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Cloning a real d-dimensional quantum state on the edge of the no-signaling condition

Patrick Navez and Nicolas J. Cerf
Quantum Information and Communication, Ecole Polytechnique, CP 165/59, Universite´ Libre de Bruxelles, 1050 Brussels, Belgium

~Received 27 February 2003; published 24 September 2003!

We investigate the class of quantum cloning machines that equally duplicate all real states in a Hilbert space
of arbitrary dimension. By using the no-signaling condition, namely, that cloning cannot make superluminal
communication possible, we derive an upper bound on the fidelity of this class of quantum cloning machines.
Then, for each dimensiond, we construct an optimal symmetric cloner whose fidelity saturates this bound.
Similar calculations can also be performed in order to recover the fidelity of the optimal universal cloner ind
dimensions.
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I. INTRODUCTION

The intimate connection between the impossibility
making a perfect quantum cloning machine~QCM! and the
no-signaling condition, which prevents any superlumin
communication, has been realized since the seminal pa
of Dieks @1# and of Wootters and Zurek@2#. More recently,
Gisin has shown that this connection can actually be
ploited in order to recover the fidelity 5/6 of the Buze
Hillery universal QCM for qubits@3#. Any cloning machine
that would duplicate a qubit with a fidelity exceeding 5
would necessarily open a way to superluminal commun
tion. In short, the no-signaling condition is taken into a
count by expressing that two statistical ensembles realiz
the same input density matrix~e.g., an equal mixture ofu0&
and u1& or an equal mixture ofu0&1u1& and u0&2u1&) must
result in indistinguishable output density matrices for t
clones. Since then, this no-signaling constraint has also b
used to recover the fidelity of other classes of clone
namely, the asymmetric universal and phase-covariant q
cloners@4,5#.

In this paper, we exploit this no-signaling condition
order to derive an upper bound on the fidelity of a class
QCMs that have not been considered in the literature.
analyze symmetric QCMs that duplicate anyd-dimensional
real state with an equal fidelity. These are the counterpar
the well-known universal QCMs but within the realm of th
so-called ‘‘real’’ quantum mechanics. We also find a co
structive method to build QCMs that saturate this up
bound, and therefore are optimal. In particular, using t
method ford52, we find a cloner unitarily equivalent to th
phase-covariant qubit cloner@6,7# which clones all states
au0&1bu1& (a, b being real and satisfyinga21b251) with
a fidelity (111/A2)/2. For an arbitrary dimensiond, we use
techniques from tensor calculus in order to derive the
signaling bound and the explicit cloner. A specific applic
tion of this notion of real QCMs arises in four dimension
when these cloners are equivalent, up to a unitary trans
mation, to the universal cloners over the set of maxima
entangled qubit pairs@8#.

In general, the no-signaling requirement does not prov
a tight upper bound on the optimal cloning fidelity. The li
earity and trace preserving properties~which, combined, im-
ply the no-signaling condition! need to be supplemented wit
1050-2947/2003/68~3!/032313~6!/$20.00 68 0323
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the complete positivity property in order to determine t
best possible cloning transformation@9#. However, for the
real QCMs of interest, it is sufficient to combine the n
signaling requirement together with positivity~and trace
preservation! in order to find a tight bound, just as in Gisin
original paper@3#. The impossibility of signaling is crucial to
derive this bound: would signaling be possible, then no c
straint could be put on cloning in this way. Furthermore,
show that a similar reasoning can also be applied in orde
find the optimal fidelity of the universal QCM ind dimen-
sions@10–12#. Thus, the requirement of no-signaling allow
us to recover more simply and straightforwardly some st
dard results on cloning.

A reason for which the no-signaling upper bound on t
fidelity is saturated is that the set of states we are clonin
somehow ‘‘large.’’ The set ofd-dimensional real states i
realized by means of the SO(d) group representation, while
the whole set ofd-dimensional complex states is realized
means of the usual SU(d) representation. If we impose tha
the QCM acts equally on all the input states defined by o
of these representations, then the number of arbitrary in
pendent parameters characterizing the cloning transforma
is considerably reduced. For the real QCM, we will sho
that the density matrix can be reexpressed under the form
a covariant real tensor. This simplification allows us to dia
onalize the resulting density matrix and easily express
signaling and positivity. Then, the initial optimization prob
lem is turned into a simpler one involving only seve
independent parameters, which can be solved analytical

II. NO-SIGNALING UPPER BOUND
ON THE CLONING FIDELITY

The real input state to be cloned is defined in the com
tational basis$u i &% as

uc&5 (
i 50

d21

ni u i &, ~1!

where the amplitudesni are real and normalized as( i 50
d21ni

2

51. The two-clone output density matrix corresponding
this input staten5(n0 , . . . ,nd21) is defined as
©2003 The American Physical Society13-1
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TABLE I. Eigenvector decomposition of the rank-4d23d2 tensor r i j ,kl characterizing the two-clone
density matrix of the real QCM ind dimensions when the input state isni .

Eigenvalue Eigenvectors Degeneracy

lA Vij ,mn5cosa sin~2f!F 1

Ad21
ninj1

cotf

d21
~ninj2dij !Gdmn

d~d21!

2

1
eia

2
~mk

mml
n1mk

nml
m!

lB Vij5cosfninj2
sinf

Ad21
~ninj2d i j ! 1

lC Vi j ,m5cosunimj
m1sinumi

mnj d21

lD Vi j ,m8 52sinunimj
m1cosumi

mnj d21

lE Vij ,m1 , . . . ,md23
5 (

md22 ,md2151

d21
1

A2
em1 , . . . ,md21

mi
md21mj

md22
~d21!~d22!

2

Total d2
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rout~n!5 (
i , j ,k,l 50

r i j ,kl~n!u i &^ku ^ u j &^ l u. ~2!

We require that the QCM cloner act similarly on all re
input states, that is,

rout~n8!5U ^ U rout~n!U†
^ U†, ~3!

where n85(n08 , . . . ,nd218 ) with ni85Ri j nj and U
5( i , jRi j u i &^ j u is an arbitrary real rotation in the
d-dimensional space satisfyingRi j Rk j5d i j ~the summation
symbol will be omitted from now on when dealing with te
sors!. This covariance property implies thatr i j ,kl(n) is a ten-
sor of rank 4, i.e., it satisfies

r i j ,kl~n8!5Rii 8Rj j 8Rkk8Rll 8r i 8 j 8,k8 l 8~n!. ~4!

Since we seek a symmetric cloner, the output density ma
must be invariant under the interchange of the two clon
i.e., under the permutationsi↔ j and k↔ l . The covariance
and the permutation symmetry of the tensor impose the
lowing general form@13#:

r i j ,kl~n!5k1d ikd j l 1k2d i l d jk1k3d i j dkl1k4~ninkd j l

1njnld ik!1k5~ninld jk1njnkd i l !1k6~ninjdkl

1nknld i j !1k7ninjnknl , ~5!

where theka are seven independent real parameters. N
that if k751 and all other parameters vanish, the two clon
are perfect. The main result below is that the no-signal
condition imposes thatk750, so perfect cloning is pre
cluded.

It is convenient, in what follows, to diagonalize this te
sor, Eq.~5!, and use its eigenvalues~along with a few other
coefficients! as independent parameters that characterize
tensor. The optimization will then be made over these par
eters. The diagonalization of Eq.~5! results in
03231
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r i j ,kl~n!5lA (
m,n51

Vi j ,mnVkl,mn* 1lBVi j Vkl*

1lC (
m51

d21

Vi j ,mVkl,m* 1lD (
m51

d21

Vi j ,m8 V8kl,m*

1lE (
m1 , . . . ,md2351
m1Þ•••Þmd23

d21

Vi j ,m1 , . . . ,md23
Vkl,m1 , . . . ,md23

* ,

~6!

where the complete set of orthonormal eigenvectors is
fined in Table I.

Note that all the eigenvectors are normalized to unity
cept for the off-diagonal eigenvectors of the symmetric s
set Vi j ,mn which are normalized to 1/2, i.e.
( i , jVi j ,mnVi j ,m8n8

* 5(dmm8dnn81dmn8dnm8)/2. Here, the coef-
ficients mi

m denote an arbitrary set of basis vectors (1<m
<d21) of the subspace orthogonal ton. The notation
em1 , . . . ,md21

stands for the unit antisymmetric tensor of ra

d21, which is equal to 1 if (m1 , . . . ,md21) is an even
permutation of (1, . . . ,d21), to 21 if (m1 , . . . ,md21) is
an odd permutation of (1, . . . ,d21), and to 0 if any index
is repeated. The permutation symmetry between the
clones imposes that (lC2lD)cos(2u)50, so that eitherlC

5lD or cosu561/A2. This constraint reduces to seven t
number of independent parameters among the eight pa
etersl I (I 5A,B,C,D,E), a, f, andu. A straightforward
identification between expressions~5! and ~6! allows us to
unambiguously express the seven independent parameteka
in terms of the new ones.

Let us now consider the density matrix of each of the t
clones and their fidelity with respect to the input state. T
two clones are in the same mixture due to permutation s
metry, and the covariance imposes that the density matri
given by a rank-2 tensor of the form
3-2



e

e

ity
th
th
d

,

i-
in

m
of
n

ed
y.
e

ed.
l
try

on-

est
er

if
en
i-
s

ing

CLONING A REAL d-DIMENSIONAL QUANTUM STATE . . . PHYSICAL REVIEW A 68, 032313 ~2003!
Tr1rout~n!5Tr2rout~n!

5 (
i , j 50

d21
1

d21
@~dF21!ninj

1~12F !d i j #u i &^ j u

5Fuc&^cu1
12F

d21
~12uc&^cu!, ~7!

whereF is the fidelity

F5Tr1@ uc&^curout~n!#5ninkr i j ,k j~n!. ~8!

Using Eq. ~6!, we can express the fidelity in terms of th
eigenvalues and eigenvector parameters,

F5lA cos2a sin2~2f!1lB cos2f1~lC cos2u1lD sin2u!

3~d21!. ~9!

When maximizingF, we will have to take into account th
three following constraints.

~i! Positivity. rout>0. This gives l I>0 with I
5A,B,C,D,E.

~ii ! Trace preservation. Tr(rout)51. This gives

d~d21!

2
lA1lB1~d21!~lC1lD!1

~d21!~d22!

2
lE51.

~10!

~iii ! No-signaling condition. This implies that the uniform
mixtures of any two basis setsnm andnm8 ~which thus both
realize the same input density matrix, namely, the ident!
result in two equal output density matrices. Otherwise,
density matrices would be distinguishable and measuring
clones would give information on which mixture was use
which means signaling. Thus,

(
m50

d21

rout~nm!5 (
m50

d21

rout~n8m! ~11!

can be used as a necessary~but possibly not sufficient! con-
dition to respect the no-signaling constraint. Using Eq.~5!
and the completion relation(m50

d21 ni
mnj

m5(m50
d21 ni

m8nj
m8

5d i j , the only way of satisfying Eq.~11! is to forbid quartic
term in Eq.~5!, i.e., to imposek750. As mentioned earlier
this means that the ‘‘perfect cloning’’ term in Eq.~5! is for-
bidden. Indeed, if Eq.~11! was not required, then by max
mizing F we would obtain a perfect cloner described
terms of the only eigenvectorVi j setting f50. Thus, we
observe that the no-signaling condition is sufficient to i
pose Eq.~11!, that is, to exclude perfect cloning. In terms
the eigenvalues and eigenvector parameters, this
signaling condition becomes

lAtA1lBtB5lC~11sin 2u!1lD~12sin 2u!, ~12!

where we have defined the positive coefficients
03231
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tA5cos2aS d22

d21
sin2~2f!1

sin~4f!

Ad21
D 11>0, ~13!

tB5S cosf2
sinf

Ad21
D 2

>0. ~14!

Now, the constrained optimization problem can be solv
analytically in order to upper bound the cloning fidelit
First, we observe that whenlEÞ0, we can always increas
the fidelity by substitutingl I(I 5A,B,C,D) with l I /(1
2(d21)(d22)lE/2) and lE with 0. This substitution in-
creases the fidelity while keeping the constraints satisfi
Therefore, the requirementlE50 always gives an optima
fidelity. Second, remember that the permutation symme
imposes either~a! cosu561/A2 or ~b! lC5lD . We will
consider these two possibilities.

Case a. Let us examine the case cosu51/A2. ~The case
cosu521/A2 is treated similarly.! We eliminate the variable
lC between Eqs.~10! and ~12!, resulting in

d21

2
~d1tA!lA1S 11

d21

2
tBDlB1~d21!lD51.

~15!

Similarly, combining Eqs.~9! and ~12! gives

F5S cos2a sin2~2f!1
d21

4
tADlA1S cos2f1

d21

4
tBDlB

1
d21

2
lD . ~16!

The coefficients in front of the eigenvalueslA , lB , andlD
are all semipositive in Eqs.~15! and~16!, so that only one of
these eigenvalues is nonzero in the optimum. For each n
zero eigenvalue, Eqs.~15! and ~16! give a value for the fi-
delity, and the maximum fidelity is simply chosen as the b
of these three possibilities. We find that the fidelity is upp
bounded by

maxH cos2a sin2~2f!1
d21

4
tA

d21

2
~d1tA!

,

cos2f1
d21

4
tB

11
d21

2
tB

,
1

2J .

~17!

The first term in the maximum, Eq.~17!, must be greater
than 1/2 to be of interest. This condition is fulfilled only
cos2asin2(2f)>d(d21)/4 and this can be the case only wh
d52. But, for d52, we notice that the first term is max
mized by choosing cos(a)51, since the optimum always lie
within the rangep<4f<3p/2. Moreover, if we substitute
2f with 2f, we recover the second term of Eq.~17!. Thus,
optimizing the first term ford52 amounts to optimizing the
second term. As a consequence, we are left with maximiz
the second term of Eq.~17! for any dimension, which only
depends onf. The maximum is found for
3-3
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tanf5
d142Ad214d120

2Ad21
. ~18!

Consequently, the cloning fidelity of the real QCM ind di-
mensions cannot exceed the following upper bound:

F<Fmax5
1

2
1

Ad214d1202d12

4~d12!
~19!

in order to make signaling via cloning impossible. This is t
main result of this section.

Case b. In order to be complete, let us consider the seco
caselC5lD and show that the upper bound cannot be i
proved. Similarly to the first case, we eliminate the varia
lC from Eqs.~10! and ~12!, and obtain equations similar t
Eqs.~15! and ~16!, namely,

d21

2
~d12tA!lA1~11~d21!tB!lB51 ~20!

and

F5S cos2a sin2~2f!1
d21

2
tADlA1S cos2f1

d21

2
tBDlB .

~21!

We then obtain an upper bound onF given by

maxH cos2a sin2~2f!1
d21

2
tA

d21

2
~d12tA!

,

cos2f1
d21

2
tB

11~d21!tB J .

~22!

From Eq.~22!, we note that for the fidelity to be greater tha
1/2, then either cos2a sin2(2f).1/2 or cos2f.1/2. But if
one of these conditions is satisfied, then each term in
~22! is lower than the corresponding one in Eq.~17!. There-
fore, we conclude that the no-signaling upper bound is
deed given by Eq.~19!.

III. REAL QCM SATURATING
THE NO-SIGNALING BOUND

We will now explicitly construct a real QCM and observ
that it saturates the no-signaling upper bound Eq.~19!.
Hence, we will have found anoptimal real QCM ind dimen-
sions. The fact that Eq.~19! gives a tight bound on the fidel
ity shows that, in this case, Eq.~11! is actually a necessar
and sufficient condition for no-signaling, so that the n
cloning and no-signaling constraints coincide~when supple-
mented with positivity, trace preservation, and covarianc!.

We will follow here the constructive method described
Ref. @12#, which consists in considering the cloning of a
input system that is maximally entangled with a referen
system denoted asR, i.e., ( i 51

d u i &u i &. In this case, the joint
stateuC&R,1,2,A of the reference, the two output clones, a
the ancilla completely characterizes the cloning transform
tion. ~The reference and ancilla systems are assumed to
03231
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long to a space of dimensiond, just as the input and the two
clones.! We consider here the most general state

uC&R,1,2,A5 (
i , j ,k,l 50

d21

ui jkl u l &Ru i &1u j &2uk&A , ~23!

where the indexes 1, 2,R, and A refer, respectively, to the
two clones, the reference, and the ancilla. Note that this s
does not depend onn, but it can be easily used in order t
define the cloning transformation applied on stateuc&: pro-
jecting the reference system ofuC&R,1,2,A onto uc& @15#
amounts to defining the cloning transformation as

uc&→ (
i , j ,k,l 50

d21

ui jkl nl u i &1u j &2uk&A . ~24!

We require that this state obeys the following covarian
principle:

uC&R,1,2,A5U* ^ U ^ U ^ U* uC&R,1,2,A ~25!

for all real unitary rotationsU as those used in Eq.~3!. This
strong requirement allows to recover property~3!, while the
converse is not necessarily true. Condition~24! physically
means that applying a rotationU on the input~or rotating the
reference byU* ) is equivalent to rotating the two clones b
U and the ancilla byU* . This covariance principle implies
that ui jkl is a tensor of rank 4, that is, it satisfies

ui jkl 5Rii 8Rj j 8Rkk8Rll 8ui 8 j 8k8 l 8 . ~26!

The most general tensor obeying Eq.~26! can be written as
@13#

ui jkl 5Ad i l d jk1Bd j l d ik1Cdkld i j . ~27!

The symmetry permutation between the two clones impo
that A5B. The fidelity F can be obtained from Eq.~24! by
tracing over one of the clones and the ancilla, resulting i

F5~d13!uAu21uCu212~AC* 1CA* !. ~28!

This expression has to be maximized under the normal
tion constraint

2~d11!uAu21duCu212~AC* 1CA* !51. ~29!

It can be checked that this maximization procedure exa
gives the right-hand side of Eq.~19!, so that the cloner we
have constructed saturates the no-signaling bound. The
responding optimal coefficients are given by

A5F dAd214d12012d1d228

4~d21!~d12!Ad214d120
G 1/2

, ~30!

C5
Ad214d1202d22

4
A. ~31!
3-4
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IV. CASE OF THE d-DIMENSIONAL
UNIVERSAL CLONER

Consider now a universal cloner, that is, a QCM such t
any pure stateuc&5( i 50

d21ci u i & ~with ci being complex am-
plitudes! is cloned with the same fidelity. To obey the cov
riance properties~3! for any unitary transformationU, the
output density matrix must have the more restricted form

r i j ,kl~ci !5k1d ikd j l 1k2d i l d jk1k4~cick* d j l 1cjcl* d ik!

1k5~cicl* d jk1cjck* d i l !1k7cicjck* cl* . ~32!

In comparison with Eq.~5!, the covariance condition im
poses thatk35k650 and, consequently, thatf50. As a
result, the second term in Eq.~17! gives a smaller uppe
bound so that we find

F<
1

2
1

1

d11
. ~33!

The universald-dimensional cloner saturating this bound h
been discussed in Refs.@10–12#, so we see that the no
signaling condition again gives a tight bound. We can
cover this cloner by following Sec. III. The covariance co
dition implies that C50 and, as a consequence,A
51/A2(d11).

V. DISCUSSION AND CONCLUSION

We have found a class of QCMs that duplicate a
d-dimensional real state with an equal fidelity

F5
1

2
1

Ad214d1202d12

4~d12!
. ~34!

Furthermore, for these universal cloners over real statesd
dimensions, we have demonstrated that the no-signaling
quirement provides a sufficient constraint to unambiguou
determine the optimal performance of the cloners. Hence
have found the optimal real QCMs.

In the special case ofd52, we recover the phase
covariant qubit cloner of fidelity

Fd525
111/A2

2
.0.854 ~35!

as derived in Ref.@6# ~see also the Appendix of@7#!. For
qutrits (d53), we get a cloner of fidelity

Fd535
91A41

20
.0.770. ~36!

This result is distinct from the fidelity of the three know
QCMs for qutrits@7#: F53/4 for the universal qutrit cloner
03231
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F5(51A17)/12.0.760 for the two-phase covariant qutr
cloner, andF51/211/A12.0.789 for the qutrit cloner of
two mutually unbiased bases. This suggests that these
QCMs form a distinct class of QCMs. Note, finally, th
when the dimensiond tends to infinity, the cloning fidelityF
tends to 1/21O(1/d). In Fig. 1, we have plotted, for com
parison, the fidelity as a function of the dimensiond for the
universal cloner, the real cloner derived here, and the opti
cloner of two mutually unbiased bases obtained in Ref.@14#.
As expected, we observe that the real QCM has a hig
fidelity than the universal QCM since it clones the restrict
class of real states. However, the real QCM performs l
well than the cloner of two mutually unbiased bases~except
whend52 where they coincide!.

An interesting issue of this work is the potential genera
zation of this method exploiting the no-signaling constra
to other classes of cloners. It is likely, however, that for
more restrictive set of states to be cloned equally, the
signaling constraint may only give a nontight upper bou
on the fidelity. A typical example may be cloning the set
two mutually unbiased bases@14#: this smaller set might im-
pose a weaker covariance constraint to the cloning trans
mation, so the maximum fidelity consistent with no-signali
might correspond to a cloner that is not allowed by quant
mechanics. This will be further investigated.
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FIG. 1. Fidelity F as a function of the dimensiond for the
universal cloner~o! @10–12#, the real cloner derived in the prese
paper (L), and the cloner of two mutually unbiased bases (3)
@14#.
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