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Cloning a real d-dimensional quantum state on the edge of the no-signaling condition
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We investigate the class of quantum cloning machines that equally duplicate all real states in a Hilbert space
of arbitrary dimension. By using the no-signaling condition, namely, that cloning cannot make superluminal
communication possible, we derive an upper bound on the fidelity of this class of quantum cloning machines.
Then, for each dimensiod, we construct an optimal symmetric cloner whose fidelity saturates this bound.
Similar calculations can also be performed in order to recover the fidelity of the optimal universal claner in

dimensions.
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[. INTRODUCTION the complete positivity property in order to determine the

best possible cloning transformati¢@]. However, for the

The intimate connection between the impossibility ofreal QCMs of interest, it is sufficient to combine the no-
making a perfect quantum cloning machi(@CM) and the  signaling requirement together with positivityand trace
no-signaling condition, which prevents any superluminalpreservationin order to find a tight bound, just as in Gisin’s
communication, has been realized since the seminal papegsiginal papef3]. The impossibility of signaling is crucial to
of Dieks[1] and of Wootters and ZurelR]. More recently,  derive this bound: would signaling be possible, then no con-
Gisin has shown that this connection can actually be exstraint could be put on cloning in this way. Furthermore, we
ploited in order to recover the fidelity 5/6 of the Buzek- show that a similar reasoning can also be applied in order to
Hillery universal QCM for qubit§3]. Any cloning machine find the optimal fidelity of the universal QCM id dimen-
that would duplicate a qubit with a fidelity exceeding 5/6 sions[10—12. Thus, the requirement of no-signaling allows
would necessarily open a way to superluminal communicaus to recover more simply and straightforwardly some stan-
tion. In short, the no-signaling condition is taken into ac-dard results on cloning.
count by expressing that two statistical ensembles realizing A reason for which the no-signaling upper bound on the
the same input density matrie.g., an equal mixture ¢0)  fidelity is saturated is that the set of states we are cloning is
and|1) or an equal mixture of0)+|1) and|0)—|1)) must somehow “large.” The set ofd-dimensional real states is
result in indistinguishable output density matrices for therealized by means of the S@) group representation, while
clones. Since then, this no-signaling constraint has also beéhe whole set ofi-dimensional complex states is realized by
used to recover the fidelity of other classes of clonersmeans of the usual SUdJ representation. If we impose that
namely, the asymmetric universal and phase-covariant qubihe QCM acts equally on all the input states defined by one
cloners[4,5]. of these representations, then the number of arbitrary inde-

In this paper, we exploit this no-signaling condition in pendent parameters characterizing the cloning transformation
order to derive an upper bound on the fidelity of a class ofs considerably reduced. For the real QCM, we will show
QCMs that have not been considered in the literature. Weéhat the density matrix can be reexpressed under the form of
analyze symmetric QCMs that duplicate askglimensional a covariant real tensor. This simplification allows us to diag-
real state with an equal fidelity. These are the counterpart opnalize the resulting density matrix and easily express no-
the well-known universal QCMs but within the realm of the signaling and positivity. Then, the initial optimization prob-
so-called “real” quantum mechanics. We also find a con-lem is turned into a simpler one involving only seven
structive method to build QCMs that saturate this uppeindependent parameters, which can be solved analytically.
bound, and therefore are optimal. In particular, using this
method ford=2, we find a cloner unitarily equivalent to the
phase-covariant qubit clond6,7] which clones all states IIl. NO-SIGNALING UPPER BOUND
al0)+b|1) (a, b being real and satisfying?+b?=1) with ON THE CLONING FIDELITY
a fidelity (1+1/y2)/2. For an arbitrary dimensiat we use The real input state to be cloned is defined in the compu-
techniques from tensor calculus in order to derive the notational basig|i)} as
signaling bound and the explicit cloner. A specific applica-
tion of this notion of real QCMs arises in four dimensions,
when these cloners are equivalent, up to a unitary transfor- .
mation, to the universal cloners over the set of maximally )= EO mili), @)
entangled qubit pairg3].

In general, the no-signaling requirement does not provide
a tight upper bound on the optimal cloning fidelity. The lin- where the amplitudes; are real and normalized &' n?
earity and trace preserving propertigghich, combined, im- =1. The two-clone output density matrix corresponding to
ply the no-signaling conditiomeed to be supplemented with this input staten=(ng, ... ,ng_1) is defined as

d-1
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TABLE |. Eigenvector decomposition of the rankefx d? tensorr;; i characterizing the two-clone
density matrix of the real QCM id dimensions when the input stateris.

Eigenvalue Eigenvectors Degeneracy
) 1 cot¢ d(d—1)
Aa Vij”u,,:COSa/SIH(Zd)) \/ﬁninﬁ- m(ninj—é,j) 51“, 5

ia

+ —(mfm/+mym(*)

2
sing
Ap Vj=cos¢nn;— ——(njn;— &) 1
Vd—1
Ac Vijj,,=Coson;mi*+sin om{'n; d-1
b Vi; ,=—sinon;m{*+cosém{n; d—-1
d-1
1 (d-1)(d-2)
_ M — 1 Hd—
e \J. Md_3_ud,2%,l=1 Eeﬂl ,,,,, g M m d-2 —
Total d?
d-1 d-1
pout(n):i j; . rij (M) (kl@]j)(I]. 2 Fij k(N =X\a 21 Vi Vi ot NeVij Vi
)K= M V=
We require that the QCM cloner act similarly on all real a1 At
input states, that is, H\C,Zl Vij uVii,ut AD}Z:l Vi WV
Pout(n’)=U®U Pout(n)UT@’UTi € d-1
. tAe Viju - ;lu g3’
where n'=(ng,...,ng_;) with n/=Ryn; and U B1s e hg_g=1 FLoRd=3 AL d-3
=3 R;j li)(j| is an arbitrary real rotation in the HaF o FHd-3
d-dimensional space satisfying;;Ry;= d; (the summation (6)

symbol will be omitted from now on when dealing with ten- _ _
sorg. This covariance property implies thaf (n) is aten- ~ where the complete set of orthonormal eigenvectors is de-

sor of rank 4, i.e., it satisfies fined in Table I.
Note that all the eigenvectors are normalized to unity ex-
Fij ki (N)=Rii Ry Ry Ry i ey (N). (4)  cept for the off-diagonal eigenvectors of the symmetric sub-
) ) ) set Vi ,, Wwhich are normalized to 1/2, ie,
Since we seek a symmetric cloner, the output density matrix, V;} = (8 B+ 8,008,,)12. Here, the coef-

must be invariant under the interchange of the two clones, '~ 1:#¥ . .
9 ficients m* denote an arbitrary set of basis vectors<(i

i.e., under the permutations—j andk«|. The covariance h
P J - =d-—1) of the subspace orthogonal t@ The notation

and the permutation symmetry of the tensor impose the fol

lowing general forn{13]: €ag,een gy stands for the unit antisymmetric tensor of rank
d—1, which is equal to 1 if ftq,...,uq—1) IS @an even
rij'k|(n):Kltsik51|+K25i|5jk+ K35i1‘5k|+K4(nink5j| permutation of (1 . ,d_l), to—1 if (Ml, e ,/.Ld_]_) is

an odd permutation of (1..,d—1), and to O if any index
is repeated. The permutation symmetry between the two
+NN 8+ kNN (5) clones imposes thai\¢—\p)cos(¥)=0, so that eithei

=\p Or cosf#=+1/\/2. This constraint reduces to seven the
where thek, are seven independent real parameters. Noteumber of independent parameters among the eight param-
that if k;=1 and all other parameters vanish, the two clonesters\, (I=A,B,C,D,E), a, ¢, and 6. A straightforward
are perfect. The main result below is that the no-signalingdentification between expressiofs) and (6) allows us to
condition imposes thak,=0, so perfect cloning is pre- unambiguously express the seven independent parameters
cluded. in terms of the new ones.

It is convenient, in what follows, to diagonalize this ten-  Let us now consider the density matrix of each of the two
sor, Eq.(5), and use its eigenvaluéalong with a few other clones and their fidelity with respect to the input state. The
coefficient$ as independent parameters that characterize thievo clones are in the same mixture due to permutation sym-
tensor. The optimization will then be made over these parammetry, and the covariance imposes that the density matrix is
eters. The diagonalization of E¢(p) results in given by a rank-2 tensor of the form

+njn|5ik)+ K5(nin|5jk+ njnk5i|)+ Ke(nin15k|
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Tripoud(N) =TrapoudN) d—-2 sin(4¢)
1y ta=coSa E:Iad%2¢)+ e +1=0, (13
= dF—-1
”Odlu nin; o
sing
. . = — =
+(1-F)a;10i)(| te (C°S¢ \/ﬁ) =0. (14
1-F
=F|)(y]+ m(l— [ {]), (7) Now, the constrained optimization problem can be solved
analytically in order to upper bound the cloning fidelity.
. —— First, we observe that whexg# 0, we can always increase
whereF is the fidelity the fidelity by substituting,(1=A,B,C,D) with \,/(1
F:Tf1[|¢><¢|Pout(n)]=ninkrij,kj(n)- ®) —(d—=1)(d—2)Ag/2) andAg with 0. This substitution in-

creases the fidelity while keeping the constraints satisfied.
; Al Therefore, the requirementz.=0 always gives an optimal
Using Eq.(6), we can express the fidelity in terms of the . ™~ :
eigenvalues and eigenvector parameters, fldellty. Segond, remember that the permutation symmetry
imposes eithela) cosf=+1/\/2 or (b) Ac=Ap. We will
F=X\a cola sinz(2¢>) +\g cog¢+ (Ae coLo+ Ao Sirt0) consider these two pos_5|b|I|t|es.
Case a Let us examine the case o#s1/\2. (The case
X(d—1). (9 cos#=—1/\2 is treated similarly.We eliminate the variable
\c between Eqgs(10) and(12), resulting in
When maximizingF, we will have to take into account the

three following constraints. d—1 -
(i) Positivity. po,=0. This gives \;=0 with | 5 (dHt )it | 1+ ——tg | Ag+(d—D)Ap=1.
=A,B,C,D,E. (15

(ii) Trace preservationTr(py,) =1. This gives
Similarly, combining Eqgs(9) and (12) gives

d(d—1) (d=1)(d—2)
CO§aS|n2(2¢)+ tA )\A tB))\B
(10)
(iii ) No-signaling conditionThis implies that the uniform N d—1 N (16)
mixtures of any two basis setg' andn*’ (which thus both 2 b

realize the same input density matrix, namely, the identity

result in two equal output density matrices. Otherwise, theThe coefficients in front of the eigenvalukg, g, and\p

density matrices would be distinguishable and measuring thare all semipositive in Eq$15) and(16), so that only one of

clones would give information on which mixture was used,these eigenvalues is nonzero in the optimum. For each non-

which means signaling. Thus, zero eigenvalue, Eq$15) and (16) give a value for the fi-
delity, and the maximum fidelity is simply chosen as the best

a1 a1 , of these three possibilities. We find that the fidelity is upper
2 Pout(N®) = 2 PoudN'*) 11 bounded by
wn=0 n=0

can be used as a necessémyt possibly not sufficientcon- cofa sm2(2¢)+ 1tA cofp+ —— d- —tg

dition to respect the no—signaling constraint. Using B&). max 4 }

and the completion relationEM__on“nf‘ EM__On“’nf“ d-1 ’ d-1 2

dij , the only way of satisfying Eq11) is to forbid quartic (d+1ta) 1+ 2 ts
term in Eq.(5), i.e., to imposec;=0. As mentioned earlier, (17)

this means that the “perfect cloning” term in E¢p) is for-
bidden. Indeed, if Eq(11) was not required, then by maxi- The first term in the maximum, Eq17), must be greater
mizing F we would obtain a perfect cloner described inthan 1/2 to be of interest. This condition is fulfilled only if
terms of the only eigenvectdv! setting =0. Thus, we cogasir’(2¢)=d(d—1)/4 and this can be the case only when
observe that the no-signaling condition is sufficient to im-d=2. But, ford=2, we notice that the first term is maxi-
pose Eq(11), that is, to exclude perfect cloning. In terms of mized by choosing coaj=1, since the optimum always lies
the eigenvalues and eigenvector parameters, this nawithin the ranger<4¢=<3w/2. Moreover, if we substitute
signaling condition becomes 2¢ with — ¢, we recover the second term of EG7). Thus,
optimizing the first term fod=2 amounts to optimizing the
Matat Agtg=Ac(1+sin20)+\p(1—sin20), (120 second term. As a consequence, we are left with maximizing
the second term of Eq17) for any dimension, which only
where we have defined the positive coefficients depends onp. The maximum is found for
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d+4— Jd2+ 4d+ 20 long to a space (_)f dimensian just as the input and the two
tang= N (18)  clones) We consider here the most general state
d-1
Consc_aquently, the cloning fidelity of the real QCM drdl— |¥)R12a= 2 Uijia |1 RIY2li )2l K)a (23
mensions cannot exceed the following upper bound: i,jkl=0
_ 1 Jd*+4d+20-d+2 where the indexes 1, B, andA refer, respectively, to the
F\Fmax_i * 4(d+2) (19 two clones, the reference, and the ancilla. Note that this state

does not depend on, but it can be easily used in order to
in order to make signaling via cloning impossible. This is thedefine the cloning transformation applied on stagg: pro-
main result of this section. jecting the reference system ¢#)g;,4 Onto |¢) [15]
Case bIn order to be complete, let us consider the seconédmounts to defining the cloning transformation as
case\c=\p and show that the upper bound cannot be im-

proved. Similarly to the first case, we eliminate the variable d-1 o
\c from Egs.(10) and(12), and obtain equations similar to L) — ,%:_0 Uijia i) 1] )2lK)a - (24)
Egs.(15) and(16), namely, bhEE

d—1 We require that this state obeys the following covariance

T(d+2tA))\A+(1+(d—1)tB))\B=1 (20 principle:

and V) R12a=U*@URURU*|W)R12n (25
d—1 for all real unitary rotations) as those used in E¢3). This
cogp+ TtB Ag. strong requirement allows to recover propedy, while the
(21) converse is not necessarily true. Conditi@#) physically

means that applying a rotatidshon the input(or rotating the

F=|coSasirt(2¢)+ thA

Aat

We then obtain an upper bound &ngiven by reference byJ*) is equivalent to rotating the two clones by
U and the ancilla byJ*. This covariance principle implies
. d-1 d-1 thatu;;, is a tensor of rank 4, that is, it satisfies
coSa sirf(2¢) + > ta coS o+ > te !
max d—1 ) 1+(d_1)tB . uijklzRii’Rjj’Rkk’RII’ui’j'k’I’- (26)
T(d+2tA)

The most general tensor obeying Eg6) can be written as
(22 [13]

From Eq.(22), we note that for the fidelity to be greater than
1/2, then either cdasirf(2¢4)>1/2 or cod¢>1/2. But if

one of these conditions is satisfied, then each term in E . .
(22) is lower than the corresponding one in Ed7). There- the symmetry permutation between the two clones imposes

fore, we conclude that the no-signaling upper bound is in{hat.A:B' The ﬂd?"ttg': clzan be olzt?ri]ned frg:;’n Ecq24|)t.by .
deed given by Eq(19). racing over one of the clones and the ancilla, resulting in

uijk|:A5i|5jk+Béj|5ik+C5k|5ij . (27)

F=(d+3)|A|2+|C|?>+2(AC* + CA*). (29
I1Il. REAL QCM SATURATING

THE NO-SIGNALING BOUND This expression has to be maximized under the normaliza-

We will now explicitly construct a real QCM and observe tion constraint
that it saturates the no-signaling upper bound ELP).
Hence, we will have found aoptimalreal QCM ind dimen- 2(d+1)|A[*+d|C]*+2(AC* +CA*)=1. (29
sions. The fact that Eq19) gives a tight bound on the fidel-
ity shows that, in this case, E(l1) is actually a necessary It can be checked that this maximization procedure exactly
and sufficient condition for no-signaling, so that the no-gives the right-hand side of E¢19), so that the cloner we
cloning and no-signaling constraints coincigiehen supple- have constructed saturates the no-signaling bound. The cor-
mented with positivity, trace preservation, and covariance responding optimal coefficients are given by

We will follow here the constructive method described in

Ref. [12], which consists in considering the cloning of an A ddZ+4d+ 20+ 2d+d2—g |2 30
input system that is maximally entangled with a reference = _ |

system denoted &8, i.e., =°_,[i}]i). In this case, the joint 4(d=1)(d+2)Vd"+4d+20
state|¥)r 104 Of the reference, the two output clones, and

the ancilla completely characterizes the cloning transforma- _ Vd*+4d+20-d-2

. X C= A. (31
tion. (The reference and ancilla systems are assumed to be- 4
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IV. CASE OF THE d-DIMENSIONAL 0.9
UNIVERSAL CLONER
) ) ) oss| ¢
Consider now a universal cloner, that is, a QCM such that o
any pure statéy)=3%"lc|i) (with ¢; being complex am- osh
plitudes is cloned with the same fidelity. To obey the cova- ;
riance propertieg3) for any unitary transformatiorl, the Fo75t o x
output density matrix must have the more restricted form R x
0.7} o x
3
Fij ki(Ci) = K181 8j1 + k26 S+ K4(CiCk 51+ CiCf Sig) oesh ° o
‘ o]
+K5(CiCik 5jk+CjC: 5i|)+K7CiCjC;Cik . (32)
06 :
. . . . 2 3 4 5 6
In comparison with Eq(5), the covariance condition im- d

poses thatks3= k=0 and, consequently, that=0. As a o . ) .
result, the second term in E4L7) gives a smaller upper FIG. 1. Fidelity F as a function of the dimensiod for the

bound so that we find universal clonero) [10-12, the real cloner derived in the present
paper (¢), and the cloner of two mutually unbiased bases) (
[14].
F L ! (33
Ss+—.
2 d+1 F=(5+/17)/12=0.760 for the two-phase covariant qutrit

The universabt-dimensional cloner saturating this bound hasCIOner' andF=1/2_+ 1//12~0.789 for the qutrit cloner of
been discussed in Ref§10-12, so we see that the no- two mutually unplqsed bases. This suggests that these real
signaling condition again gives a tight bound. We can reQCMs form a distinct class of QCMs. Note, finally, that
cover this cloner by following Sec. Ill. The covariance con- When the dimensiod tends to infinity, the cloning fidelity
dition implies that C=0 and, as a consequencedy tends to 1/20(1/d). In Fig. 1, we have plotted, for com-

=1//2(d+1). parison, the fidelity as a function of the dimensibfor the
universal cloner, the real cloner derived here, and the optimal
V. DISCUSSION AND CONCLUSION cloner of two mutually unbiased bases obtained in REf].

. As expected, we observe that the real QCM has a higher
We have found a class of QCMs that duplicate anyfidelity than the universal QCM since it clones the restricted

d-dimensional real state with an equal fidelity class of real states. However, the real QCM performs less
well than the cloner of two mutually unbiased bagescept
1 JdZ+4d+20-d+2 Whenq=2 where. they coinc;ide . . '
F= §+ 2d+2) . (34) An interesting issue of this work is the potential generali-

zation of this method exploiting the no-signaling constraint
to other classes of cloners. It is likely, however, that for a
&nore restrictive set of states to be cloned equally, the no-

quirement provides a sufficient constraint to unambiguouslf"gnallng constraint may only give a nontight upper bound

determine the optimal performance of the cloners. Hence, wa" the fidelity. A t_ypical examp!e may be cloning Fhe set of
have found the optimal real QCMs. two mutually unbiased basg$4]: this smaller set might im-

In the special case ofi=2, we recover the phase- pose a weaker cov_ariancg—:- cqnstrain'g to the .cloning_tran_sfor-
covariant qubit cloner of fidelity mation, so the maximum fidelity consistent with no-signaling
might correspond to a cloner that is not allowed by quantum
mechanics. This will be further investigated.

Furthermore, for these universal cloners over real statés in
dimensions, we have demonstrated that the no-signaling r

1+1/y2
Fd=2:T\/—20.854 (35)
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