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We investigate the synthesis of continuous-variable two-mode unitary gates in the setting where two modes
A and B are coupled by a fixed quadratic Hamiltonigh The gate synthesis consists of a sequence of
evolutions governed by Hamiltoniad, which are interspaced by local phase shifts applied tnd B. We
concentrate on protocols that require the minimum number of necessary steps and we show how to implement
the beam splitter and the two-mode squeezer in just three steps. Particular attention is paid to Hamiltonian
Xapg that describes the effective off-resonant interaction of light with the collective atomic spin.
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[. INTRODUCTION system each and these two modes are coupled via quadratic
Hamiltonian(we assumé =1 throughout this papgr
One of the central problems of the quantum information
theory is to establish what resources are sufficient for univer- H = C11XaXg+ C12XaPg + C21PAXg + C22PAPSE » (1)
sal quantum computation. In this context, the question h and o i ‘ugat drat ft
whether a given HamiltoniaH cansimulateanother one has wherex; and p; are to conjugate quadratures o _hda
attracted considerable attention recerjtly-6]. In its sim- mode. Kraut al. showed that almost every Hamiltoniély

plest form, this problem may be formulated as follows. con-® ca_pable of S”.“”'a“”g any other Hamiltonian of fotf, .
sider two parties, traditionally referred to as Alice and Bob’prowd_ed that All_ce and Bob can a_lpply fast Ioc2aI pr;ase shifts
possessing a single qubit each. The interaction between thoggscrltz)ed 2by single-mode Hamiltoniam, =X+ pjy and

two qubits is governed by a fixed Hamiltonidh which is B=XgT Ps- _ _ _
determined by the physical properties of the systems that 'I_'hese resu_lts are interesting fr_om both theoretical and_ ex-
represent the qubits. In addition to interactidnAlice and ~ Perimental points of view. In particular, the off-resonant in-
Bob may attachlocal) ancillas to their qubits and perform teractlon_of light with the cpllectlv_e atomic sp[ﬂl4—.2q can
arbitrary local unitary operations on their subsystems. It i€ described by the effective unitary transformation

usually assumed that these local operations are very fast U=exgl —itH o) @)
compared to the evolution induced by Hamiltonidn The AL
task for Alice and Bob is to simulate the evolution due to a
different HamiltonianH'. Two kinds of simulations should
be distinguished. The infinitesimal time simulatiph—6] HaL= KXAPg (3)
consists of simulating the action of Hamiltonidh for an

infinitesimally short intervalAt. The gate synthesi§7—-12] is a special instance of E@l). The typical geometry of the
requires the implementation of the unitary transformationexperiments is such that a light beam with strong coherent
U’ =exp(—iH't) for somefinite time t. field polarized along the axis propagates along tteaxis

It turns out that in the two-party setting, all nonlocal through the atomic sample, whose spin is also polarized
HamiltoniansH are qualitatively equivalent. Given enough along thex axis. Thex andp quadratures are defined as the
time 7, Alice and Bob can, with the help of local ancillas, properly normalizedy and z components of the collective
simulate the evolution exp(iH’t) for any H’ [2]. The cen-  spin operators describing the polarization state of light and
tral question, then, is what is the optimal simulation. Theatomic ensemble, respectivdly4,16,17. In recent beautiful
latter may be defined as a simulation that requires the shorexperiments it was demonstrated that interact@ncan be
est time. For the two-qubit case, this problem has been conmemployed to squeeze the atomic splis], entangle two dis-
pletely solved and the optimal protocols for Hamiltonian tant atomic ensembl¢48], and transfer the quantum state of
[2,6] and unitary-gat¢8] simulations have been determined. light into the atoms[19]. Schemes for teleportation and
The situation becomes much more complicated for higherswapping of the quantum state of collective atomic spin have
dimensional systems and for higher number of involved parbeen suggested6,17. These experiments and proposals in
ties. Simulation protocols suggested for these generic sefact rely on the quantum nondemolitié®QND) measurement
tings are rather involved and it is not known which protocolsof the atomic quadrature, possibly accompanied by a suitable
are optimal. feedback.

It should be stressed that most of the work focused on As showed by Krauset al. [13], Hamiltonian (3) can
discrete variable systems: qubits or, more generally, quditsimulate any Hamiltoniafl). In particular,H,, can be used
Recently, however, Kraut al. extended the notion of toimplement a beam splitter and a two-mode squeezer. This
Hamiltonian simulation to continuous variable systgrmg3]. is very appealing because it suggests that, for instance, the
They assumed that Alice and Bob possess a single-mod&orage of the quantum state of light in atoms and the subse-

where the Hamiltonian
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quent readout of the quantum memory, i.e., the transfer omode squeezing as a sequence of thioedour) intervals of

guantum state of atoms onto light, can be implemented in @volution governed by Hamiltoniaf8) combined with local

unitary way if Hamiltonian(3) is used to simulate a beam phase-shift operations. In Sec. IV we extend this analysis to

splitter. the generic interaction Hamiltoniat$). Finally, the conclu-
However, currently there are technical difficulties that will Sions are drawn in Sec. V.

complicate the actual practical realization of this procedure.

The effective unitary transformatiaf2) describes the modi- Il. DESCRIPTION OF THE SIMULATION PROTOCOL

fication of the polarization state of the light pulse after the . . . . .

passage through the atomic sample an?j thF()e correspondi%%m this section we describe the simulation protocol. The

backaction of the light pulse on the atoms. This means th te synthesis consists of a sequencél afitervals of evo-

the Hamiltonian simulation requires several passages of thg;s:efm?tr?;isf%?na:t}gtr?;I?m’eforgcs)m?i?] bi:ﬁf;l u;gt?éy
light pulse through the atomic samplef. the detailed de- P ' 9 y

scription of the simulation protocol in Sec).llin currently given by
envisaged experiments, the pulse width must be at least 1 G=V... e Hiny e Htn-1.. ..o iH2y g iHty,
[21], which corresponds to a length of 300 m. This long N+l N 3 2 1 @

pulse would have to be stored somewh@rg., in an optical

fiber until its tail leaves the atomic sample. Only then canThe local phase-shift operation applied to modeand B
the pulse with properly applied phase shifts be fed to thgeads

atomic sample again. It may be helpful to place the atoms

inside a(bad optical cavity that could increase the coupling Vj:e_ifﬁAjaTa@e_ifﬁijTb’ (5)
strength between light and atoms, which would allow one to

reduce the pulse length. The interaction of light with atomicwherea andb are the annihilation operators of modesind
ensembles inside a cavity is currently an area of active reB, respectively. We can further decompose transformations
search. For instance, a polarization squeezed light has beev} as follows:

generated recently with such a set[@2]. However, the

QND-type interaction3) has not yet been demonstrated in V=V, Vj:vjva—la ji=2,...N+1, (6)
the system involving an atomic ensemble inside a cavity.

The above practical considerations imply that the apyypere ¥
proach relying on the infinitesimal time simulation is not
very convenient from the experimental point of view. It is
possible to simulate a gate by concatenating a large sequen
of short-time Hamiltonian simulations but this would require
a large number of manipulations and passages of the light UTexp(—iHt)U=exg —iUTHUY), )
pulse through the sample. Since, in practice, every round of
the gate synthesis procedure is necessarily accompanied Qye obtain
some losses and other errors, the accumulation of the errors
would negatively influence the simulation. G=Vy, e HniN. .. g TH2tg=TH ty (8)

In this paper, we show how to simulate several important
two-mode interactions, such that the number of the applica; v iniva
tions of Hamiltonian(1) is minimized. We demonstrate that%hﬁf:iitor\]g:\(/i)' is characterized by four parameters
only three sequences of evolution governed by HamiItoniar,_mwever by means of local rotations, we can always trané-
H, interspaced by(fasy local phase shifts on both sub- ()i’ 1o itonian to a simpler form:
systems, suffice to implement a two-mode squeezer and a
beam splitter. For the specific Hamiltoni&d), we also pro- H.=CyXaPg+ CoPaXa 9
vide an analytical prescription for a single-mode squeezing
gate, which involves four evolution steps, and we show thafyherec,= o, andc,= o, defC]/|defC]|, ando; and o,
three-step implementations can be found numerically. Thesgre the singular values of matri€ defined as C)ij=Cij
results illustrate that several important quantum informatiorf13]. In close analogy to the qubit cai2], we may refer to

processing tasks, such as entangling the light and collectivg  as thecanonical formof H. Mathematically, we have
atomic spin, or a transfer of the quantum state of light into

i=exp(-iga@'a—ipgb'o) and oa1=dar, @aj
=¢pjteaj-1, J=2,... N+1 and similar formulas hold
also for ¢g;. On inserting decomposition®) into Eq. (4)
5fd making use of the identity

atomic clouds and vice versa, can be carried out with a small exp(—iHt)=W'exp(—iHt)W, (10
number of repeated passages of the light pulse through the
atomic sample. whereW is a local rotation(5). This shows that without loss

This paper is structured as follows. In Sec. Il we introduceof generality, we may assume thdthas the canonical form
the notation, the canonical form of the interaction Hamil-(9). In particular, it follows thatH is able to simulate an
tonian (1) and we describe the gate simulation protocol. Inarbitrary H’ (1) if and only if H; is able to simulate an
Sec. lll we consider the simple interaction Hamiltoni@  arbitrary canonical Hamiltonia(B).
and we show how to implement the two-mode squeezing Generally, phase shiftg,; and ¢g; may be arbitrary. In
operation, beam splitter transformation, and also singlewhat follows, we focus on the phase shifts that preserve the
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canonical form ofH, so that allH; have form(9). There are In this section, we shall consider the simplest and also the
four inequivalent possibilities: experimentally relevant coupling between the two systems
described by the interaction Hamiltonié®). Without loss of
@ ¢a=0, =0, generality, we may assume that the coupling constant is
equal to unity, hence the two relevant Hamiltonians read
H1=C1XaPs+ C2PaXg - (11 . y

(b) pa= 712, pg=23m/2 Hi=Xapg, Ho=paXg. (16)
AT 3 B— Il

All the canonical Hamiltonian$9) have the important prop-

H2=CoXaPg+ C1PAXE - (12 erty that thex and p quadratures are not mutually coupled
_ _ when we write down the Heisenberg equations of motion for
(© ¢a=m, ¢s=0, x; and p;. This means that the evolution of operators
Ha= — C1XAPa— CoPaXe. (19 =(Xa,Xg)" andp=(pa.pg)' is governed by the following

linear canonical transformations:
@ ea=ml2, o= /2, Xout=S%ns  Pour= RPn - (17)
H4=—CoXaPs~ C1PAXs - (14 This decoupling ok andp quadratures greatly simplifies the

From the structure of these Hamiltonians we can deduce thg,{nalysm. Transformatiofl7) must preserve the canonical

two different noncommuting canonical Hamiltoniads and commutation relationfx; ,pi] =iy . From these conditions
H, are available. Furthermore, we can see tHat= —H we can express matriR in terms ofS,

2 ' a 1
andH,=—H,, hence we can implement any transformation R=(S") 1, (18)
exp(—iH t) and exp{iH,t), wheret is an arbitrary real
number, positive or negative. The two specific casgsc, hence the evolution of thp quadratures is uniquely deter-
andc;= —c,, whenH;=*H, and the simulation based on mined by the evolution of th& quadratures.
the protocol(4) is not possible, correspond to the Hamilto-  Our task is to construct the two-mode unitary gassn-
nians of a two-mode squeezer and a beam splitter, respeptectic transformationsas a sequence of a small number of
tively. unitary transformations generated by Hamiltonigh®. Ma-

trices S; and S, associated with the unitary evolutiots;
Il. XP COUPLING =exp(—iHt) andU,=exp(—iHt), respectively, read

Having established the notation and described the simula- t
tion protocol, we may proceed to the unitary-gate synthesis. Si(t)= t 1) S ()= 0 1) (19
Namely, we would like to decompose the unitary transforma-

tion G, which we want to simulate, into a sequence of unitary  Factorization(15) can be rewritten in terms of matric&€s
evolutions governed by Hamiltoniarid,; and H,, which  as follows:

were defined in the preceding section:
S=S(th)Sitn-1) - - - Sp(t2) Si(ty), (20

where S is the matrix associated with ga@. Since de$;
We are particularly interested in the simulations that involve= detS,=1, we are restricted to a three-parametric subgroup
the lowest possible number of steldsbecause such simula- of transformationss such that def=1. In what follows, we
tions require low number of local manipulations in the even-Will discuss the implementation of three important gates: a
tual experimental implementation. beam splitter, a two-mode squeezer, and a single-mode

We note here that Eq15) is an example of a decompo- Squeezer.

sition of a group element into a product Nf other group
elements. In the present case, the underlying group is the A. Beam splitter
symplectic group Sp(&) of all linear canonical transforma-
tions of the quadratures of the two mod®andB [23,24. It
is worth mentioning here that the related problem of the
decomposition of the symplectic transformation into a se- Se4 0)=(
guence of simple evolutions associated with the common

passive and active linear optical elements has been studigflis proved in the Appendix that it is impossible to simulate
recently. Braunstein has shown that asynode symplectic Sps Via a two-step protocol, so we must consider three-step

transformation can be implemented as a sequence of Ftotocols. We show thaBss can be implemented as a se-
N-mode passive linear interferometer, followed Mysingle- %uence of three evolutiond9):

mode squeezers and another passive interferometer, the s

G:e*intNe*iHltN,]_ L eiiHZtZeiiHltl_ (15)

The beam splitter operation is described by the matrix

cosé sin0>

. (21
—sing# coséd

called Bloch-Messiah decompositi¢@5]. The decomposi- Ses(0)=S,(7)S,(B) S (). (22)
tions of this kind have also been applied to investigate the
properties of nonlinear optical coupldi26,27). The explicit multiplication yields
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1+ap B C. Single-mode squeezer

Ses(0)= (23

After dealing with two-mode gates, let us now focus on
the single-mode gate, namely, the single-mode squeezer.

If we compare the elements of the matrices on left- and right—Slnce deB=1, the squeezing of quadratuxg will neces-

hand sides of Eq(23), we obtain a set of equations for pa- \S,::!);;- be accompanied by antisqueezing>g, and vice
rametersa, 8, andy, whose solution yields :

a+y(l+aB) 1+vB8)°

e 0
0 . Ssus(r) = 0 el (27)

a=—tan§, B=sin6d, y=q. (29

It turns out that in this case, a sequence of three transforma-

tions (19 is insufficient and we must consider a sequence of

The interaction times and 8 can be negative but this is not o
g%ur evolutions:

an obstacle, as explained in the preceding section, becau
we can change the sign of Hamiltoni&h or H, by & ro- N=S(8 _ 28
tation of one of the systems. Two cases of particular impor- Ssusl 1) =5(9)51(7)S(B)Sy( ) 9
tance are(i) the balanced beam splitte0€ 7/4), which  \We proceed as before and derive equations for the four pa-
requires a=1—2 and B=2/2 and (i) the swap ¢ rameters appearing in E9):

=7/2) that exchanges the quantum states of the two sys-

tems,a=—1 andB=1. e'=1+ap+dlaty+aBy),
The swap gate is closely related to the two-step protocol

for mapping the state of collective atomic spin on light, e '=1+vp,

which was suggested by Kuzmich and Polg#0]. In fact,

their two-step protocol can be obtained by simply removing 0=p+d(1+vyp),

the last step of the present three-step swap gate. The removal

of the third step means that the mapping adds some noise and O=aty(ltap).

the procedure is, thus, only approximate. A possible way of_, . : .
improving its performance is to use squeezing. For detailsil.-gf‘ssysfnmb()f equations has a one-parametric class of solu-
see Ref[20]. ! gv y
e—1 ., e(1—e")
B. Two-mode squeezer B=—p y=—ael, o=——, (29

Let us now turn our attention to the two-mode squeezer, . . .
described by the following matrix: and « is arbitrary but nonzero. We may choose the optimal

value of @, which minimizes the total interaction time
coshr sinhr

STMS(r):( : (29 T=la|+[B]+]y]+]d]. (30

sinhr  coshr
Assuming thatr >0, we obtain, by solvingl T/da=0, the

As in the case of the beam splitter, we attempt to implemen@ptimal value

this transformation as a sequence of three evolutions, cf. Eq.

(22). By comparison of the right-hand side of E@3) with e’ —1

matrix (25), we again obtain a system of nonlinear equations a= 11e "

for parametersy, 8, andy having the solution

(31)

In the limit of smallr, all the four parametera, 8, y, and

5 are proportional to/r. This stems from the fact that the
single-mode squeezing Hamiltoniddsys=Xapa Cannot be
obtained as a linear combination of the two-mode Hamilto-
niansH, andH, and only the terms of the order 6f(t?), or
higher, in Eq.(15) may give rise to the contribution propor-
tional to Hgys.

r
a=tanh§, B=sinhr, vy=a. (26)

The parameters are finite for any finiteHowever,3 grows
exponentially withr and for larger we havegxe". On the
other hand, for smalt we getB~r. This implies that we
may reduce the synthesis time if we implement the two-
mode squeezing transformation as a sequencewb-mode
squeezers withr’=r/n. The reduction of the time is We have seen that the synthesis of the single-mode
achieved at the expense of a higher number of steps of thegueezing gate requires a sequence of four steps if we restrict
gate synthesis protocol. For modest values of squeezing ourselves to protocol€l5). However, it is nota priori clear

the sequence of three evolutions is advantageous becausenitether the four-step simulatioi28) is the optimal way of
involves the minimum number of necessary manipulations oflesigning single-mode squeezing gate. It may be the case
systemsA and B. that the number of steps and/or the required interaction time

D. General protocols and numerical results
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TABLE I. Parameters of a three-step protocol that accomplisheger performance. Again we have investigated this issue with
a single-mode squeezing of mode with squeezing constant  the help of the numerical calculations. As before, we have

=1. found that there are many different general three-step proto-
: cols for gateg21) and(25) and that these protocols differ in
) Paj b8 t; the total interaction time. Interestingly, the numerics provide
1 — 278869 —0.65328 1.78008 some evidenge that _the protocols (_jerived in Secs. Ill A and
> —0.00040 433771 141767 1B may be time optimal because, in contrast to the the case
3 314193 113816 1.82622 of the single-mode squeezer, we have not been able to find a

' ' ' three-step protocol that would require less tiff a given

4 —1.21861 2.64601

value of 6 or r) than the protocols given in Secs. Il A and
I B.

can be reduced by using the general prot@¢dplThe general
three-stepprocedure(4) is characterized by 11 parameters: IV. GENERIC QUADRATIC COUPLING
eight phase-shiftgp,; and ¢g;, and three interaction times

: : L In this section, we shall assume that the interaction
t;. Since any two-mode symplectic transformation is full o ' . .
! y ymp ; yé—l_amlltonlan has the generic canonical form. Although the

ﬁthematical analysis will be more involved, we shall still
e able to derive analytical formulas for the interaction times
characterizing the gate synthesis. Without loss of generality,
we may assume that =1 in Eq.(9). We have to distinguish
the two classes of Hamiltonians giving rise to qualitatively
different evolutions of the quadratures in the Heisenberg pic-
Vou=MgUin, (32 ture. Forc,>0 the dynamics resembles an amplifier, while
for c,<0 we obtain oscillatory dynamics reminiscent of a
whereMg is a 4x4 symplectic matrix associated witB. beam splitter. We shall discuss these two cases separately. As
Transformation(32) should result in single-mode squeezing Proved in the Appendix, it is not possible to simulate the
of modeA, which means that the first two rows g should ~ beam splitter and the two-mode squeezer in only two steps
read Mg ;j=Mg;i &, i=12, j=1,...,4 andMg,=€" with Hamiltonians (1). Therefore, we shall focus on the
and Mg ,,=€ ". The elements of matriMg can be ex- three-step protocols.
pressed as functions @f,j, ¢g;, andt;. The resulting sys-
tem of nonlinear equations for these parameters is rather A. Amplifierlike Hamiltonians
complicated and was solved numerically. Note also that here
we are interested only in the transformation of médand
we do not specify the squeezing of moBeThus, we con-
sider a much _broader cIa;s of protocols th:.;m. |n'Sec. I C. Hy=XaPa+S2PaXs, Ho=SXaPg+ PaXs- (33)
The numerical calculations reveal that it is indeed pos-
sible to squeeze modg in just three steps. Moreover, WefHt
g

is an easy exercise to derive matricés and S, corre-
have found that these three-step protocols may be more e ‘ponding to the unitary evolutions governed By andH.,

respectively,

mode squeezing can be achieved by means of some gene
three-step procedure.

As before, it is convenient to work in the Heisenberg pic-
ture, where vector of the quadratures= (X ,pa.Xg.Pg)"
transforms according to

We suppose first that,>0 and introduce a more conve-
nient notationc,=s?, s>0, hence

cient than the four-step protocol given in Sec. Ill C, also in
terms of the required interaction time. An explicit example is
given in Table I, which shows the parameters of the protocol
that accomplishes a single-mode squeezing of mbaéth
the squeezing constamt=1. The total interaction timé& S/ ()=
=213:1|tj|~5.02 is significantly smaller than time=5.91
required for the best four-step protod@s).
The main complication when dealing with the general
protocol (4) is that the equations for the relevant parameters N
are very complicated and can be solved only numerically. S ()=
Moreover, there exist many different solutions to these equa- ssinh(st) coshst)
tions, i.e., there are many different three-step protocols for
each single-mode squeezing gate. It would be interesting to In what follows, we will focus on the beam splitter and
find the optimal protocol among them, which minimizes thetwo-mode squeezer transformations. We have seen in the
total interaction timeT for a fixed squeezing. However, this  preceding section that these transformations could be imple-
is a highly nontrivial optimization problem that is beyond the mented as a sequence of three basic evolutions. Moreover,
scope of the present paper. there was an inherent symmetry in this gate synthesis; we
A related problem is whether the three-step simulations ohave found thaty= «. It turns out that these basic symmetry
the beam splitter and two-mode squeezing transformationgroperties remain valid also for the generic Hamiltonians
discussed in Secs. lllA and llIB are time optimal, or (33) and we can thus decompose the two-mode squeezing
whether some general three-step protddplcan exhibit bet-  transformation as

coshst) ssinh(st)

%sinr(st) coshst) |’ (34

coslist) %sinr(st) 39
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Stus(r) =S1 (als)S; (BIS)S; (als). (36)  The sgn function in the above formula selects the root that
yields the correct limita=0 when §—0. Formula(42) is
Here parametera=st; and 8=st, are the rescaled interac- applicable in intervalde[0,7/2]. In the limiting cased

tion times. The nonlinear equations for parametersnd3 = 7/2, we have
are much more complicated than before. Nevertheless, ana-
lytical results can be obtained. From conditi®p=S,;, we sgris—s 1)
tan haw/2= — ) (43)
get Vs 2—1+¢°
2 sinha cosha ich impli <1 i i
tanhg= 37 which implies that/tanha,,|<1 iff s#1. Furthermore, it

can be shown that is a monotonic function o in interval
[0,7/2]. We can thus conclude that with the interaction
ConditionS,,= S,, is satisfied due to symmetryE o), and  Hamiltonian of the amplifier type33), we can implement
parametera can be determined from the last independen@ny beam splitter transformati¢@1) with the mixing angles

cosfa— (s 2+ 1+s?)sinfa

equationS,,/S;;=tanhr, which yields in interval [ 0,77/2], which includes the two important cases
of a balanced beam splitterd€ 7w/4) and the swap {
2y(s+sh =/2). It follows from expressiori43) that the simulation
=tanhr, becomes more and more time consuming for Hamiltonians
1+y% (s ?+1+s%) close to the two-mode squeezing Hamiltontdpys=Xapg

+paXg, i.e., whens—1.
wherey=tanha. This is a quadratic equation fgt whose

solution reads B. Beam splitter—like Hamiltonians

s+s 1= \1+(s 2+1+5%)(coshr) 2 Having derived the gate synthesis parameters for Hamil-
tanha= = 5 . (38)  tonians (33), we proceed to the interaction Hamiltonians
(s™“+1+stanhr leading to oscillatory dynamics:
We have selected the root that yields the correct limit Hi=XaPpg—S?PaXg, Ho=—SXapg+pPaXg. (44)

tanha=0 whenr —0. In the opposite limit — o, we obtain
The S matrices associated with these Hamiltonians read

1 .
tanha,,=——. (39 cogst) —ssin(st)
s *+1+s _
SSH=|1_ : (45)
. ) ) . ) —sin(st) cog st)
On inserting this back into Ed37), we find that S
limtanhg=1. 40 1
) anhs 40 ) codst)  sinst)
S ()= S (46)
It is easy to check that the equations foand 8 have finite —ssin(st) cogst)
solutions for any finite. In the limitr—~, « approaches a ) o
finite asymptotic value, cf. Eq39), while 8 grows to infin- We shall not repeat the details of the derivations of pa-
ity. rametersa and B that fully characterize the gate synthesis

Beam splitte(21) can also be simulated by the symmetric protocol (36) and we only summarize the results here. The
sequencé36). The calculations of parameteasand 8 par- beam splitter transformation can be accomplished by the fol-
allel those for the two-mode squeezer. From condii&n lowing choice:
=—S5,1, We expres$ in terms ofa:

tang —2 sina cosa 47
_ anB=
tanhg= — 2 sinha cosha @1 coSa+ (s ?+1+s?%)sirfa
cosfa+ (s 2—1+s?)sinffa’
and

Since 6 2—1+s%)=1, it follows that|tanhg|<|tanh(2y)|. . - 5 -
From conditionS,;,/S;,=tan, we obtain quadratic equation tang— o 57 V(s™*+1+5%)(cosf) *+1 (48)
for tanhe, leading to (s™2+1+s?)tand '

. . s 2-1+¢? This reveals that simulation of any beam splitter with

(s""—s)—sgns "—s) W—l e[0,m/2] is possible and the parameters satisiyf< /2
tanha = . and|g|=w/2.
(s ?2—1+s?)tand Consider now the two-mode squeezing operats). Af-

(42)  ter some algebra, one obtains
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2 sina cos
tang= e (49 under projects RESQIST-2001-35759 and CHIC (IST-
cosa—(s %~ 1+s?)sirfa 2001-32150, and from the Grant No. LNOOAO015 of the
Czech Ministry of Education.
and
[s2_1+g2 APPENDIX: TWO-STEP PROTOCOLS ARE INSUFFICIENT
“1_ e -1_ _
S msTsgrs o) cosKr ! Here we prove that with the interaction Hamiltonig®g,
tana= . it is not possible to synthesize the beam splitter or two-mode

-2 2
(s™7—1+s%)tanhr squeezing gates by using the general two-step prot@gol

(50) that reads

The function tare must be real, which implies that the term
under the square root must be non-negative. This constraint,
in turn, limits the amount of two-mode squeezing that can b
produced via a three-step protoc(86). It holds thatr
<ry,, where

G=V,e Hay,e My, | (A1)

Sve present the proof for the amplifierlike Hamiltoni&h
=XaPg+S°PaXg. The proof for the beam splitter—like
Hamiltonians(44) is analogous. Finally, the proof for Hamil-
2 1.2 tonianH=Xx,pg can be obtained by taking limg—0.

coshr= s 1+s% 6D Consider a generic beam splitter transformation with mix-
The origin of this bound lies in the fact that the dynamicsing angle # and arbitrary phase factors. In the Heisenberg
governed by Hamiltoniangt4) is oscillatory and fully peri- ~ picture, the output annihilation operators are linear combina-
odic with period 27/s. Squeezing above threshalg can be  tions of the input ones:
achieved only if we concatenate several three-step protocols.

It thus appears that the amplifierlike Hamiltonia@38) are, ou=ain€' "1 cosf+ bje' "2 sin 6,
in certain sense, more versatile than the beam splitter—like _ A
Hamiltonians(44), because the former allow one to imple- bou= bine' 3 cosd— aj,e' 4 sin g, (A2)
ment any two-mode squeezing gate and also any beam split- _
ter with < [0,7/2], via a three-step protoc¢se). where phaseg; must satisfy

V. CONCLUSIONS Y1 ot 3= $2=0, (A3)

In this paper we have addressed the problem of gate symecause EqA2) must preserve the canonical commutation
thesis for continuous variable systems. We have assumed th@lations. Similarly, the generic two-mode squeezing trans-
two single-mode system& and B interact via a quadratic formation can be written as follows:

Hamiltonian H and we have studied how to implement a

unitary symplectic gat6 with the use of this Hamiltonian as agu=apne'’t coshr + by e'zsinhr,
a resource. The gate synthesis protocol consists of a se- . ‘
guence of evolutions governed by and followed by fast bou=bine' ¥4 coshr+aifne' Y3 sinhr. (A4)

local phase shifts applied to systeisand B. We have fo-

cused on the gate simulation protocols that involve the mini- Assume thaG is the transformation of typeA2) or (A4).

mal number of necessary steps, because these protocols &ince the local unitary phase-shift operatign adds only
quire a low number of local control operations, which is phase factors to the annihilation and creation operators, a
important from the experimental point of view. We have modified transformatios’ = VsGV, would still have a form
shown that a three-step protocol suffices for simulation of th€A2) or (A4). In particular, by choosing/4=VI and Vs
two-mode squeezer as well as a beam splitter. For the spe:v; we obtain a simplified protocol:

cific case of Hamiltoniari3), we have also found a protocol

for single-mode squeezing and we have numerically investi- G’ :e—thze—i¢AaTa—i¢BbTbe—thl_ (A5)
gated the general three-step simulation protogd)s Our

results are applicable to any physical system whose two pargs described in Sec. Il D, we can associate a symplectic

are coupled via the quadratic Hamiltonian. In particular, thématrix M, with unitary G’. For any transformatioriA2)

gate synthesis protocols proposed in the present paper mayq (A4), the elements of the symplectic matid must
find applications in the experiments where light mteractssatisfy

with atomic ensembles via a Kerr-like coupling5,18,19.
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(s~ s ?)sinha sinhB singg=0,

1
Mg/ —sinha sinhB sin ¢g— cosha coshB sin g,
s

PaXa "
(s?—s ?)sinha sinhB sin,=0. (A8)

1
Mg = cosha coshp sin ¢g— —zsinha sinhBsing,,
S

XgPB
Fors#1, these two equations have only trivial solutians
Mg pgxg="S° Sinha sinhB sin ¢, — cosha coshp sin ¢g, =0, or =0 or singa=sin¢=0. In all cases, the unitary
(A7) transformatlor(AS) effectively reduces to exp(iHt), which _
clearly differs from the beam splitter or two-mode squeezing
where a=st; and B=st,. On inserting matrix elements transformation. This proves that the two-step protocols can-
(A7) into Eqg. (A6), we obtain two equations: not be used to simulate gaté&2) and (A4).
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