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Abstract — Motivated by recent advances in quan-
tum cryptography with continuous variables, we study the
problem of extracting a shared digital secret key from two
correlated real values. Alice has access to a real value XA,
and Bob to another value XB such that I(XA; XB) > 0.
They wish to convert their values into a shared secret digi-
tal information while leaking as little information as possi-
ble to Eve. We show how the problem can be decomposed
in two subproblems known in other contexts. The first is
the design of a quantizer that maximizes a mutual infor-
mation criterion, the second is known as coding with side
information.

I. INTRODUCTION

The work presented in this paper1 is motivated by some recent
quantum key distribution (QKD) protocols that make use of
continuous quantum states instead of discrete ones.

Quantum key distribution (also called quantum cryptogra-
phy) allows Alice and Bob to share a secret key that can be
used for encrypting messages. Eavesdropping is detectable in
such key distribution schemes, as the laws of quantum me-
chanics imply that measuring a quantum state generally dis-
turbs it. Quantum cryptography uses two channels: a quan-
tum channel (e.g., a fiber in which single photons are sent)
and a classical public authenticated channel. To share a secret
key, a few steps must be performed. First, quantum states are
sent from Alice to Bob on the quantum channel. This process
gives the two parties correlated random variables, XA and XB .
Then, Alice and Bob compare a sample of the transmitted in-
formation over the public channel. By measuring some appro-
priate disturbance metric, they determine an upper bound on
the amount of information a possible eavesdropper was able
to get, thanks to the laws of quantum mechanics. Finally, they
extract a common secret key out of XA and XB . The last step
of QKD, namely the construction of a common secret key out
of correlated random variables is a non-trivial operation. In
many QKD schemes such as BB84 [2], XA and XB are sim-
ply balanced binary random variables, connected by some er-
ror probability ε = Pr[XA 6= XB ]. In this case, the secret key
distillation usually involves two steps. First, Alice and Bob use
a correction protocol over the public authenticated channel in
such a way that they get identical keys. Since the correction in-
formation is sent over a public channel, it is considered known
to an eavesdropper. Therefore, the second step of key dis-
tillation consists in applying a privacy amplification protocol
[3], where the tapped information is wiped out at the cost of a
reduction in the key length. Privacy amplification is not cov-
ered in this paper, since the currently developed protocols can

1A longer version is available as technical report [5]

readily be used. Unlike binary QKD protocols, some recent
protocols [7] use a continuous modulation of quantum states,
thus producing continuous random variables XA, XB ∈ R

d.
The extraction of a common secret key works like for their bi-
nary counterparts, although the reconciliation step will extract
common discrete variables out of continuous ones. We thus
wish Alice and Bob to be able to agree on a discrete key from
XA and XB while leaking as little information as possible on
the public channel.

We propose a three-phase approach to the problem of con-
structing a shared secret key K. In a first phase, Alice maps
her value XA to an integer K = α(XA) using a predefined
function α. Then she sends a correction information γ(K)
on the authenticated channel to Bob. Finally, using this in-
formation and his continuous value XB , Bob is able to deter-
mine K = β(γ(K), XB) with high probability. The subject
of this paper is the design of mappings α, γ and β that max-
imize the amount of shared secret information. In the source
coding terminology, α is a quantizer, and the pair (γ, β) is a
lossless code with side information at the receiver [10]. We
have therefore split our problem in two main parts: 1) design
a good quantizer α, 2) design a good lossless code (γ, β). We
set XA, XB ∈ R

d, K ∈ K ⊆ N. The functions involved are
α : R

d → K, γ : K → {0, 1}∗ and β : {0, 1}∗ × R
d → K.

A diagram of the scheme is provided in Fig. 1. The operations
α and γ are made on Alice’s side, while the decoding β takes
place on Bob’s side.

We define the correction rate R as the average length of the
correction message that Alice sends to Bob: R = E[|γ(K)|].
A lower bound to the correction rate is the lowest achiev-
able rate for a lossless code with side information, which is
known [10] to be equal to the conditional entropy of the mes-
sage with respect to the side information: R ≥ H(K | XB).
The amount of information that is shared by Alice and Bob is
therefore equal to the entropy H(K) of the key generated by
Alice, minus the number of correction bits R. An upper bound
to this quantity is H(K)−H(K | XB) = I(K; XB).
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Figure 1: Block diagram of the proposed system

II. QUANTIZATION

We have seen that I(K; XB) is an upper bound on the amount
of information shared by Alice and Bob. Actually, when



the granularity of the quantizer α tends to infinity, we have
I(K; XB) → I(XA; XB), and H(K | XB) → +∞. The
first limit is well known, while the second comes from the
fact that the discrete entropy of a continuous variable is infi-
nite. Hence the price to pay to get I(K; XB) closer to the
ultimate upper bound I(XA; XB) is an increase in the aver-
age size H(K | XB) of the correction message assuming an
ideal lossless coder. Our goal in designing the quantizer α is to
maximize I(K; XB) while keeping H(K | XB) bounded. We
show that such quantizers actually have the structure of vec-
tor quantizers for probability distributions with the Kullback-
Leibler divergence as distortion measure. Traditional quanti-
zation aims at minimizing a distortion measure defined in the
signal space, such as the mean squared error [6]. There is
however already some literature on quantization for maximal
mutual information. This idea has actually emerged recently
in rather different contexts. In a recent contribution from Wu
et al. [14], a maximal mutual information quantizer is utilized
to classify context vectors in data compression applications.
They use a minimal conditional entropy criterion which turns
out to be strictly equivalent to maximizing the mutual informa-
tion. They mention the Lloyd approach presented next. A sim-
ilar maximum mutual information optimization is presented in
the information bottleneck method from Tishby, Pereira and
Bialek [12].

We propose a method that follows the developments pro-
vided in [14] and inspired from the Lloyd optimality con-
ditions for vector quantizers. We first assume that K be-
longs to the set K = {1, 2, . . . , N}. Then clearly H(K |
XB) is bounded by log N . We use the notation 〈f, g〉 =
∫

f(x)g(x)dx, and h(.) for the differential entropy. Then α
is a solution of

arg max
α

I(K; XB)

=arg max
α

h(XB)− h(XB | K)

=arg min
α

h(XB | K)

=arg min
α

h(XB | K)− h(XB | XA)

=arg min
α
〈PXA

, 〈PXB |XA
, log

PXB |XA

PXB |K
〉〉

=arg min
α

EXA
[D(PXB |XA

‖ PXB |K)].

(1)

The function D(p ‖ q) is called the Kullback-Leibler (K-L)
divergence or the relative entropy of p with respect to q.

From the previous developments, we see that a realization
xA of the continuous value XA on Alice’s side should be
mapped by α to the key α(xA) such that

α(xA) = arg
N

min
k=1

D(PXB |XA=xA
‖ PXB |K=k), (2)

that is, to the key k whose associated distribution PXB |K=k

is the nearest neighbor of PXB |XA=xA
in terms of the K-L

divergence. This is equivalent to the first Lloyd’s optimality
condition in classical vector quantization. The nearest neigh-
bor condition in Eqn. (2), however, is tail-biting: the map-
ping α is defined through the distributions PXB |K , which in
turn depend on α. This observation suggests an algorithm

in which the mapping and the conditional distributions are
updated alternately. Let us define {fk}Nk=1 the codebook of
probability distributions for XB and the quantization cells
Qk = {xA | α(xA) = k}, i.e., the subsets of R

d whose
elements are mapped to the same quantization index k. The
quantizer α is completely defined by the partition {Qk}Nk=1.
The following algorithm is applied, starting with any initial
quantizer α:

1. ∀ k = 1, 2, . . . , N : fk ← E[PXB |XA
| XA ∈ Qk]

2. ∀ k = 1, 2, . . . , N : Qk ← {xA | ∀j 6= k
D(PXB |XA=xA

‖ fj) > D(PXB |XA=xA
‖ fk)}

3. Repeat the previous steps until convergence.

While this algorithm is an adaptation of the well-known gen-
eralized Lloyd algorithm [6], we can consider that the agglom-
erative information bottleneck technique [11] is an adaptation
of a family of algorithm for vector quantizer design known as
Pairwise Nearest Neighbor algorithms

The previous description of the local optimization algo-
rithm is rather general and not directly implementable. First,
probability distributions are generally estimated up to a cer-
tain precision. Then, the design of the improved quantizer is
not straightforward either. It can be carried out using a train-
ing set of realizations of XA and applying the nearest neighbor
rule (2) for each element of the set.

We now discuss some properties of these quantizers. For
simplicity, we temporarily assume that XB is a discrete ran-
dom variable in the finite set XB . Quantization cells Qk have
no special structure. It is not necessary, in particular, that val-
ues of XA that are close to each other lead to similar distribu-
tions for XB . On the other hand, there exist quantization cells
Ck on the probability simplex, the set of vectors of size |XB |
with positive components summing to one. These cells con-
tain all probability mass functions for XB corresponding to a
given quantization index k: Ck = {PXB |XA=xA

| α(xA) =
k}. These cells are connected and bounded by (|XB | − 2)-
dimensional hyperplanes. It is not too difficult to show that
the optimal value of fk within a cell is the average probability
mass function in that cell. In other words, vector quantizers
minimizing the K-L divergence obey the centroid rule. This
centroid rule is important because it proves that the alternate
optimization algorithm converges: Each of the two steps de-
creases the K-L divergence, and since this quantity is always
positive, the algorithm must converge to a quantizer that is lo-
cally optimal with respect to both the nearest neighbor and the
centroid rule. Furthermore, we can show that the exact av-
erage K-L divergence Dk within the cell Ck is known as the
generalized Jensen-Shannon divergence when g(.) is actually
a probability mass function.

Instead of fixing K ∈ K = {1, 2, . . . , N}, we can simply
let K = N and solve the constrained problem of maximizing
I(K; XB) subject to H(K | XB) ≤ R∗ for a certain bound
R∗ on the ideal correction rate. Introducing a Lagrangian mul-
tiplier λ ∈ R

+, we seek

max
α

I(K; XB)− λH(K | XB). (3)



The Lagrangian multiplier λ controls the tradeoff between the
fraction of the maximal mutual information I(XA; XB) that
is actually shared and the ideal correction rate H(K | XB) on
the authenticated channel.

The assumption that the conditional distributions PXB |XA

are Gaussian, or in some sense close to Gaussian might also be
interesting in applications. A reasonable approximation of the
K-L divergence D(PXB |XA=xA

‖ fk) that we wish to mini-
mize can be obtained by modeling fk by a Gaussian pdf f̃k

with the same mean and variance. The error due to this ap-

proximation is D(P ‖ f̃k) + 〈P, log f̃k

fk

〉, where the additional

term 〈P, log f̃k

fk
〉, the “distance” between fk and its approxi-

mation, averaged with respect to P , should be minimized. Let
f1 and f2 be two Gaussian pdf with respective means µ1 and
µ2 and standard deviations σ1 and σ2. It is straightforward to
show that

D(f1 ‖ f2) = ln
σ2

σ1
−

1

2
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

nats. (4)

III. LOSSLESS CODING WITH SIDE INFORMATION

As the previous section described the design of the quantizer,
let us now discuss the design of the lossless code with side
information at the receiver. Alice wishes to send γ(K) with a
rate R as little as possible such that Bob is able to recover K
with a high probability.

Symbols k and k′ are said to be confusable if ∃ xB such
that PK,XB

(k, xB) > 0 ∧ PK,XB
(k′, xB) > 0. If such k and

k′ are associated with the same codeword, the decoder β will
not be able to tell which one is correct. For many interest-
ing cases, such as joint Gaussian variables, the joint probabil-
ity function PK,XB

will in general always be strictly positive.
All symbols are thus confusable. This means that a non-zero
probability of error at the decoder side must be tolerated, al-
lowing some confusable symbols to have identical codewords,
otherwise making γ bijective. The probability of confusion is
defined as

Pc = Pr [β(γ(K), XB) 6= K] , (5)

which is thus to be minimized together with the rate R. The
code γ can be either [1]: a restricted inputs (RI) code, where
γ(k) is not a prefix of γ(k′) whenever k and k′ are confus-
able, or an unrestricted inputs (UI) code, where γ(k) 6= γ(k′)
whenever k and k′ are confusable and γ(k) can never be a
prefix of γ(k′) (even if k and k′ are not confusable).

In general, the codes of consecutive inputs will be concate-
nated to make a binary stream. This means that, in addition
to outputting an incorrect k, the decoder β may as well desyn-
chronize if the code associated to a symbol k is a proper prefix
of the code of a distinct confusable symbol k′. This prob-
lem should thus be circumvented by using an UI code, making
the stream instantaneously decodable even without the side in-
formation. Confusion can still happen, but desynchronization
cannot. We will now overview some constructions of code in
previous research.

Zero-error codes are aimed at allowing the decoder to un-
ambiguously determine the transmitted symbol without error.
They make explicit use of zero entries in the joint probability

distribution, and generally refer to the notion of confusabil-
ity graph, an undirected graph whose nodes are symbols and
in which edges connect all pairs of confusable symbols. Wit-
senhausen [13] relates zero-error codes to the chromatic num-
ber of the confusability graph. Further work along these lines
is found in Koulgi et al. [8]. A construction called MASC
[15] produces optimal RI codes. Clearly, our problem involves
joint probabilities that have no zero entries. Zero-error correc-
tions thus cannot be used as such. A possible modification is
examined below.

Another way for Alice to give Bob information about K =
α(XA) is to send him the syndrome of a linear error correcting
code γ(K) = HK, with K expressed in some vector space
GF (q)n and H the parity check matrix of the code. Upon
receiving sA = Hk for an outcome k of K, Bob looks for
the most probable k̃ conditionally on XB = xB such that
Hk̃ = sA. Standard decoding techniques can be used as soon
as choosing the most probable symbol reduces to minimizing
the Hamming distance between Bob’s a priori (without HK)
and a posteriori (with HK) guesses. This idea is implemented
in the DISCUS framework [9]. However, the focus there is
set on a rate-distortion version of the problem, in which lattice
quantization and trellis-coded side-information are combined.
Still, good syndromes may be of help in the scope of secret
key construction, allowing fast decoding procedures.

Interactive protocols are often used for QKD purposes.
Cascade [4] for instance is a binary interactive error correc-
tion (IEC) protocol. It works on a long binary string and re-
quires Alice and Bob to exchange parities of subsets of their
bits. When the parity of a subset differs, they know for sure
that they have an odd number of wrong bits in this subset,
hence at least one. They can perform a bisection and repeat-
edly exchange the parity of half the current subset until one bit
is isolated and corrected (flipped). Cascade keeps track of all
investigated subsets and takes advantage of this information:
When an error is isolated and corrected, it updates the parity
of all previously processed subsets to which the corrected bit
belongs. This may then imply that the parity of some updated
subset now differs between Alice and Bob, causing a new bi-
section to start, until the error is found and corrected. The
interactivity of such IEC protocols has some drawbacks in the
scope of QKD, as information leaks from both sides, an aspect
detailed in [5]. It however offers overwhelmingly small prob-
ability of errors at the end of the protocol, making IEC fruitful
when combined with a source code with side information, to
further reduce the number of residual errors.

Given an encoder γ, the decoder that minimizes the proba-
bility of confusion simply returns the most probable symbol:

β(φ, xB) = arg max
k∈γ−1(φ)

PK,XB
(k, xB), (6)

where φ ∈ {0, 1}∗ and γ−1(φ) = {k : γ(k) = φ}. With
such a decoder, the confusion probability is the probability
mass that the decoder cannot reach,

Pc = 1−

∫

dxB

∑

k : ∃φ k=β(φ,xB)

PK,XB
(k, xB). (7)

Since UI codes allow only different prefix-free or equal code-
words, we can w.l.o.g. define γ as the composition of an



index assignment (IA) function δ and of a bijective code as-
signment function γ0: γ = γ0 ◦ δ, with δ : K → K
and γ0 : K → {0, 1}∗. The IA function thus repre-
sents the partition of K into subsets with equal codes, such
as a flat partition tree [15] or as a graph coloring [13].
The function γ0 can be for instance Huffman or arithmetic
coding. For a given IA function δ, the decoder (6) be-
comes β(δ)(γ0(i), xB) = argmaxk∈δ−1(i) PK,XB

(k, xB),
and by defining P (δ)(i, xB) = max

k∈δ−1(i)
PK,XB

(k, xB) (or 0

if δ−1(i) = ∅), we get P
(δ)
c = 1−

∫

dxB

∑

i P (δ)(i, xB).
Note that the only relevant information extracted from XB

is the symbol k of highest conditional probability for each
index i such that δ−1(i) 6= ∅. When δ is the identity,
K is transmitted losslessly without taking the side informa-
tion into account, making XB irrelevant to the decoder. On
the other hand, if δ is a constant, the decoder has no infor-
mation on K except via XB . Since there is only one set
δ−1(i) = K, the only relevant information extracted by the
decoder is the symbol k of highest conditional probability for
each xB . More general cases lie between these two extreme
cases. This enables us to quantize XB in a way that does
not alter the performance of the decoder. Instead of work-
ing with XB as such, one can define the vector π(δ)(xB) =
(

β(δ)(γ0(i), xB)
)

i : δ−1(i)6=∅
and consider β as a function of

the received codewords and of the quantized π(δ)(XB) with-
out increasing Pc.

If δ is not known when quantizing XB , a procedure that
works for any choice of δ is to use the full relative order of
the conditional probability of the k’s. Hence, π(xB) maps to
a permutation of K. We can thus replace the random variable
XB by the discrete variable π(XB), an effect that results di-
rectly from the discrete nature of K. Note that this may not
be efficient, as the size of the resulting alphabet may grow as
O(n!) if |K| ≤ n. However, this can be reduced in practice
if one neglects the relative order of key symbols that have low
conditional probabilities, or if one limits the density of the re-
sulting cells in R

d. In the sequel, XB ∈ XB will denote the
quantized version, unless stated otherwise.

We now present a simple heuristic algorithm to design UI
codes. The γ0 function is assumed to be arithmetic coding,
implying to minimize R = H(δ(K)). We start with a bijective
IA function δ(k) = k, hence giving Pc = 0 and R = H(K),
and then merge some key symbols so as to reduce the rate of γ
at the cost of an increase in Pc. Merging two indices i1, i2 ∈
R(δ) consists in creating a new IA function δ′ identical to δ
except that it now returns i1 whenever i2 was returned:

δ′(k) =

{

i1 if k ∈ δ−1(i2),

δ(k) otherwise.
(8)

We thus get R(δ′) = R(δ) \ {i2} and δ′−1(i1) = δ−1(i1) ∪
δ−1(i2), so that the key elements that were assigned to either
index i1 or i2 are now assigned to the same codeword.

Upon merging i1 and i2, this gives P (δ′)(i1, xB) =
max{P (δ)(i1, xB), P (δ)(i2, xB)} and P (δ′)(i2, xB) = 0.
The increase in confusion probability is thus ∆Pc =
∑

xB
min{P (δ)(i1, xB), P (δ)(i2, xB)}, and the decrease in

rate ∆R = f(Pδ(K)(i1), Pδ(K)(i2)), with f(p1, p2) =

−(p1 + p2) log(p1 + p2) + p1 log p1 + p2 log p2. At each
step, we choose the pair (i1, i2) such that the ratio λ(i1, i2) =
−∆R/∆Pc is maximized and merge i1 and i2, until no more
merging is possible or if the maximum tolerated probability of
confusion has been reached.

Although it does not necessarily give the optimal solution,
this algorithm has the advantage of giving many possible codes
with many associated (R, Pc) pairs in polynomial time.

IV. CONCLUSIONS

We presented a new secret key construction scheme and
motivated it as a tool for some recent protocols of quantum key
distribution. This problem was shown to divide into two other
subproblems that are met in other contexts. First, we showed
how to quantize a continuous secret key source in order to
maximize an information-theoretic criterion. Then, we made
a survey of existing codes with side information and listed the
required features of such codes for the scope of our problem.
We showed how unrestricted input codes can be used in this
context and proposed a simple heuristic algorithm to construct
such codes.
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