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Unitary-gate synthesis for continuous-variable systems

Jaromı´r Fiurášek
Ecole Polytechnique, CP 165, Universite´ Libre de Bruxelles, 1050 Brussels, Belgium

and Department of Optics, Palacky´ University, 17. listopadu 50, 77200 Olomouc, Czech Republic
~Received 13 March 2003; published 13 August 2003!

We investigate the synthesis of continuous-variable two-mode unitary gates in the setting where two modes
A and B are coupled by a fixed quadratic HamiltonianH. The gate synthesis consists of a sequence of
evolutions governed by HamiltonianH, which are interspaced by local phase shifts applied toA and B. We
concentrate on protocols that require the minimum number of necessary steps and we show how to implement
the beam splitter and the two-mode squeezer in just three steps. Particular attention is paid to Hamiltonian
xApB that describes the effective off-resonant interaction of light with the collective atomic spin.
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I. INTRODUCTION

One of the central problems of the quantum informat
theory is to establish what resources are sufficient for univ
sal quantum computation. In this context, the quest
whether a given HamiltonianH cansimulateanother one has
attracted considerable attention recently@1–6#. In its sim-
plest form, this problem may be formulated as follows. Co
sider two parties, traditionally referred to as Alice and Bo
possessing a single qubit each. The interaction between t
two qubits is governed by a fixed HamiltonianH, which is
determined by the physical properties of the systems
represent the qubits. In addition to interactionH, Alice and
Bob may attach~local! ancillas to their qubits and perform
arbitrary local unitary operations on their subsystems. I
usually assumed that these local operations are very
compared to the evolution induced by HamiltonianH. The
task for Alice and Bob is to simulate the evolution due to
different HamiltonianH8. Two kinds of simulations should
be distinguished. The infinitesimal time simulation@1–6#
consists of simulating the action of HamiltonianH8 for an
infinitesimally short intervalDt. The gate synthesis@7–12#
requires the implementation of the unitary transformat
U85exp(2iH8t) for somefinite time t.

It turns out that in the two-party setting, all nonloc
HamiltoniansH are qualitatively equivalent. Given enoug
time t, Alice and Bob can, with the help of local ancilla
simulate the evolution exp(2iH8t) for any H8 @2#. The cen-
tral question, then, is what is the optimal simulation. T
latter may be defined as a simulation that requires the sh
est time. For the two-qubit case, this problem has been c
pletely solved and the optimal protocols for Hamiltoni
@2,6# and unitary-gate@8# simulations have been determine
The situation becomes much more complicated for high
dimensional systems and for higher number of involved p
ties. Simulation protocols suggested for these generic
tings are rather involved and it is not known which protoc
are optimal.

It should be stressed that most of the work focused
discrete variable systems: qubits or, more generally, qud
Recently, however, Krauset al. extended the notion o
Hamiltonian simulation to continuous variable systems@13#.
They assumed that Alice and Bob possess a single-m
1050-2947/2003/68~2!/022304~8!/$20.00 68 0223
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system each and these two modes are coupled via quad
Hamiltonian~we assume\51 throughout this paper!:

H5c11xAxB1c12xApB1c21pAxB1c22pApB , ~1!

where xj and pj are two conjugate quadratures of thej th
mode. Krauset al.showed that almost every Hamiltonian~1!
is capable of simulating any other Hamiltonian of form~1!,
provided that Alice and Bob can apply fast local phase sh
described by single-mode HamiltoniansHA5xA

21pA
2 and

HB5xB
21pB

2 .
These results are interesting from both theoretical and

perimental points of view. In particular, the off-resonant i
teraction of light with the collective atomic spin@14–20# can
be described by the effective unitary transformation

U5exp~2 i tH AL!, ~2!

where the Hamiltonian

HAL5kxApB ~3!

is a special instance of Eq.~1!. The typical geometry of the
experiments is such that a light beam with strong coher
field polarized along thex axis propagates along thez axis
through the atomic sample, whose spin is also polari
along thex axis. Thex andp quadratures are defined as th
properly normalizedy and z components of the collective
spin operators describing the polarization state of light a
atomic ensemble, respectively@14,16,17#. In recent beautiful
experiments it was demonstrated that interaction~2! can be
employed to squeeze the atomic spin@15#, entangle two dis-
tant atomic ensembles@18#, and transfer the quantum state
light into the atoms@19#. Schemes for teleportation an
swapping of the quantum state of collective atomic spin h
been suggested@16,17#. These experiments and proposals
fact rely on the quantum nondemolition~QND! measurement
of the atomic quadrature, possibly accompanied by a suita
feedback.

As showed by Krauset al. @13#, Hamiltonian ~3! can
simulate any Hamiltonian~1!. In particular,HAL can be used
to implement a beam splitter and a two-mode squeezer. T
is very appealing because it suggests that, for instance
storage of the quantum state of light in atoms and the su
©2003 The American Physical Society04-1
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quent readout of the quantum memory, i.e., the transfe
quantum state of atoms onto light, can be implemented
unitary way if Hamiltonian~3! is used to simulate a beam
splitter.

However, currently there are technical difficulties that w
complicate the actual practical realization of this procedu
The effective unitary transformation~2! describes the modi
fication of the polarization state of the light pulse after t
passage through the atomic sample and the correspon
backaction of the light pulse on the atoms. This means
the Hamiltonian simulation requires several passages of
light pulse through the atomic sample~cf. the detailed de-
scription of the simulation protocol in Sec. II!. In currently
envisaged experiments, the pulse width must be at least 1ms
@21#, which corresponds to a length of 300 m. This lo
pulse would have to be stored somewhere~e.g., in an optical
fiber! until its tail leaves the atomic sample. Only then c
the pulse with properly applied phase shifts be fed to
atomic sample again. It may be helpful to place the ato
inside a~bad! optical cavity that could increase the couplin
strength between light and atoms, which would allow one
reduce the pulse length. The interaction of light with atom
ensembles inside a cavity is currently an area of active
search. For instance, a polarization squeezed light has
generated recently with such a setup@22#. However, the
QND-type interaction~3! has not yet been demonstrated
the system involving an atomic ensemble inside a cavity

The above practical considerations imply that the
proach relying on the infinitesimal time simulation is n
very convenient from the experimental point of view. It
possible to simulate a gate by concatenating a large sequ
of short-time Hamiltonian simulations but this would requ
a large number of manipulations and passages of the
pulse through the sample. Since, in practice, every roun
the gate synthesis procedure is necessarily accompanie
some losses and other errors, the accumulation of the e
would negatively influence the simulation.

In this paper, we show how to simulate several import
two-mode interactions, such that the number of the appl
tions of Hamiltonian~1! is minimized. We demonstrate tha
only three sequences of evolution governed by Hamilton
H, interspaced by~fast! local phase shifts on both sub
systems, suffice to implement a two-mode squeezer an
beam splitter. For the specific Hamiltonian~3!, we also pro-
vide an analytical prescription for a single-mode squeez
gate, which involves four evolution steps, and we show t
three-step implementations can be found numerically. Th
results illustrate that several important quantum informat
processing tasks, such as entangling the light and collec
atomic spin, or a transfer of the quantum state of light in
atomic clouds and vice versa, can be carried out with a sm
number of repeated passages of the light pulse through
atomic sample.

This paper is structured as follows. In Sec. II we introdu
the notation, the canonical form of the interaction Ham
tonian ~1! and we describe the gate simulation protocol.
Sec. III we consider the simple interaction Hamiltonian~3!
and we show how to implement the two-mode squeez
operation, beam splitter transformation, and also sing
02230
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mode squeezing as a sequence of three~or four! intervals of
evolution governed by Hamiltonian~3! combined with local
phase-shift operations. In Sec. IV we extend this analysi
the generic interaction Hamiltonians~1!. Finally, the conclu-
sions are drawn in Sec. V.

II. DESCRIPTION OF THE SIMULATION PROTOCOL

In this section we describe the simulation protocol. T
gate synthesis consists of a sequence ofN intervals of evo-
lution governed by HamiltonianH, followed by local unitary
phase-shift transformations. The resulting unitary gateG is
given by

G5VN11e2 iHt NVNe2 iHt N21
•••V3e2 iHt 2V2e2 iHt 1V1 .

~4!

The local phase-shift operation applied to modesA and B
reads

Vj5e2 ifA ja
†a

^ e2 ifB jb
†b, ~5!

wherea andb are the annihilation operators of modesA and
B, respectively. We can further decompose transformati
Vj as follows:

V15Ṽ1 , Vj5Ṽj Ṽj 21
† , j 52, . . . ,N11, ~6!

where Ṽj5exp(2iwAja
†a2iwBjb

†b) and wA15fA1 , wA j
5fA j1wA, j 21 , j 52, . . . ,N11 and similar formulas hold
also for wB j . On inserting decompositions~6! into Eq. ~4!
and making use of the identity

U† exp~2 iHt !U5exp~2 iU †HUt !, ~7!

we obtain

G5ṼN11e2 iH NtN
•••e2 iH 2t2e2 iH 1t1, ~8!

whereH j5Ṽj
†HṼj .

Hamiltonian ~1! is characterized by four parameter
However, by means of local rotations, we can always tra
form this Hamiltonian to a simpler form:

Hc5c1xApB1c2pAxB , ~9!

wherec15s1 and c25s2 det@C#/udet@C#u, ands1 and s2
are the singular values of matrixC defined as (C) i j 5ci j
@13#. In close analogy to the qubit case@2#, we may refer to
Hc as thecanonical formof H. Mathematically, we have

exp~2 iH ct !5W†exp~2 iHt !W, ~10!

whereW is a local rotation~5!. This shows that without loss
of generality, we may assume thatH has the canonical form
~9!. In particular, it follows thatH is able to simulate an
arbitrary H8 ~1! if and only if Hc is able to simulate an
arbitrary canonical Hamiltonian~9!.

Generally, phase shiftswA j and wB j may be arbitrary. In
what follows, we focus on the phase shifts that preserve
4-2
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UNITARY-GATE SYNTHESIS FOR CONTINUOUS- . . . PHYSICAL REVIEW A 68, 022304 ~2003!
canonical form ofH, so that allH j have form~9!. There are
four inequivalent possibilities:

~a! wA50, wB50,

H15c1xApB1c2pAxB . ~11!

~b! wA5p/2, wB53p/2,

H25c2xApB1c1pAxB . ~12!

~c! wA5p, wB50,

H352c1xApB2c2pAxB . ~13!

~d! wA5p/2, wB5p/2,

H452c2xApB2c1pAxB . ~14!

From the structure of these Hamiltonians we can deduce
two different noncommuting canonical HamiltoniansH1 and
H2 are available. Furthermore, we can see thatH352H1
andH452H2, hence we can implement any transformati
exp(2iH1t) and exp(2iH2t), where t is an arbitrary real
number, positive or negative. The two specific casesc15c2
andc152c2, whenH156H2 and the simulation based o
the protocol~4! is not possible, correspond to the Hamilt
nians of a two-mode squeezer and a beam splitter, res
tively.

III. XP COUPLING

Having established the notation and described the sim
tion protocol, we may proceed to the unitary-gate synthe
Namely, we would like to decompose the unitary transform
tion G, which we want to simulate, into a sequence of unita
evolutions governed by HamiltoniansH1 and H2, which
were defined in the preceding section:

G5e2 iH 2tNe2 iH 1tN21 . . . e2 iH 2t2e2 iH 1t1. ~15!

We are particularly interested in the simulations that invo
the lowest possible number of stepsN, because such simula
tions require low number of local manipulations in the eve
tual experimental implementation.

We note here that Eq.~15! is an example of a decompo
sition of a group element into a product ofN other group
elements. In the present case, the underlying group is
symplectic group Sp(4,R) of all linear canonical transforma
tions of the quadratures of the two modesA andB @23,24#. It
is worth mentioning here that the related problem of
decomposition of the symplectic transformation into a
quence of simple evolutions associated with the comm
passive and active linear optical elements has been stu
recently. Braunstein has shown that anyN-mode symplectic
transformation can be implemented as a sequence o
N-mode passive linear interferometer, followed byN single-
mode squeezers and another passive interferometer, th
called Bloch-Messiah decomposition@25#. The decomposi-
tions of this kind have also been applied to investigate
properties of nonlinear optical couplers@26,27#.
02230
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In this section, we shall consider the simplest and also
experimentally relevant coupling between the two syste
described by the interaction Hamiltonian~3!. Without loss of
generality, we may assume that the coupling constan
equal to unity, hence the two relevant Hamiltonians read

H15xApB , H25pAxB . ~16!

All the canonical Hamiltonians~9! have the important prop
erty that thex and p quadratures are not mutually couple
when we write down the Heisenberg equations of motion
xj and pj . This means that the evolution of operatorsx
5(xA ,xB)T and p5(pA ,pB)T is governed by the following
linear canonical transformations:

xout5Sxin , pout5Rpin . ~17!

This decoupling ofx andp quadratures greatly simplifies th
analysis. Transformation~17! must preserve the canonica
commutation relations@xj ,pk#5 id jk . From these conditions
we can express matrixR in terms ofS,

R5~ST!21, ~18!

hence the evolution of thep quadratures is uniquely dete
mined by the evolution of thex quadratures.

Our task is to construct the two-mode unitary gates~sym-
plectic transformations! as a sequence of a small number
unitary transformations generated by Hamiltonians~16!. Ma-
trices S1 and S2 associated with the unitary evolutionsU1
5exp(2iH1t) andU25exp(2iH2t), respectively, read

S1~ t !5S 1 0

t 1D , S2~ t !5S 1 t

0 1D . ~19!

Factorization~15! can be rewritten in terms of matricesSj
as follows:

S5S2~ tN!S1~ tN21!•••S2~ t2!S1~ t1!, ~20!

whereS is the matrix associated with gateG. Since detS1
5detS251, we are restricted to a three-parametric subgro
of transformationsS such that detS51. In what follows, we
will discuss the implementation of three important gates
beam splitter, a two-mode squeezer, and a single-m
squeezer.

A. Beam splitter

The beam splitter operation is described by the matrix

SBS~u!5S cosu sinu

2sinu cosu D . ~21!

It is proved in the Appendix that it is impossible to simula
SBS via a two-step protocol, so we must consider three-s
protocols. We show thatSBS can be implemented as a s
quence of three evolutions~19!:

SBS~u!5S1~g!S2~b!S1~a!. ~22!

The explicit multiplication yields
4-3
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JAROMÍR FIURÁŠEK PHYSICAL REVIEW A 68, 022304 ~2003!
SBS~u!5S 11ab b

a1g~11ab! 11gb D . ~23!

If we compare the elements of the matrices on left- and rig
hand sides of Eq.~23!, we obtain a set of equations for pa
rametersa, b, andg, whose solution yields

a52tan
u

2
, b5sinu, g5a. ~24!

The interaction timesa andb can be negative but this is no
an obstacle, as explained in the preceding section, bec
we can change the sign of HamiltonianH1 or H2 by p ro-
tation of one of the systems. Two cases of particular imp
tance are~i! the balanced beam splitter (u5p/4), which
requires a512A2 and b5A2/2 and ~ii ! the swap (u
5p/2) that exchanges the quantum states of the two
tems,a521 andb51.

The swap gate is closely related to the two-step proto
for mapping the state of collective atomic spin on ligh
which was suggested by Kuzmich and Polzik@20#. In fact,
their two-step protocol can be obtained by simply remov
the last step of the present three-step swap gate. The rem
of the third step means that the mapping adds some noise
the procedure is, thus, only approximate. A possible way
improving its performance is to use squeezing. For deta
see Ref.@20#.

B. Two-mode squeezer

Let us now turn our attention to the two-mode squeez
described by the following matrix:

STMS~r !5S coshr sinhr

sinhr coshr D . ~25!

As in the case of the beam splitter, we attempt to implem
this transformation as a sequence of three evolutions, cf.
~22!. By comparison of the right-hand side of Eq.~23! with
matrix ~25!, we again obtain a system of nonlinear equatio
for parametersa, b, andg having the solution

a5tanh
r

2
, b5sinhr , g5a. ~26!

The parameters are finite for any finiter. However,b grows
exponentially withr and for larger we haveb}er . On the
other hand, for smallr we getb'r . This implies that we
may reduce the synthesis time if we implement the tw
mode squeezing transformation as a sequence ofn two-mode
squeezers withr 85r /n. The reduction of the time is
achieved at the expense of a higher number of steps of
gate synthesis protocol. For modest values of squeezinr,
the sequence of three evolutions is advantageous becau
involves the minimum number of necessary manipulations
systemsA andB.
02230
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C. Single-mode squeezer

After dealing with two-mode gates, let us now focus
the single-mode gate, namely, the single-mode squee
Since detS51, the squeezing of quadraturexA will neces-
sarily be accompanied by antisqueezing ofxB , and vice
versa:

SSMS~r !5S er 0

0 e2r D . ~27!

It turns out that in this case, a sequence of three transfor
tions ~19! is insufficient and we must consider a sequence
four evolutions:

SSMS~r !5S2~d!S1~g!S2~b!S1~a!. ~28!

We proceed as before and derive equations for the four
rameters appearing in Eq.~28!:

er511ab1d~a1g1abg!,

e2r511gb,

05b1d~11gb!,

05a1g~11ab!.

This system of equations has a one-parametric class of s
tions given by

b5
er21

a
, g52ae2r , d5

er~12er !

a
, ~29!

anda is arbitrary but nonzero. We may choose the optim
value ofa, which minimizes the total interaction timeT:

T5uau1ubu1ugu1udu. ~30!

Assuming thatr .0, we obtain, by solvingdT/da50, the
optimal value

a5Ae2r21

11e2r
. ~31!

In the limit of small r, all the four parametersa, b, g, and
d are proportional toAr . This stems from the fact that th
single-mode squeezing HamiltonianHSMS5xApA cannot be
obtained as a linear combination of the two-mode Hamil
niansH1 andH2 and only the terms of the order ofO(t2), or
higher, in Eq.~15! may give rise to the contribution propor
tional to HSMS.

D. General protocols and numerical results

We have seen that the synthesis of the single-m
squeezing gate requires a sequence of four steps if we re
ourselves to protocols~15!. However, it is nota priori clear
whether the four-step simulation~28! is the optimal way of
designing single-mode squeezing gate. It may be the c
that the number of steps and/or the required interaction t
4-4
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UNITARY-GATE SYNTHESIS FOR CONTINUOUS- . . . PHYSICAL REVIEW A 68, 022304 ~2003!
can be reduced by using the general protocol~4!. The general
three-stepprocedure~4! is characterized by 11 parameter
eight phase-shiftsfA j and fB j , and three interaction time
t j . Since any two-mode symplectic transformation is fu
specified by ten parameters, one may expect that the sin
mode squeezing can be achieved by means of some ge
three-step procedure.

As before, it is convenient to work in the Heisenberg p
ture, where vector of the quadraturesv5(xA ,pA ,xB ,pB)T

transforms according to

vout5MGv in , ~32!

whereMG is a 434 symplectic matrix associated withG.
Transformation~32! should result in single-mode squeezin
of modeA, which means that the first two rows ofMG should
read MG,i j 5MG,i i d i j , i 51,2, j 51, . . . ,4 andMG,115er

and MG,225e2r . The elements of matrixMG can be ex-
pressed as functions offA j , fB j , andt j . The resulting sys-
tem of nonlinear equations for these parameters is ra
complicated and was solved numerically. Note also that h
we are interested only in the transformation of modeA and
we do not specify the squeezing of modeB. Thus, we con-
sider a much broader class of protocols than in Sec. III C

The numerical calculations reveal that it is indeed p
sible to squeeze modeA in just three steps. Moreover, w
have found that these three-step protocols may be more
cient than the four-step protocol given in Sec. III C, also
terms of the required interaction time. An explicit example
given in Table I, which shows the parameters of the proto
that accomplishes a single-mode squeezing of modeA with
the squeezing constantr 51. The total interaction timeT
5( j 51

3 ut j u'5.02 is significantly smaller than timeT55.91
required for the best four-step protocol~28!.

The main complication when dealing with the gene
protocol~4! is that the equations for the relevant paramet
are very complicated and can be solved only numerica
Moreover, there exist many different solutions to these eq
tions, i.e., there are many different three-step protocols
each single-mode squeezing gate. It would be interestin
find the optimal protocol among them, which minimizes t
total interaction timeT for a fixed squeezingr. However, this
is a highly nontrivial optimization problem that is beyond t
scope of the present paper.

A related problem is whether the three-step simulations
the beam splitter and two-mode squeezing transformat
discussed in Secs. III A and III B are time optimal,
whether some general three-step protocol~4! can exhibit bet-

TABLE I. Parameters of a three-step protocol that accomplis
a single-mode squeezing of modeA with squeezing constantr
51.

j fA j fB j t j

1 22.78869 20.65328 1.78008
2 20.00040 4.33771 1.41767
3 3.14193 1.13816 1.82622
4 21.21861 2.64601
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ter performance. Again we have investigated this issue w
the help of the numerical calculations. As before, we ha
found that there are many different general three-step pr
cols for gates~21! and~25! and that these protocols differ i
the total interaction time. Interestingly, the numerics prov
some evidence that the protocols derived in Secs. III A a
III B may be time optimal because, in contrast to the the c
of the single-mode squeezer, we have not been able to fi
three-step protocol that would require less time~for a given
value ofu or r ) than the protocols given in Secs. III A an
III B.

IV. GENERIC QUADRATIC COUPLING

In this section, we shall assume that the interact
Hamiltonian has the generic canonical form. Although t
mathematical analysis will be more involved, we shall s
be able to derive analytical formulas for the interaction tim
characterizing the gate synthesis. Without loss of genera
we may assume thatc151 in Eq.~9!. We have to distinguish
the two classes of Hamiltonians giving rise to qualitative
different evolutions of the quadratures in the Heisenberg p
ture. Forc2.0 the dynamics resembles an amplifier, wh
for c2,0 we obtain oscillatory dynamics reminiscent of
beam splitter. We shall discuss these two cases separatel
proved in the Appendix, it is not possible to simulate t
beam splitter and the two-mode squeezer in only two st
with Hamiltonians ~1!. Therefore, we shall focus on th
three-step protocols.

A. Amplifierlike Hamiltonians

We suppose first thatc2.0 and introduce a more conve
nient notationc25s2, s.0, hence

H15xApB1s2pAxB , H25s2xApB1pAxB . ~33!

It is an easy exercise to derive matricesS1 and S2 corre-
sponding to the unitary evolutions governed byH1 andH2,
respectively,

S1
1~ t !5S cosh~st! s sinh~st!

1

s
sinh~st! cosh~st! D , ~34!

S2
1~ t !5S cosh~st!

1

s
sinh~st!

s sinh~st! cosh~st!
D . ~35!

In what follows, we will focus on the beam splitter an
two-mode squeezer transformations. We have seen in
preceding section that these transformations could be im
mented as a sequence of three basic evolutions. Moreo
there was an inherent symmetry in this gate synthesis;
have found thatg5a. It turns out that these basic symmet
properties remain valid also for the generic Hamiltonia
~33! and we can thus decompose the two-mode squee
transformation as

s

4-5
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STMS~r !5S1
1~a/s!S2

1~b/s!S1
1~a/s!. ~36!

Here parametersa5st1 andb5st2 are the rescaled interac
tion times. The nonlinear equations for parametersa andb
are much more complicated than before. Nevertheless,
lytical results can be obtained. From conditionS125S21, we
get

tanhb5
2 sinha cosha

cosh2a2~s22111s2!sinh2a
. ~37!

ConditionS115S22 is satisfied due to symmetry (g5a), and
parametera can be determined from the last independ
equationS12/S115tanhr, which yields

2y~s1s21!

11y2~s22111s2!
5tanhr ,

wherey5tanha. This is a quadratic equation fory, whose
solution reads

tanha5
s1s212A11~s22111s2!~coshr !22

~s22111s2!tanhr
. ~38!

We have selected the root that yields the correct li
tanha50 whenr→0. In the opposite limitr→`, we obtain

tanha`5
1

s21111s
. ~39!

On inserting this back into Eq.~37!, we find that

lim
r→`

tanhb51. ~40!

It is easy to check that the equations fora andb have finite
solutions for any finiter. In the limit r→`, a approaches a
finite asymptotic value, cf. Eq.~39!, while b grows to infin-
ity.

Beam splitter~21! can also be simulated by the symmet
sequence~36!. The calculations of parametersa andb par-
allel those for the two-mode squeezer. From conditionS12
52S21, we expressb in terms ofa:

tanhb5
22 sinha cosha

cosh2a1~s22211s2!sinh2a
. ~41!

Since (s22211s2)>1, it follows that utanhbu<utanh(2a)u.
From conditionS12/S115tanu, we obtain quadratic equatio
for tanha, leading to

tanha5

~s212s!2sgn~s212s!As22211s2

cos2u
21

~s22211s2!tanu
.

~42!
02230
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The sgn function in the above formula selects the root t
yields the correct limita50 whenu→0. Formula~42! is
applicable in intervaluP@0,p/2#. In the limiting caseu
5p/2, we have

tanhap/25
sgn~s2s21!

As22211s2
, ~43!

which implies thatutanhap/2u,1 iff sÞ1. Furthermore, it
can be shown thata is a monotonic function ofu in interval
@0,p/2#. We can thus conclude that with the interactio
Hamiltonian of the amplifier type~33!, we can implement
any beam splitter transformation~21! with the mixing angles
in interval @0,p/2#, which includes the two important case
of a balanced beam splitter (u5p/4) and the swap (u
5p/2). It follows from expression~43! that the simulation
becomes more and more time consuming for Hamiltoni
close to the two-mode squeezing HamiltonianHTMS5xApB
1pAxB , i.e., whens→1.

B. Beam splitter–like Hamiltonians

Having derived the gate synthesis parameters for Ham
tonians ~33!, we proceed to the interaction Hamiltonian
leading to oscillatory dynamics:

H15xApB2s2pAxB , H252s2xApB1pAxB . ~44!

The S matrices associated with these Hamiltonians read

S1
2~ t !5S cos~st! 2s sin~st!

1

s
sin~st! cos~st! D , ~45!

S2
2~ t !5S cos~st!

1

s
sin~st!

2s sin~st! cos~st!
D . ~46!

We shall not repeat the details of the derivations of p
rametersa and b that fully characterize the gate synthes
protocol ~36! and we only summarize the results here. T
beam splitter transformation can be accomplished by the
lowing choice:

tanb5
22 sina cosa

cos2a1~s22111s2!sin2a
~47!

and

tana5
s211s2A~s22111s2!~cosu!2211

~s22111s2!tanu
. ~48!

This reveals that simulation of any beam splitter withu
P@0,p/2# is possible and the parameters satisfyuau<p/2
and ubu<p/2.

Consider now the two-mode squeezing operation~25!. Af-
ter some algebra, one obtains
4-6
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tanb5
2 sina cosa

cos2a2~s22211s2!sin2a
~49!

and

tana5

s212s2sgn~s212s!As22211s2

cosh2r
21

~s22211s2!tanhr
.

~50!

The function tana must be real, which implies that the ter
under the square root must be non-negative. This constr
in turn, limits the amount of two-mode squeezing that can
produced via a three-step protocol~36!. It holds that r
<r th , where

coshr th5As22211s2. ~51!

The origin of this bound lies in the fact that the dynam
governed by Hamiltonians~44! is oscillatory and fully peri-
odic with period 2p/s. Squeezing above thresholdr th can be
achieved only if we concatenate several three-step protoc
It thus appears that the amplifierlike Hamiltonians~33! are,
in certain sense, more versatile than the beam splitter–
Hamiltonians~44!, because the former allow one to impl
ment any two-mode squeezing gate and also any beam s
ter with uP@0,p/2#, via a three-step protocol~36!.

V. CONCLUSIONS

In this paper we have addressed the problem of gate
thesis for continuous variable systems. We have assumed
two single-mode systemsA and B interact via a quadratic
Hamiltonian H and we have studied how to implement
unitary symplectic gateG with the use of this Hamiltonian a
a resource. The gate synthesis protocol consists of a
quence of evolutions governed byH and followed by fast
local phase shifts applied to systemsA and B. We have fo-
cused on the gate simulation protocols that involve the m
mal number of necessary steps, because these protoco
quire a low number of local control operations, which
important from the experimental point of view. We ha
shown that a three-step protocol suffices for simulation of
two-mode squeezer as well as a beam splitter. For the
cific case of Hamiltonian~3!, we have also found a protoco
for single-mode squeezing and we have numerically inve
gated the general three-step simulation protocols~4!. Our
results are applicable to any physical system whose two p
are coupled via the quadratic Hamiltonian. In particular,
gate synthesis protocols proposed in the present paper
find applications in the experiments where light intera
with atomic ensembles via a Kerr-like coupling@15,18,19#.
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APPENDIX: TWO-STEP PROTOCOLS ARE INSUFFICIENT

Here we prove that with the interaction Hamiltonians~9!,
it is not possible to synthesize the beam splitter or two-mo
squeezing gates by using the general two-step protocol~4!
that reads

G5V3e2 iHt 2V2e2 iHt 1V1 . ~A1!

We present the proof for the amplifierlike HamiltonianH
5xApB1s2pAxB . The proof for the beam splitter–like
Hamiltonians~44! is analogous. Finally, the proof for Hamil
tonianH5xApB can be obtained by taking limits→0.

Consider a generic beam splitter transformation with m
ing angleu and arbitrary phase factors. In the Heisenbe
picture, the output annihilation operators are linear combi
tions of the input ones:

aout5aine
ic1 cosu1bine

ic2 sinu,

bout5bine
ic3 cosu2aine

ic4 sinu, ~A2!

where phasesc j must satisfy

c12c21c32c450, ~A3!

because Eq.~A2! must preserve the canonical commutati
relations. Similarly, the generic two-mode squeezing tra
formation can be written as follows:

aout5aine
ic1 coshr 1bin

† eic2 sinhr ,

bout5bine
ic4 coshr 1ain

† eic3 sinhr . ~A4!

Assume thatG is the transformation of type~A2! or ~A4!.
Since the local unitary phase-shift operationVj adds only
phase factors to the annihilation and creation operator
modified transformationG85V5GV4 would still have a form
~A2! or ~A4!. In particular, by choosingV45V1

† and V5

5V3
† , we obtain a simplified protocol:

G85e2 iHt 2e2 ifAa†a2 ifBb†be2 iHt 1. ~A5!

As described in Sec. III D, we can associate a symple
matrix MG8 with unitary G8. For any transformation~A2!
and ~A4!, the elements of the symplectic matrixM must
satisfy

MxApA
52M pAxA

, MxBpB
52M pBxB

, ~A6!

irrespective of phasesc j . The relevant matrix elements o
MG8 read

MG8,xApA
5cosha coshb sinfA2s2 sinha sinhb sinfB ,
4-7
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MG8,pAxA
5

1

s2
sinha sinhb sinfB2cosha coshb sinfA ,

MG8,xBpB
5cosha coshb sinfB2

1

s2
sinha sinhb sinfA ,

MG8,pBxB
5s2 sinha sinhb sinfA2cosha coshb sinfB ,

~A7!

where a5st1 and b5st2. On inserting matrix element
~A7! into Eq. ~A6!, we obtain two equations:
ys

n,

ys

d

A

ut

.
s

e

ev

02230
~s22s22!sinha sinhb sinfB50,

~s22s22!sinha sinhb sinfA50. ~A8!

For sÞ1, these two equations have only trivial solutionsa
50, or b50 or sinfA5sinfB50. In all cases, the unitary
transformation~A5! effectively reduces to exp(2iHt), which
clearly differs from the beam splitter or two-mode squeez
transformation. This proves that the two-step protocols c
not be used to simulate gates~A2! and ~A4!.
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