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Experimental set-up.  

The source consists of a CW laser diode (SDL 5412) at 780nm associated with an 

acousto-optic modulator, used to chop pulses with a duration 120ns (full width at half-

maximum), at a repetition rate 800kHz. To reduce the excess noise, a grating-extended 

external cavity is used, and the beam is spatially filtered using a single mode fiber. 

Light pulses are then split onto a beam-splitter, one beam being the local oscillator 

(LO), the other Alice’s signal beam. The data is organised in bursts of 60,000 pulses, 

separated by time periods used to lock the phase of the LO, and sequences of pulses to 

synchronize the parties. In the present experiment, there is a burst every 1.6 seconds, 

corresponding to a duty cycle of about 5%, which is obviously under-optimised but 

should be easy to improve in further experiments. 

The coherent state distribution is generated by modulating both the amplitude 

and phase of the light pulses with the appropriate probability law. In the present 
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experiment, the amplitude of each pulse is arbitrarily modulated at the nominal 800 kHz 

rate by an integrated electro-optic LiNbO3 Mach-Zehnder interferometer. In contrast, 

due to the unavailability of a fast phase modulator at 780 nm, the phase is not randomly 

modulated but scanned continuously from 0 to 2π using a piezoelectric transducer 

(PZT). For such a deterministic phase variation, the security of the protocol is not 

warranted, and thus no genuine secret key could be distributed strictly speaking. 

However, the experiment provides realistic data, having exactly the awaited structure 

provided that random phase permutation on Bob’s data are performed.  

Due to an imbalance between the paths of the interferometer which modulates 

the amplitude of the signal beam, the extinction is not strictly zero. In the present 

experiment that is only aimed at a proof of principle, we substract the offset field from 

the data received by Bob. In a real cryptographic transmission, the offset field should be 

compensated by Alice, either by adding a zeroing field, or by using a better modulator.  

All voltages for the electro-optic modulator or the PZT are generated by an 

acquisition board (National Instruments PCI6111E) connected to a computer. Although 

all discussions assume the modulation to be continuous, digitised voltages are used in 

practice. With our experimental parameters, a resolution of 8 bits is enough to hide the 

amplitude or phase steps under the shot noise. Since the modulation voltage is produced 

using a 16 bits converter, and the data is digitised over 12 bits, we may fairly assume 

the modulation and measurement to be continuous.  

The homodyne detection was checked to be shot-noise limited for LO power up 

to 5 108 photons/pulse. In the present experiment, we used 1.3 108 photons/pulse for LO 

power, while each signal pulse contains up to 250 photons. Depending on the run, the 

overall detection efficiency is either 0.81 or 0.84, due to optical transmission (0.92), 

mode-matching visibility (0.96 or 0.99) and photodiode quantum efficiency (0.92).  
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The experiment is thus carried out in such a way that all useful parameters can 

be measured experimentally. Reconciliation and privacy amplification protocols can 

thus be performed in realistic – though not fully secret – conditions. The limitations of 

the present set-up are essentially due to the lack of appropriate fast amplitude and phase 

modulators at 780 nm. This should be easily solved by operating at telecom 

wavelengths (1540-1580 nm) where such equipment is readily available. Let us point 

out also that it is not convenient to transmit separately the signal and LO, so a better 

solution would be to use a frequency sideband technique similar to Mérolla et al. S1. 

Then all light pulses are transmitted together along the same fiber, and a separate radio-

frequency is sent from Alice to Bob in order to reconstruct the optical phase 

information.  

 

Hypothesis about the detector’s noise : “realistic” vs “paranoid” assumptions 

After the quantum exchange, Alice and Bob reveal a subset of their values taken 

randomly to evaluate the transmission G and the total added noise variance. This 

variance has four contributions: the shot noise N0, the channel noise χline N0, the 

electronics noise of Bob's detector ( Nel = 0.33 N0 ), and the noise due to imperfect 

homodyne detection efficiency ( Nhom = 0.27 N0 ). The two detection noises Nel and 

Nhom originate from Bob’s detection system, so one may reasonably assume that they do 

not contribute to Eve’s knowledge. This “realistic” assumption has been followed in the 

article. In that case, the noise from Bob’s detection system also affects Eve’s 

information so, in eq (4b), we take (VB|E)min = N0 / {Gline ( χline + V-1 ) } + Nel + Nhom, 

where Gline stands for the line transmission. 

In contrast, in a "paranoid" approach, one should assume that the noises Nel and 

Nhom are also controlled by Eve, that gives her a supplementary advantage. In that case, 
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(VB|E)min will be given by N0 / {G ( χ + V-1)}, where G now includes both the line and 

detection efficiencies and χ includes both the line and detection noises. In all cases, the 

value of IBA is given by eq. (4a), where χ is the total equivalent noise including both 

transmission and detection.  

Presently we were able to extract practically a key with up to 3.1dB losses under 

the "realistic" approach with a reverse reconciliation protocol. Considering now the 

"paranoid" assumption and reverse reconciliation, the ideal secret key rate is 420 kb/s 

for a lossless line, and 200 kb/s for Gline= 0.79 (1.0dB). However, secret bits could be 

delivered only in the lossless case, at a practical rate of 195 kb/s. It is clear that an 

increase in the reconciliation efficiency would immediately translate into a larger 

achievable range. Let us point out that we always assume in both the “realistic” or the 

“paranoid” approach that Eve has an ideal software, quantum memories, perfectly 

entangled beams, etc. If any of these hypothesis is relaxed, the practical secure range 

may be extended over the “threshold” presently set by the limited reconciliation 

efficiency. However, it is not the purpose of the present paper to discuss such 

“constrained attacks”. 

 

Implementation of secret key distillation.  

Secret key distillation was performed by a computer program written in standard C++ 

that implements the steps described in the paper. Although Alice's and Bob's data are 

both processed on the same computer, it is done in the same way as if the parties were 

distant and were using a network connection as classical channel. The particular 

platform used is a regular PC running Linux. 

As bursts of data are input to the program, a part of the Gaussian key elements 

are sacrificed and used to estimate the characteristics of the quantum channel. This 
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includes the variances and the correlation coefficient between both sides, which would 

be exchanged between Alice and Bob over the public authenticated classical channel in 

a real-life setup.  

Depending on the value of the estimated IAB, the two parties agree on 

appropriate binary functions (slices S2,S3) that will transform their Gaussian values into 

bits. These bits are then reconciliated, as described in the paper, with sliced error 

correctionS2,S3 and an implementationS4 of CascadeS5 as a sub-routine. In our 

implementation, 5 binary functions are used per Gaussian key elements, out of which 2 

or 3 (depending on IAB) are fully disclosed, while the remaining 3 or 2 are reconciliated 

using Cascade.  

Next, the data are moved to the privacy amplification routine. Excluding the bits 

that are fully disclosed and from which no secret key can be extracted, the reconciliated 

bits are processed by use of a transformation randomly taken in a universal class of hash 

functionsS6,S7, which in our case is the class of truncated linear functions in a finite field. 

First, we consider the reconciliated bits as coefficients of a binary polynomial in a 

representation of the Galois field GF(2110503), hereby called the reconciliated 

polynomial. Then Alice and Bob publicly and randomly choose a random element of 

the same field and multiply the reconciliated polynomial with this chosen element. 

Finally, they extract from the resulting polynomial the desired number of least 

significant bits. In our implementation, the representation of the field is GF(2)[x]/(p), 

where p = x110503+x519+1 is an irreducible polynomial over GF(2), see ref.S8. The fact 

that this operation can be implemented efficientlyS9 motivated our choice. The size of 

the field allows us to process up to 110503 bits at once, or equivalently blocks of about 

55200 Gaussian key elements when Cascade operates on 2 bits per Gaussian key 

element or of 36800 elements with 3 bits per element. To produce a longer key, the 

Gaussian key elements must thus be grouped into blocks.  
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As explained in the paper, the number of bits that are destroyed by privacy 

amplification depends on the amount of information that could be inferred by a potential 

eavesdropper. An easvesdropper Eve has two sources of knowledge. First, she may have 

attacked the quantum channel and second, she knows the error positions of the 

reconciliated bits from listening to the execution of Cascade. Let K be the final key, E 

the ancilla Eve uses for quantum eavesdropping, and Delta the error positions revealed 

during reconciliation. We thus need to evaluate I(K;E,Delta) = I(K;E) + I(K;Delta|E). 

The first term on the rhs is upper bounded by IBE (in RR) or IAE (in DR), while the 

second term is evaluated numerically for an entangling cloner attack.  

This numerical evaluation of I(K;Delta|E) comes down to integrating 

I(K;Delta|E=e) for all possible outcomes e of E, weighted by the probability density 

function p(e) of E. In the case of the entangling cloner attack, E refers both to the 

knowledge of Eve's half of the EPR state she injects and to her eavesdropping of the 

state being sent to Bob, and so E denotes a bivariate Gaussian variable whose 

covariance matrix can be calculated from the channel characteristics (i.e., attenuation 

and added noise amplitude). For a given outcome e of E, Eve can infer A and B, Alice's 

and Bob's key elements as a bivariate Gaussian variable. Since K and Delta are discrete 

functions of only A and B, the probability distribution of K(A,B) and Delta(A,B) 

conditionally on E=e can be calculated, hence giving I(K;Delta|E=e).  

Finally, a part of the generated key is used to encryptS10 the execution of the 

reconciliation for the next block. The remaining bits, namely the net secret key, can be 

then used for instance to encrypt the classical communications between Alice and Bob 

using a one-time pad.  
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