is useful to introduce the probabilities
2mTm 2 d-1
g (D P(A;=B;+n)= > P(A;=m,B;=n+m(modd)),
m=0
PRM(A)=1d, PRM(B;)=1/d. (20)
d-1
The search for m_inima}y’,;:l and 77" then reduces to a P(A#B;+n)= > P(A;=m,B;=I+m(modd))
nonlinear optimization problem over Alice’s and Bob’s m=0
phases. For this, we used the “amoeba” search procedure =0 (21)

with its starting point fixed by the result of a randomized
search algorithm. The amoeba procediik8] finds the ex-
tremum of a nonlinear functior of N variables by con- and to search for Bell inequalities written as linear combina-
structing a simplex oN+1 vertices. At each iteration, the tions of P(A;=B;+n). This reduces considerably the num-
method evaluatel at one or more trial point. The purpose of ber of Bell inequalities among which one must search in
each iteration is to create a new simplex in which the previorder to find the optimal one. The second idea is to search for
ous worst vertex has been replaced. The simplex is altered lajie logical contradictions which force the Bell inequality to
reflection, expansion, or contraction, depending on whethetake a small value in the case of LHV theories. Thus the Bell
F is improving. This is repeated until the diameter of theinequality will contain terms with different weights, positive
simplex is less than the specified tolerance. and negative, but the LHV theory cannot satisfy all the rela-
Note that these searches are time consuming. Indeed, thiens with large positive weights. Once we had identified a
first part of the computation, the solution to the linear prob-candidate Bell inequality, we ran a computer program that
lem, involves the optimization ofd+ 1)Na*No parameters, enumerated all the deterministic classical strategies and com-
the classical probabilitiegy, (the situation is even worse for puted the maximum value of the Bell inequality. The deter-
7} , since the linear problem has to be solved several timeministic classical strategies are those for which the probabili-
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tiespk....k. L....L. areequal eitherto O orto 1. Inorderto tical to those maximizing the generalization of the CHSH
1 N,m1 T BN

find the maximum classical value of a Bell expression, it"€auality to higher-dimensional systerfig, thus confirm-

suffices to consider them, since the other strategies are o9 their optimality not only for the resistance to noise but
tained as convex combinations of the deterministic §8& also for the resistance to inefficient detectors. Ou[ values of
However when the number of settings, andN,, and 7« are identical to those given in RdB], where,~* has
the dimensionalityd increase, it becomes more and morebeen calculated for these particular settings ferd<16.
difficult to find the optimal Bell inequalities using the above  We now derive a Bell inequality that reproduces analyti-
analytical approach. We therefore developed an alternativeally these numerical resulfa/hich has also been derived by
method based on the numerical algorithm which is used t@isin [14]). Our Bell inequality is based on the generaliza-
find the threshold detection efficiency. tion of the CHSH inequality obained in Rdf7]. We recall

The idea of this numerical approach is based on the faahe form of the Bell expression used in this inequality:
that the probabilities for which there exists a solutmg to

Egs.(3)—(5) form a convex polytope whose vertices are the in AT
deterministic strategies. The facets of this polytope are hy- 157%= > |1 a1 ([P(A1=B1+k)
perplanes of dimensioB — 1, whereD is the dimension of k=0
the space in which lies the polytog® is lower than the +P(By=A,+k+1)+P(A,=B,+K)
dimension @+1)Na*No of the total space of probabilities
due to constraints such as the normalizations conditidhs +P(By,=A;+k)]-[P(A;=B;—k-1)
and the no-signalling conditiond)]. These hyperplanes of
dimensionD — 1 correspond to Bell inequalities. +P(B1=Az— k) +P(A;=B,—k—1)
At the thresholdy, , the quantum probabilit)PS,';i be- 4 P(By=A,—k—1)]). 22)

longs to the boundary, i.e., to one of the faces, of the poly-

tope determined by Eq$3)—(5). The solutionp®, to these For local theories|$?*?<2 as shown in Ref/7] where the
equations at the threshold is computed by our algorithm angalue of |§’r~2X2(Q M) given by the optimal quantum mea-

it corresponds to the convex combinations of deterministiGGurements is also described. In order to take into account

strategies that reproduce the quantum correlations. From thigo-result outcomes we introduce the following inequalities:
solution it is then possible to construct a Bell inequality.

.Indeed, the facé& to WhI.Ch F.>M]* belor_lgs _|s the plgne pass j02x2_ 42Xz, E E P(A=0.B —0)=2. 23
ing through the deterministic strategies involved in the con- ” 2 13 ]

vex combinationpg, . Either this faceF is a facet, i.e., a

hyperplane of dimensio®—1, orF is of dimension lower Let us prove that the maximal allowed value I6f*? for
thanD —1. In the first case, the hyperplaRecorresponds to |ocal theories is 2. To this end it suffices to enumerate all the

the Bell inequality we are looking for . In the second case.deterministic strategies. First, if all the local variables corre-

there is an infinity of hyperplanes of dimensibn-1 pass-  spond to a “result” outcome, then®?*2<2 and |42

ing throughF, indeed every vectar belonging to the space :§Ei,jP(Ai=(Z),Bj=(Z))=O so that! 92*2<2; if one of the
orthogonal to the fac& determines such an hyperplane. To |ocal variables is equal té then again %2*?<2 (since the
select one of these hyperplanes lying outside the polytopgnaximal weight of a probability in%?*? is 1 and they are
and thus corresponding effectively to a Bell inequality, Weonly two such probabilities different from zerand 19,2%2

00

took as vectow the component normal t6 of the vector =0; if there are two/@utcomes, then®?*?<1 and|$>*?
i . e i d,2x2_
that connects the center of the polytoftieat is, the vector 1. \while if there are three or fouf then 192%2=0 and

which is an equal sum of all the deterministric strategasl |8é>2X2<2 '
the quantum probabilities whep=1: Py, . Though this Note that the inequality23) obeys the conditiorii,jcﬁ-@

choice ofv is arbitrary, it yields Bell inequalities which pre- =c, hence it will provide a bound op?* . Using Eq.(14),
serve the symmetry of the probabiliti@®M. we obtain the value of"*: *
As in the analytical method given above, we have verified *

by enumeration of the deterministic strategies that this hy- 4

perplane is indeed a Bell inequalitize., that it lies on one ﬂzkzr- (24)
side of the polytopeand that it yields the threshold detection I (QM) +2

efficiency »,, .

Inserting the optimal values of>**(QM) given in Ref[7]
Ill. RESULTS this reproduces our numerical results and those of F&éf.

o _As an example, for dimension B>#2(QM)=2.873 so that
Our results are summarized in Table I. We now describe X”=0.8209. Whend—c, Eq. (24) gives the limit 771)‘

. . /i
them in more detail. —0.8049.

A. Arbitrary dimension, two settings on each side
(N,=N,=2) B. Three dimensions, 23 settings

For dimensions up to seven, we found numerically that For three-dimensional systems, we found that adding one
7,=1=7"". The optimal measurements we found are iden-setting to one of the parties decreases bgii' and »Y*
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from 0.8209 to 0.8182In the case ofl=2, it is necessary to C. Three settings for both parties
take three settings on each side to get an improvement o three settings per party, things become more surpris-

The optimal settings involved are ¢,,=(0.0.0),  jhg Wwe have found measurements that lowér* and »"*
¢a,=(0,2m/3,0), ¢, =(0,7/3,0), ¢g,=(0,27/3,—7/3),  with respect to X2 or 2x 3 settings. But contrary to the

¢8,=(0,— 7/3,— m/3). previous situationsy} = is not equal ton?*, and the two
We have derived a Bell expression associated with theseptimal values are obtained for two different sets of mea-
measurements: surements. We present in this section the two Bell inequali-

ties associated to each of these situations for the qubit case.

3,2X3 _ _ _ — —
™ "= +[P(A;=B1)+ P(A1=B;) + P(A1=B3) Let us first begin with the inequality fozy}jl :

+P(A2=B1+1)+P(A;=B,+2)+P(A;=Bj3)] |233A=E(A;,B,) +E(A;,B3) +E(A,,B;) +E(A3,By)

—[P(A1#B,)+P(A;#By)+P(A;#B3) 4
—E(A,,B3)—E(A3,B,)— =P(A;#B

+P(A,#B;+1)+P(A,#B,+2)+ P(A,#B3)]. (Az,Bs)~E(As.B2) ~ 3P(A7By)
(25 4 4

- §P(A2¢ B,)— §P(A3¢ B;)<2, (30
The maximal value off 3%*3 for classical theories is two
since for any choice of local variables four relations witt a where E(A;,B.)=P(A,=B)—P(A #B). As usual, the
can be satisfied, but then two with-a are also satisfied. For i3 ) Lo ’
example, we can satisfy the first four relations but this im-
pliesA,=B,+1 andA,=B3+1, which gives two— terms.

fact thatl 2>3<2 follows from considering all deterministic
classical strategies. The maximal quantum-mechanical viola-

. S ox3 R tion for this inequality is 3 and is obtained by performing the
The maximal value of;;"* for quantum mechanics is given ¢, o measurements on both sides=B,, A,=B,, A,

fgrzxsthe settings described above and is equal to_ B, defined by the following phasesp, =(0,0), ¢a
, — i H i i 1 2
[77°°(QM)=10/3. To take into account detection ineffi —(0.7/3), ¢A3:(0,_ 7/3). It is interesting to note that this

ciencies, consider the following inequality: ] ) i }
inequality and these settings are related to those considered

|32 = 325415204 157%<2, (26) by Bell [1] and Wigner[19] in the first works on quantum
nonlocality. But whereas in these works it was necessary to
where suppose tha#; and B; are perfectly(anti) correlated when
1 i=j in order to derive a contradiction with LHV theories,
|3:238= — 3 |§;' P(A=0,B;+0) (27)  here imperfect correlationB(A; # B;)>0 can also lead to a

contradiction since they are included in the Bell inequality.
If we now consider no-result outcomes, we can use

and | 233X without adding extra terms, and the quantum corre-
a3 1 lations obtained from the optimal measurements violate the
1573=% 2, P(A=0,B;=0) (28 inequality if
3 1,]
. . 2 2
(I, is taken equal to zejoThe principle used to show that )"72>W: _. (32)
132%3<2 s the same as that used to prove tHat*?<2. 1233 QM) 3

For example, ifA;=0, then13*3<3, 13#%3=—1, and -
1523=0, so thatl>?3<3-1=2. From Eq.(26) and the ~TakingA=1, we obtainz} ~*=/2/3=0.8165. For smaller
joint probabilities (20) for the optimal quantum measure- Values of\, 7 increases untily), =16/19 is reached fox

ments, we deduce =0.9401. At that point the contradiction with local theories
5 9 ceases to depend on the production ratand one should
nZA: -~ ~0.8182, (29) switch to the following inequality:
10+4 t 2 4 4
3 I3V =3E(A1,Bo) + E(ABa) + 3E(A;,By)
in agreement with our numerical result. 2 4 2
Note that in Ref[18], an inequality formally idendical to + §E(A3,Bl) — §E(A2-Bs)— §E(A3,Bz)

Eq. (25 has been introduced. However, the measurements
scenario involves two measurements on Alice’s side and nine

4 4 4
binary measurements on Bob’s side. By grouping appropri- - §P(A1¢ By)— §P(A2¢ BZ)—§P(A37& Bj)
ately the outcomes, this measurements scenario can be asso-
ciated to an inequality formally identical to E@25) for <2 (32)

which the violation reaches\. According to Eq(29), this
result in a detection efficiency thresholx;l‘,{A of 6/(2y3  This inequality is similar to the former one, E®0), but the
+4)~0.8038. symmetry between the(A; ,B;) terms has been broken: half
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of the terms have an additional weight of 1/3 and the others Note added in proofRecently, we found numerically that

of —1/3. The total inequality involving no-result outcomes is for three dimensionsd=3) and three measurement settings
at each site Nl,XN,=3X3), the lowest value ofr;‘j" is
attained for general von Neumann measurements, and not for
(33 multiport beam-splitter measurements. The lowest value
found numerically in this case ia¥”=0.7951. This shows
e i 1 ! a.nd _that multiport beam-splitter measurements are not always the
is given in the Appendix. The important point is pest measurements for exhibiting nonlocality.

thats; ; (ci’+c) = —8/3 andS; jcfP=2. From Egs(14),

(9), and(20), we thus deduce

2,3X3V N _2,3X3V \ 2,3X3V A 2,3X3V \ 2,3X3V \
| =12 +12 FIZPBY AL 2OV A

The particular form of the termkg®*3V | |233V %

|2,3>< 3V
00
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The measurements that optimize the former inequéBt)
give the thresholdr;z*:16/19. However these measure- APPENDIX
ments are not the optimal ones for E®2). The optimal

phase settings are given in the Appendix. Using these set- FOf completeness, we present here in detail all the Bell
tings it follows thatl 23*3YANQ@M =3 157 andy¥*=0.8217 Inequalities and optimal phase settings we have found. This
rr " * " "

includes also the results of Table | which have not been
) _ _ discussed in the text.
D. More settings and more dimensions
Our numerical algorithm has also yielded further im- 1.Ny=2,Ng=2,V A
provements when the number of settings increases or the ] )
dimension increases. These results are summarized in Table Bell inequality,

I. For more details, see the Appendix. [di2]-1 ok
|42x2= (1— —){+[P(A1=Bl+k)
IV. CONCLUSION k=0 d-1
In summary, we have obtained using both numerical and +P(B;=A,+k+1)+P(A,=B,+k)

analytical techniques, a large number of Bell inequalities and

optimal quantum measurements that exhibit an enhanced re- +P(By=A1+K)]-[P(A;=B;—k-1)

sistance to detector inefficiency. This should be contrasted +P(B;=A,—Kk)+P(A,=B,—k—1)
with the work (reported in Refs[5,6]) devoted to searching

for Bell inequalities and measurements with increased resis- +P(B,=A;—k—-1)]}

tance to noise. In this case only a single family has been 12

found !nvolvmg two settings on gach side despite extensive 2 P(A=0,B,=0)<2.
numerical searche@nainly unpublished, but see Ré¢i.5]). 252

Thus the structure of Bell inequalities resistant to inefficient
detectors seems much richer. It would be interesting to un-
derstand the reason for such additional structure and clarify
the origin of these inequalities.
It should be noted that for the Bell inequalities that we b (j)=0, da(j)= Zj
have found, the amount by which the theshold detector effi- 1 T d"’
ciency n, decreases is very small, of the order of 4%. This
is tantalizing because we know that for sufficiently large di- - -
mension and sufficiently large number of settings, the detec- ¢e,(1)= 541 ¢8,(1) =541
tor efficiency threshold decreases exponentially. To increase
further the resistance to an inefficent detector, it would per-
haps be necessary to consider more general measuremehgximal violation,
than the one we considered in this work or use nonmaxi-
mally entangled statg$or instance, Eberhard has shown that [di2]-1 K
for two-dimensional systems, the efficiency threshg|dcan 192X2(QM)=4d >, (1——)(qk—qkl),
be lowered to 2/3 using nonmaximally entangled stg263). k=0 d-1
There may thus be a Bell inequality of real practical impor-
tance for closing the detection loophole just behind the corwhereq,= 1/(2d3sir?[ m(k+1/4)/d]).
ner. Detection threshold,

Optimal phase settings,
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4 ¢s,=(0,~0.8410.
Id 2><2(Q M)

VN _
/e

Maximal violation,123*3Y}(QM) =3.157
Detection thresholdy?*=0.8217.
2. d=2, NA=3, NB=3, A
Bell inequality, 4.d=2,N,=3,Ng=4,V
|2,3><3,)\: E(Al,Bz) + E(A1'B3) + E(A21Bl) + E(A31Bl) Bell inequality,
4 | 234V = —P(A; #B,) — P(A;#B3) —P(A;#By)
—E(A,B3) —E(A3,B,) — 3 P(A;#B,)
+P(A;=B1) +P(A;=B;3) — P(A;#B3)
4 4 _ - -
— §P(A2¢ BZ)_ §P(A3¢ Bg)SZ + P(A27& B4) P(A3_ Bl)+ P(A3_ BZ)
—P(A3#By) + P(A3#B3) —P(A3=B,)
+P(A,#0,B,=0)+P(A,=0,B,#0)
- P(A3¢(D,Bl=(l))— P(A1=0,Bz¢0)

+P(A;=0,B,=0)+P(A,=0,B,=0)<2.

whereE(A;,Bj) =P(A;=B;) —P(A;#B)).
Optimal phase settlngs

¢>Al=(0,0), ¢>A2=(0,7-r/3), ¢A3=(0,—77/3),
¢Bl:(010)' d)B ~(0m9), ¢B3:(O’_ r3). Optimal phase settings,

Maximal violation,|%¥3*(QM)=3.

Detection thresholdy} = 2/3\. ¢, =(0,0,, ¢4,=(0,0.7388,

3.d=2,Ny=3,Ng=3,V A ba,=(0,2.1334,

Bell inequality, #s,=(0,-0.1347, ¢g,=(0,1.2938,

|2~3X3W=EE(A B)+‘—1E(A B)+fE(A B;)
I Tt - T ¢p,=(0,—0.0759, ¢p,=(0,—1.089.

2 4 2 ; i lati 2,3x4 —
T §E(A3,Bl)— §E(A2,B3)— §E(A3,Bz) MaX|m§1I violation, | " (QM)=2.8683.
Detection thresholdy. " =0.8216.
4 4 4
— 3 P(A17B1) — 3 P(A2#By) — 3 P(As# Bs) 5.d=2,Ny=4,Ng=4,V A
5 4 2 Bell inequality,
~3Fo(A1,By) — 3Fo(A2,B3) — 3Fo(As,By) |24X4¥N = _ (A =B,)+ P(A;#Bg)— P(A,=B;)

2 4 —P(A;=B5) +P(A;#By) +P(A3;#B,)
+ — FQ(A3 B,)+ = P(Az 0,B,#0)

As#B,) —P(A3#B3)—P(A;#B,)
A,=B;)—P(A4;=B3)+P(A;#B,)
A 0,84:0)_P(A47&0,B]_:®)

P(
4 P(
+3P(A#0.B;=0)+ 3 P(Al 0,B,=0)
P(
P(A;=0,B,=0)+P(A;=0,B,=0)<2.

4
+§P(A2:0,Bl )+ P(Al 083 0) 2

where E(A; ,B))=P(A=B;)~P(A#B;) and Fy(A;,B;) Optimal phase settings,

=P(A;=0,B;#0) + P(A#0,B;=0)+ P(A;=0,B;=0).

Optimal phase settings, ¢a,=(0.0,  $4,=(0,0.0958,

éa,=(0,0), ¢a,=(0,1.3934, #a,=(0,2.1856, pa,=(0,4.5944,
¢a,=(0,-0.7558, $p,=(0,4.0339, ¢5,=(0,3.3013,
¢s,=(0,0.5525¢5,=(0,1.3083 $5,=(0,2.2493, ¢, =(0,2.3454.
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Maximal violation,|>**4(QM)=2.8697.
Detection thresholdy?*=0.8214.

6.d=3,N,=2,Ng=3,V A
Bell inequality,

13232 = +[P(A;=By)+P(A;=B;) + P(A;=Bj)
+P(A;=B1+1)+P(A;=B,+2)+P(A;=Bj)]
—[P(A1#B)+P(A;#B,)+P(A;#Bj3)
+P(A,#B;+1)+P(A,#B,+2)+P(A,#B3)]

1 1
-3 > P(A=0B;#0)+ 3 > P(A=0,B;=0)
i,] ]
Optimal phase settings,
éa,=(0,00, Ha,=(0,2/3,0),

¢g,=(0,7/3,0), ¢p,=(0,27/3,— 7/3),

¢33= (0,— 7l3,— ml3).

Maximal violation,|>?3(QM) =22,
Detection thresholdy?*= % =0.8182.

7.d=3,N,=3,Ng=3,\
Bell inequality,

133X =E,(A1,B5) + Ea(A;,Bs) + E5(Az,By)
—E»(A2B3) +E1(A3,B1) —E1(A3,B))
—P(A1#B1)—P(A,#B,) —P(A3;#B3)<2.
Optimal phase settings,

b, = (0,0,0, ba,= (0,27/9,47/9),
ba,=(0,—27/9,~4m/9),
#8,=(0,0,0, ¢g,=(0,2m/9,47/9),

bs,=(0,—27/9,~ 4m/9).

Maximal violation,|1%%3(QM)=23.0642.
Detection thresholdy) =2/3.0642

8.d=3,Np=3,Ng=3,V A
Bell inequality,

PHYSICAL REVIEW A 66, 052112 (2002
3,3X3V )\:_§ — _i =
I 3 P(A;=B,)) 3 P(A;=B;+2)
5
+P(A;=B,)+ §P(Al= B,+1)
5
—3P(A1=B3)—P(A;=B3+2)
5
5
5
11
— §P(A3= B,)—2P(A3=B;+2)
2
5
5 5
+ §P(A1¢0,B]_:0)_ §P(A2¢0,Bl:0)
—2P(A3#0,B,=0)+2P(A,#0,B,=0)
5

Optimal phase settings,

#a,=(0,0,0, ¢a,=(0,1.4376,2.8758

éa,=(0,0.5063,1.01285
¢s,=(0,2.0452,4.0904 ¢g,=(0,2.9758-0.3315,
¢g,=(0,1.3839,2.7678

Maximal violation, 3**3(QM)=5.3358.
Detection thresholdy?*=0.8146.

9.d=4,Na=2,Ng=3,V A
Bell inequality,
[42BYA=P(A;=B;+1)+2P(A;=B;+2)
T2P(A1=Bo) +P(A1=B,H 1) +2P(A1=By)
+2P(A;=B;+1)+P(A;=B;+2)
+P(A,=B,)+2P(A,=B,+1)
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4 |433YA= —P(A;=B;+2)+P(A;=B;+3)+2P(A,=B
+2P(A,=B3+2)+ 3 X P(A=0B,#0) (A=Bat2)+ P(A=B1+3)+2P(A1=8,
' +1)—P(A;=B,+2)—P(A;=B;)—3P(A;=B,
+}2 P(A=0,B,+0) +1)—2P(A;=B3+2)—P(A,=B;)+P(A,=B;
3 - 1
' +1)—P(A,=B,+1)+P(A,=B,+2)

1
I
+P(A3:Bz)
5
+3 > P(A;#0,B,=0) —2P(A3=B,+2)—P(A;=B,+3)
I

1 8
+§2 P(A;#0,B,=0)+ 3 P(A;=0,B,=0)
! +>, P(A=0,B;#0)+P(A;#0,B,=0)

1

+ gP(A1=QBz:@+ gP(AF@’Bs:@)S +P(A,#0,B,=0)— P(A;=0,B,#0)
+P(A;=0,B3#0)+P(A;#0,B3=0)
+2P(A,=0,B,=0)+P(A,=0,B,=0)
+P(A,=0,B;=0)+P(A;=0,B,=0)
+P(A3=0,B;=0)<6.

4 1
+ §P(A2=(D,Blz(0)+ §P(A2=0,Bz=0)

1

Optimal phase settings,

(;bAl: (01010101

Optimal phase settings,

¢Al: (01010101

dJAZ: (0,—1.1397,2.0019,3.1436
¢A2= (0,—1.2238;-1.1546,3.9048

¢Bl= (0,1.7863;-0.5698,2.3568,

¢A3= (0,3.1572,3.8330,0.7070

(1)32: (0,0.2155,5.7133,0.78%4

(]551: (0,—0.9042,1.7066,0.8025
¢B3=(0,1.0009,1.0009)0

; : : ¢g.=(0,2.5844,3.6937 0.005)),
Maximal violation,|+?3(QM)=9.4142. 2

: VA _
10.d=4,Na=3,Ng=3,V A Maximal violation,|*®*3(QM)=7.5576.
Bell inequality, Detection thresholdy?*=0.7939.
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