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Security of quantum key distribution with entangled qutrits
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The study of quantum cryptography and quantum entanglement have traditionally been based on two-level
quantum systems~qubits!. In this paper, we consider a generalization of Ekert’s entanglement-based quantum
cryptographic protocol where qubits are replaced by three-level systems~qutrits!. In order to investigate the
security against the optimal individual attack, we derive the information gained by a potential eavesdropper
applying a cloning-based attack. We exhibit the explicit form of this cloner, which is distinct from the previ-
ously known cloners, and conclude that the protocol is more robust than those based on entangled qubits as
well as unentangled qutrits.
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I. INTRODUCTION

Quantum cryptography aims at distributing a random k
in such a way that the presence of an eavesdropper
monitors the quantum communication is revealed via the
duced disturbances in the transmission of the key~for a re-
view, see, e.g., Ref.@1#!. Practically, in order to realize a
cryptographic protocol, it is enough that the key signal
encoded into quantum states that belong to incompat
bases, as in the original protocol of Bennett and Brass
~1984! known as BB84@2#. In 1991, Ekert suggested to ba
the security of quantum cryptography on properties of
maximally entangled two-qubit state or Einstein-Podols
Rosen state@3#. The key signals are derived from measu
ments when they lead to perfect correlations~same base use
by the two parties!, and otherwise data for a Bell@4# or
Clauser-Horne-Shimony-Holt~CHSH! @5# inequality are col-
lected and used to reveal the presence of an eavesdro
Recently, it was shown that the violation of Bell-type i
equalities is more pronounced in the case of entangled qu
~i.e., three-dimensional systems! than entangled qubits
@6–8#. Also, several qutrit-based cryptographic protoc
were shown to be more secure than their qubit-based c
terparts@9–12#. It appears therefore very tempting to inve
tigate the performances of a generalization of Ekert’s pro
col relying on a pair of entangled qutrits@13# instead of
qubits.

From the experimental viewpoint, there are several w
of physically realizing qutrits using photons. The first pos
bility is to utilize multiport beam splitters, and more speci
cally those that split the incoming single light beam in
three@13#. The second one exploits the polarization degree
freedom. However, since this is intrinsically a tw
dimensional variable, one needs to use two photons per q
@14,15#. A third possibility, which uses only one photon p
qutrit, exploits the spatial angular momentum of photo
@16#. Finally, another realization of qutrits, possibly the mo
straightforward one, exploits time bins@17#. This approach
has already been demonstrated for entangled photons u
eleven dimensions@18#. Thus, exploring an entanglemen
1050-2947/2003/67~1!/012311~6!/$20.00 67 0123
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based quantum cryptographic protocol that uses qutrits
stead of qubits may lead to new applications of quant
informational technology as it lies in the reach of the curre
state-of-the-art quantum optical techniques.

In what follows, we shall analyze the security of th
entanglement-based protocol against individual atta
~where the eavesdropper Eve monitors the qutrits separa
or incoherently!. To this end, we will consider a fairly gen
eral class of eavesdropping attacks that are based on~state-
dependent! quantum cloning machines@19–21#. This will
yield an upper bound on the acceptable error rate, which
necessarycondition for security against individual attack
that is, higher error rates cannot permit us to establis
secret key using one-way communication. We will show th
this maximum acceptable error rate is higher, with this qu
protocol, than with Ekert’s qubit protocol, and even sligh
higher than with a three-dimensional extension of BB84.

II. THE FOUR QUTRIT BASES THAT MAXIMIZE THE
VIOLATION OF LOCAL REALISM

In the protocol Ekert-91@3#, the four qubit bases chose
by Alice and Bob~the authorized users of the quantum cry
tographic channel! are the four bases that maximize the vi
lation of the CHSH inequalities@5#. They consist of two
pairs of mutually unbiased bases.1 When representing thes
four bases on the Bloch sphere, their eight states form
perfect octagon@see Fig. 1~right!#. Similarly, there exists a
natural generalization of this set of bases in the case
qutrits @22#. In analogy with the CHSH qubit bases, whic
belong to a great circle, these four qutrit bases belong to a
of bases parametrized by a phasef on a generalized equato
which we shall call thef bases from now on. The expressio

1By definition, two orthonormal bases of anN-dimensional Hil-
bert space are said to be mutually unbiased if the norm of the sc
product between any two vectors belonging each to one of the b
is equal to 1/AN.
©2003 The American Physical Society11-1
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of the component states of anyf basis in the computationa
basis$u0&,u1&,u2&% is

u l f&5
1

A3
(
k50

2

eik[(2p l /3)1f] uk&5
1

A3
ei [(2p l /3)1f]F u1&

1cosS 2p l

3
1f D ~ u0&1u2&)1sinS 2p l

3
1f D ~2 i !

3~ u0&2u2&)G , ~1!

with l 50,1,2. Obviously, these basis vectors form an eq
lateral triangle on a great circle centered inu1&. When f
varies, these triangles turn aroundu1&. Note that the stateu1&
plays a privileged role compared with the statesu0& andu2&.
The invariance under a cyclic permutation of the basis v
tors of the computational basis is indeed broken in thef
bases because it can happen thatk5k8 mod 3 while eikf

5eik8f (k, k850,1,2! when f5” 2p l /3 (l 50,1,2!. It has
been shown that when local observers measure the cor
tions exhibited by the maximally entangled state

uf3
1&5

1

A3
~ u0& ^ u0&1u1& ^ u1&1u2& ^ u2&) ~2!

in the four f bases obtained whenf i5(2p/12)i ~with i
50,1,2,3!, then the degree of nonclassicality that charac
izes the correlations is higher than the degree of noncla
cality allowed by Cirelson’s theorem@23# for qubits, and also
higher than for a large class of other qutrit bases. This ca
shown by estimating the resistance of the nonclassicality
correlations against noise admixture@6#, or by considering
generalizations of Bell inequalities to a situation in whi
trichotomic observables are considered@7,8# instead of di-
chotomic ones. Note that the states making up the four q
bases which maximize the violation of local realism~we
shall call them theoptimal basesfrom now on! form a per-
fect dodecagon, which generalizes the octagon encount
in the qubit case@see Fig. 1~left!#.

Finally, it is worth noting that the state that optimizes t
violation of local realism when considering the four optim
bases is not the maximally entangled state, but the s
ufmv&5(1/An)(u0& ^ u0&1gu1& ^ u1&1u2& ^ u2&), where g
5(A112A3)/2 andn521g2 @24#. This state is not invari-

FIG. 1. ~Left! the four optimal qutrit bases;~right! the qubit
ones.
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ant under a cyclic permutation of the basis vectors of
computational basis. We noted already that this invarianc
broken by thef bases. We shall not discuss here the imp
mentation of this state in quantum cryptography.

III. THREE-DIMENSIONAL ENTANGLEMENT-BASED
„3DEB… PROTOCOL

Let us now assume that the source emits the maxim
entangled qutrit stateuf3

1& and that Alice and Bob share thi
entangled pair and perform measurements along one of
four optimal bases described above. It is easy to check
uf3

1& may be rewritten as

uf3
1&5

1

A3
~ u0f& ^ u0f* &1u1f& ^ u1f* &1u2f& ^ u2f* &, ~3!

where

u l f* &5
1

A3
(
k50

2

e2 ik[(2p l /3)1f] uk& ~ l 50,1,2!. ~4!

Therefore, when Alice performs a measurement in thef ba-
sis $u l f&% and Bob in the conjugate basis$u l f* &%, their results
are 100% correlated. In addition, the four optimal bases
fined above can be shown to be 100% correlated two by t
This can be understood graphically by noting that phase c
jugation corresponds to a reflection with respect to the ve
cal axis that crosses the center of the circle on the left of F
1, a symmetry that interchanges the bases of the dodeca

It is therefore natural to consider the following genera
zation of the Ekert-91 protocol for qutrits, which we sha
denote the 3DEB protocol@25#. In this protocol, Alice and
Bob share the entangled stateuf3

1& and choose each the
measurement basis at random among one of the four b
maximizing the violation of local realism~according to the
statistical distribution that they consider to be optimal!. Be-
cause of the existence of 100% correlations between m
surements in local bases of the samef i , a fraction of the
measurement outcomes can be used in order to establ
deterministic cryptographic key. The rest of the data, for
cases when the left and right phases are different, can
used in order to detect the presence of an eavesdroppe
example with the Bell inequalities of Ref.@8# or with the
computer algorithm of Ref.@6#. Let us now study the secu
rity of this protocol against optimal individual attacks.

IV. INDIVIDUAL ATTACKS AND OPTIMAL QUTRIT
CLONING MACHINES

We use a general class of cloning transformations as
fined in Refs.@19–21#. If Alice sends the input stateuc&
belonging to anN-dimensional space~we will considerN
53 later on!, the resulting joint state of the two clone
~notedA andB) and of the cloning machine~notedC) is
1-2



,
ns

.

ing
co
o

e

a
ge

ame
hen
ts
t

se
t it

he
ses,
sess
ell
for

his
p-

nt
d
e

SECURITY OF QUANTUM KEY DISTRIBUTION WITH . . . PHYSICAL REVIEW A67, 012311 ~2003!
uc&→ (
m,n50

N21

am,nUm,nuc&AuBm,2n&B,C

5 (
m,n50

N21

bm,nUm,nuc&BuBm,2n&A,C , ~5!

where

Um,n5 (
k50

N21

e2p i (kn/N)uk1m&^ku ~6!

and

uBm,n&5N21/2(
k50

N21

e2p i (kn/N)uk&uk1m&, ~7!

with 0<m,n<N21. Um,n is an ‘‘error’’ operator: it shifts
the state bym units ~moduloN) in the computational basis
and multiplies it by a phase so as to shift its Fourier tra
form by n units ~modulo N). Equation~7! defines theN2

generalized Bell states for a pair ofN-dimensional systems
Tracing over systemsB and C ~or A and C) yields the

final states of cloneA ~or cloneB): if the input state isuc&,
the clonesA and B are in a mixture of the statesucm,n&
5Um,nuc& with respective weightspm,n andqm,n :

rA5 (
m,n50

N21

pm,nucm,n&^cm,nu,

rB5 (
m,n50

N21

qm,nucm,n&^cm,nu. ~8!

In addition, the weight functions of the two clones (pm,n and
qm,n) are related by

pm,n5uam,nu2, qm,n5ubm,nu2, ~9!

wheream,n andbm,n are two~complex! amplitude functions
that are dual under a Fourier transform@20,21#:

bm,n5
1

N (
x,y50

N21

e2p i (nx2my)/Nax,y . ~10!

Let us now analyze the possibility of using such a clon
procedure in the eavesdropping attack of the 3DEB proto
Therefore, we putN53. Assume that Eve clones the state
the qutrit that is sent to Bob@represented as the keyuc& in
Eq. ~5!#, and resends the imperfect clone~labeled byA) to
Bob while she conserves the other one~labeled byB). Then,
in analogy with Ref.@11#, Eve will measure her clone in th
same basis as Bob~the f basis! and her ancilla~labeled by
C) in the conjugate basis~the f* basis!. For deriving Eve’s
information, we need first to rewrite the cloning transform
tion in these bases. By straightforward computations we
whenf is equal to zero, that
01231
-

l.
f

-
t,

uBm,n&5321/2(
l 50

2

eim[(2p/3)(l 2n)1f] u l f&u~ l 2n!f* &

5eim[( 22p/3)n1f] uB̃2nf ,m
f* &, ~11!

where, by definition,

uB̃mf ,n
f* &5321/2(

k50

2

e2p i (kn/3)ukf&u~k1m!f* & ~12!

and

Um,n5 (
k50

2

e2 im[(2p/3)(k1n)1f] u~k1n!f&^kfu

5e2 im[(2p/3)n1f]Ũnf ,2mf
, ~13!

where the tilde refers to the new (f and f* ) bases. After
substitution in Eq.~5!, we get

uc&→ (
m,n50

2

am,nUm,nuc&AuBm,2n&B,C

5 (
m,n50

2

ãm,nŨmf ,nf
uc&AuB̃mf ,nf

&B,C , ~14!

where the new amplitudes are defined asãn,2m5am,n .
We are interested in a cloning machine that has the s

effect when expressed in the four optimal bases, i.e., w
f i5(2p/12)i ( i 50,1,2,3). This imposes strong constrain
on the amplitudesam,n characterizing the cloner, which mus
be of the form

~am,n!5S v x x

y y y

z z z
D . ~15!

It is possible to check that, in analogy with the qubit ca
@26#, such a cloner is phase covariant, which means tha
acts identically on each state of thef bases. In particular, the
identity ~14! can be shown to hold for all values off. The
reason for this property is that, roughly speaking, if t
cloner remains invariant when expressed in several ba
then it means that certain combinations of Bell states pos
several Schmidt biorthogonal decompositions. It is w
known that when at least two such decompositions exist
a bipartite pure state, then there exist infinitely many. T
explains why requiring the same cloning fidelity in two o
timal bases (f i52p i /12, f j52p j /12 with i , j 50,1,2,3 and
iÞ j ) implies phase-covariance~i.e., f arbitrary!. A proof of
this property is out of the scope of the present paper.

Let us now evaluate the fidelity of this phase-covaria
cloner for qutrits, along with the information that Bob an
Eve obtain about Alice’s state. The fidelity of the first clon
~the one that is sent to Bob! when copying a stateuc& can be
written, in general, as
1-3
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FA5^curAuc&5 (
m,n50

N21

uam,nu2u^cucm,n&u2. ~16!

Of course, the same relation holds for the second clone~the
one that is kept by Eve! by replacingam,n by bm,n . For the
cloning machine defined by Eq.~15!, it is possible to com-
pute the fidelities when cloning the component states of
f bases by a straightforward but lengthy computation. It c
be shown that the fidelity of the first clone does not depe
on f, that is,

FA5^ l furAu l f&5v21y21z2 ~17!

for all f. The disturbancesDA1 andDA2 of the first clone,
defined respectively, as ^ l f1(2p/3)urAu l f1(2p/3)& and
^ l f2(2p/3)urAu l f2(2p/3)& yield both x21y21z2. Making use
of Eq. ~10!, we obtain that, for the second clone, the states
the bases used in the cryptographic protocol are all cop
with the same fidelity, which is maximum wheny5z, and is
given by
d

io

01231
e
n
d

f
d

FB5~v212x2112y218xy14vy!/3. ~18!

Also, we get the same disturbance for allf ~minimal when
y5z) given by DB15DB25(v212x213y224xy
22vy)/3.

We must now find what is the optimal strategy for Eve.
virtue of the phase covariance and in order to simplify t
notations, we shall from now on omit the labels that refer
the particular basisf in which the measurement is carrie
out. After substitution in Eq.~5!, we get

uck&→321/2 (
m,l 50

2

c̃m,k2 l uck1m&Auc l&Buc l 1m&C , ~19!

where c̃m, j5(n50
2 ãm,nei (2p/3) jn. Now, ãm,n5y1dn0@(v

2y)dm01(x2y)(dm11dm2)# so that c̃m, j5@3yd j 01(v
2y)dm01(x2y)(dm11dm2)#. Therefore,
uck&→32
1
2 H uck&AF3yuck&Buck&C1(v2y)(

l 50

2

uc l&Buc l&CG1uck11&AF3yuck&Buck11&C

1(x2y)(
l 50

2

uc l&Buc l 11&CG1uck21&AF3yuck&Buck21&C1(x2y)(
l 50

2

uc l&Buc l 21&CG J . ~20!
rate
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After Alice’s ~or Bob’s! measurement basis is disclose
Eve’s optimal strategy can be shown@11# to be the follow-
ing: first she measures both her copyB and the cloning ma-
chineC in the same basis as Bob, the difference~modulo 3!
of the outcomes simply giving Bob’s errorm. Conditionally
on Eve’s measured value ofm ~i.e., conditionally on Bob’s
error!, the information Eve has on the stateuc& can be ex-
pressed as

I ~A:Eum50!5 log2~3!2HF ~v12y!2

3FA
,
~v2y!2

3FA
,
~v2y!2

3FA
G

I ~A:EumÞ0!5 log2~3!

2HF2~x12y!2

3~12FA!
,
2~x2y!2

3~12FA!
,

2~x2y!2

3~12FA!G , ~21!

whereFA5v212y2 since we havey5z, and H@ # denotes
Shannon entropy. On average, we get for Eve’s informat

I AE5FAI ~A:Eum50!1~12FA!I ~A:EumÞ0!. ~22!

Of course, Bob’s information is given by

I AB5 log2~3!2HFFA ,
12FA

2
,
12FA

2 G . ~23!
,

n

We now use a theorem due to Csisza´r and Körner @27# which
provides a lower bound on the secret key rate, that is, the
R at which Alice and Bob can generate secret key bits
privacy amplification: if Alice, Bob, and Eve share man
independent realizations of a probability distributio
p(a,b,e), then there exists a protocol that generates a nu
ber of key bits per realization satisfying

R>max~ I AB2I AE ,I AB2I BE!. ~24!

In our case,I AE5I BE since Eve knows exactly Bob’s erro
m. It is therefore sufficient thatI AB.I AE in order to establish
a secret key with a nonzero rate. If we restrict ourselves
one-way communication on the classical channel, this a
ally is also a necessary condition. Consequently, the quan
cryptographic protocol above ceases to generate secret
bits precisely at the point where Eve’s information match
Bob’s information.

We thus need to estimate the maximal fidelityFA ~or
minimal error rate! for which a cloning machine exists suc
that I AE5I AB . This constrained optimization problem can b
solved numerically, giving

FA50.7753 ~25!

corresponding to the solution (v,x,y)5(0.8320,
0.1711,0.2038). SincexÞy, this optimal cloner is therefore
distinct from the universal qutrit cloner~which clones all
1-4
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states with the same fidelity!. Actually, it is slightly better
than the~asymmetric! universal qutrit cloner, which gives
fidelity FA50.7733 at the crossing point of Bob’s and Eve
information curves@11#. This means that the quantum cry
tographic protocol where the four mutually unbiased qu
bases are used~see Ref.@9#! is slightly better than the 3DEB
protocol as it admits a 0.2% higher error rate (12FA
522.67% instead of 22.47%).

The cloner that we have derived here is an asymme
version of the so-called two-phase-covariant qutrit clo
that is described in Refs.@28,29# @this symmetric two-phase
covariant qutrit cloner has a fidelity (51A17)/12'0,760]. It
copies all states of the form 321/2(u0&1eiau1&1eibu2&) with
a fidelity 0.7753 (.0.7733) for alla andb, while the states
of the computational basis$u0&,u1&,u2&% are cloned with a
lower fidelity 0.7507 (,0.7733). Actually, its relation with
the symmetric two-phase-covariant cloner is of the sa
kind as the relation between the asymmetric universal qu
cloner~of fidelity 0.7733) and the symmetric universal qut
cloner ~of fidelity 3/4).

V. CONCLUSIONS

The Ekert-91 protocol and its qutrit extension, the 3DE
protocol which is analyzed in the present paper, involve
cryption bases for which the violation of local realism
maximal. If Alice and Bob measure their member of a ma
mally entangled qutrit pair in two ‘‘conjugate’’ bases, th
gives rise to perfect correlations. After measurement is p
formed on each member of a sequence of maximally
tangled qutrit pairs, Alice and Bob can reveal on a pub
channel what were their respective choices of basis and i
tify which trit was correctly distributed, from which they wil
make the key. They can use the rest of the data in orde
check that it does not admit a local realistic simulation. F
instance they can check that their correlations violate so
generalized Bell or CHSH inequalities. Since the resista
of such a violation against noise is maximal when the ma
mally entangled qutrit pair is measured in the optimal qu
bases discussed here~and is higher than all what can b
achieved with qubits!, the 3DEB protocol is optimal from the
point of view of the survival of nonclassical correlations in
noisy environment.

Indeed, our results imply that the 3DEB protocol is mo
robust against optimal incoherent attacks than the Eker
qubit protocol. This is because the optimal qubit pha
covariant cloning machine~which clones the optimal qubi
bases involved in CHSH with the same fidelity! gives a
somewhat higher fidelityFA51/211/A8.0.8536@26,28,30#
than Eq.~25!. In other words, the acceptable error rate, i.
the error rate 12FA above which the security against inc
herent attacks is not ensured, is 22.47% for the 3DEB p
tocol, while it is only 14.64% for the Ekert-91 protocol.

Recently, it has been shown that the violation of a B
inequality extended to qutrits is possible, as long as the ‘‘v
ibility’’ of the two-qutrit interference exceedsVthr5(6A3
29)/2.0.6962@7,8#. The visibility mentioned above is di
rectly related the threshold fraction of unbiased noise,
2Vthr), which has to be admixed to the maximally e
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tangled state in order to erase the nonclassical characte
the correlations, and therefore is a measure of robustnes
such a nonclassicality@6#. This means that the nonexistenc
of a local realistic model of the correlations is guaranteed
the fidelityFA that characterizes the communication chan
between Alice and Bob~detectors included, so 12FA is the
effective error rate in the transmission! is larger than 2/3
30.696211/3'0.7974 ~instead of 1/211/A8.0.8536 in
the case of qubits@23,5,1#!. On the other hand, we hav
shown here that the 3DEB protocol is secure agains
cloning-based individual attack, ifFA.0.7753. Conse-
quently, when a violation of a qutrit Bell inequality@7,8#
occurs, the security of the 3DEB protocol against individu
attacks is automatically guaranteed. Therefore, the viola
of Bell inequalities is asufficientcondition for security, as it
implies that Bob’s fidelity is higher than the security thres
old. Remarkably, for qubits, the corresponding sufficie
condition (FA.0.8536) is also necessary@1# ~this is appar-
ently the case for qubits only!.

In addition, the violation of Bell inequalities guarante
that the 3DEB protocol is secure against so-called Tro
horse attacks during which the eavesdropper would con
the whole transmission line and replace the signal by a fa
predetermined local-variable dependent, signal that mim
the quantum correlations. Such an attack can be thwa
when the signal is encrypted in the optimal bases provi
that the noise level is low enough~including now also the
inefficiency of the detectors! so that no such local realisti
simulation of the signal does exist, and provided that Al
and Bob perform their respective choices of bases indep
dently and quickly enough@31# so that their measuremen
are independent spatially separated events. Note that al
protocols in which mutually unbiased bases are involved
with no entanglement~such as BB84@2#, the six-state qubit
protocol @32,30#, or the twelve-state qutrit protocol@9#! ad-
mit a local realistic model, so that they are not secure aga
Trojan horse attacks.

Finally, it is interesting to compare the performances
the 3DEB protocol to those of the three-dimensional ext
sion of BB84. The cloner that must be used in the latter ca
where two mutually unbiased qutrit bases are used, ha
fidelity of 0.7887@11#, thus a bit higher than the fidelity o
the cloner analyzed here, see Eq.~25!. Therefore, the 3DEB
protocol also gives a slightly higher acceptable error r
than the three-dimensional extension of BB84 (22.47%
stead of 21.13%). This, together with the robustness w
respect to Trojan horse attacks, clearly establishes the ad
tage of entanglement-based protocols with respect to BB
like protocols.

In summary, we have derived a qutrit cloning machi
that clones equally well the four optimal qutrit bases~those
which maximize the violation of local realism!, so it gives
the optimal individual attack against the 3DEB protocol i
troduced here. The acceptable error rate of the 3DEB pr
col turns out to be 22.47%, which is higher than that
Ekert-91 qubit protocol~as well as that of the three
dimensional extension of BB84!. Our analysis thus confirms
a seemingly general property that qutrit schemes for qu
1-5
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tum key distribution are more robust against noise than
corresponding qubit schemes.

Note added. A recent, independent paper by Kaszlikows
et al. @33# shows that, if Eve acts on one member of a ma
mally entangled qutrit pair, then her information attains A
ice’s and Bob’s mutual information at a visibility of 0.662
In our notation, this means that the fidelity at the informati
crossing point is 2/330.662911/3.0.7753, which exactly
coincides with our Eq.~25!. Nevertheless the two approach
are different in the following sense: in our approach,
assume that Eve clones the state of the qutrit that is se
Bob according to Eq.~5! and then we impose that the clon
ing fidelity is identical for all the states of thef bases in
order to fix the parametersam,n . Instead, in Ref.@33#, a
general transformation is postulated from the beginning,
extra-constraints are imposed. We have also checked tha
optimal cloning machine satisfies these constraints, so
.
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01231
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two approaches are compatible. Our approach being c
structive, we obtain the explicit form of the cloner, which
not the case in the approach of Ref.@33#. Moreover, although
the optimal cloning machines coincide in both approache
can be shown that our approach allows us to build new
more general solutions that satisfy the constraints consid
in Ref. @33#.
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