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Quantum-circuit model of Hamiltonian search algorithms
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We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover’s algo-
rithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolu-
tion. We show that these algorithms are closely related in the sense that they all perform a rotation, at a
constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible
to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the
quadratic speedup of Grover’s original algorithm. It also clarifies the link between the adiabatic search algo-
rithm and Grover’s algorithm.
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[. INTRODUCTION where theN candidate solutiongx) are taken as the basis
states of the Hilbert spad¥), while & stands for the addi-
While the standard paradigm of quantum computatiortion modulo 2. By considering the second registér as an
uses quantum gatese., unitary operatojsapplied sequen- ancilla and preparing it in the state (R)[|0)—|1)], the
tially on a quantum register, recent developments have introapplication ofO; on both registers is equivalent to the fol-
duced a new type of quantum algorithm where the state ofowing unitary operation on the first one:
the quantum register evolves continuously in time under the

action of some Hamiltonian. It includes, for instance, the Us:Hy—Hn,
“analog analogue” of Grover’s algorithifil] or the quantum 00
algorithms by adiabatic evolution that have been intensively |x)—(=1)"|x). 2

studied latel\f2,3]. It has been shown that these Hamiltonian
algorithms are genuinely quantum in the sense that they re
produce the quadratic speedup of Grover’s algoritkee, in
particular, thelocal adiabatic version of Grover’s algorithm (our resultshlmay ealf'lly b; gentlara]|zed .tﬂ mfl\ﬂca}% ﬁblr:"
[3,4]). The purpose of this paper is, on one hand, to Cla”fyflorrr:ulgosugbglosv)eealnm%hig rgzsaec":%’n\':/)'t 1 thiTea fgx)e
the link between these Hamiltonian algorithms and their con-

ventional discrete equivalents, and, on the other hand, to 50 (¥ x#m) so thatUs may be rewritten as

show how they can be implemented on a traditional quantum Ur=1—2|m)(m|. 3)
circuit. This second issue is important because it was never

shown how to do so while keeping the quadratic speedup of |nitially, we have no idea of what the solution could be, so

Grover’s algorithm. It appears that all these algorithms take ge prepare the system in a uniform superposition of all pos-
very similar form in the high dimension limit, which is par- sjble solutions

ticularly unexpected for the case of the adiabatic search al-

gorithm. Specifically, we see that the mixing parameter

(which measures the mixing between the initial and final loy=—= 2 |x). (4)
Hamiltonians in the adiabatic search algorijhmas to evolve N 50

in such a way that the instantaneous ground state rotates atg;
[ m il in lyin Hadamar
constant rate from the initial to the final ground state. This, S state may easily be obtained by applying a Hadamard

kes the link full licit with G | al StransformH on each of then= log,N qubits realizing the
mﬁrrfs e link fully explicit wi rovers original algo- quantum registety, initially prepared in stat¢0) (we as-

sume here thal is an integer power of )2 The algorithm
will also require the operation

To clarify the notations, we will restrict ourselves to the case
where there is only one solutiot=m throughout this article

Il. TRADITIONAL GROVER’S ALGORITHM
) ) o Uo=H®"(1=2[|0){0)H®"=I—2|o){ o], (5)
First of all, let us briefly recall the principle of Grover’s
algorithm[5,6]. It is designed to solve the problem of finding which is simply the oracle operation when the solution is
the valuesx for which a functionf(x), usually called the m=0, rotated in the Hadamard basis.

“oracle,” is equal to 1(while it vanishes everywhere ejse Let us define the operat@®=—U,U; as the Grover it-
As quantum gates have to be reversible, the quantum oraclgation. Throughout this article, we will always assume that
must take the form N> 1 for simplicity reasons and because the link between the
different versions of the algorithm will then appear more
Ot "HN® Hoy—HN® Ha, clearly. In that limit, it may be shown that the Grover itera-
tion becomes a simple rotation of angle/® in the two-
Xy®|y)y—|x)y®|ydf(x)), (1)  dimensional subspace spanned |by and|m). More pre-
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cisely, successive applications &f on the initial state o)
progressively rotate it onto the solution stéte):

dis__
J

sin a?is |o)

1
VyN—-1

N .
in o dis
V=g sine] |m)

=[cosa">+O(N"*3)]|o) +[sina{"+O(N")]|m),

|y =Gl|o)= ( cosa

+

(6)
where
. IN=1)  2j
dis__ ; ; _ -
a;*=]| arcsin 2—— )__\/N[1+O(N bl @

Thus, by applying the Grover iteratid®f>~ (/4)\N times,
we obtain the solution staten) with a probability close to 1
with a quadratic speedup with respect to a classical searc

which would necessarily require a number of calls to the

oraclef(x) of orderN.

Let us notice that as/4)\/N is generally not an integer
we have to round it, for instance, to the nearest lower intege
so thatRYs=| (7/4)\/N]. This results in an error

dis
Rdi

VN

Il ds) = Im)ll < sin—= e O(N~*3), ®

which tends to zero foN—ce.

I1l. HAMILTONIAN VERSION OF THE ORACLE

In the two Hamiltonian-evolution quantum search algo-
rithms discussed below, we will need the Hamiltonian

He=1—|m){ml. ©)
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FIG. 1. Circuit for implementing the evolution of a Hamiltonian
H; during a timet by using twice the corresponding ora€lg .

O([|x)®]0)] =|x)®|f(x)),
l@U|x)®|f(x))]=e T |f(x)),
Ofle™ 1 MNx) 8| f(x))] =&~ ]x)0]0),

=e Mi|x)®|0),
(13

which indeed coincides with the result of evolvipg with
rI;|f during timet.
IV. ANALOG QUANTUM SEARCH

Let us now consider the “analog” algorithm introduced
By Farhiet al. in [1]. In addition to the oracle Hamiltonian
H¢, we will need a second Hamiltonian

Ho=H®"(1—=|0)(0))H®"=1—|o )|, (14
which is related tdJ, as defined in Eq(5) in the same way
asH; is related toU;. The algorithm consists in preparing
the system in the starting stdt@*(t=0))=|o) and then let
it evolve under the time-independent HamiltonidA"=H,
+H;. A simple calculation shows that

Let us show why it can be considered as equivalent to the

oracleU; . If we apply this Hamiltonian on a basis stdie
during a timet, it yields

[X), X=m,

e Ix) V x#m,

=g 1A= 10y

e—int|X>:

(10

We immediately see that by takirg= = we reproduce the
operation— Uy, that is,

e Him=—U;. (11)
Conversely, it is possible to simulate the applicationHaf
during a timet with a quantum circuit using a one-qubit
ancilla prepared in sta{®), two calls to the oracl®;, and
an additional phase gate

Ui=e "[0)(0] +[1)(1]. (12)

Considering the circuit represented in Fig. 1, we have

ly2t))=e MM g)=e 1t COSL|0'>+i sinL|m>
JN JN
=e "[cosa®(t)|o) +i sina®\(t)|m)], (15)
where
t
a®\(t)= \/_N (16)

Thus, the quantum search simply works via a rotation from
|o) to |m), just as in the traditional algorithm. However,
here the rotation is continuous and follows a different path
because of the presenceiah the second term of Eq15).
The solution state is thus obtained with probability 1 if we
apply H2" during a timeT2"= (#r/2){N. Let us also notice
that
a®12j)=af"[1+O(N" )], (17)

which shows that the application dfi®" during a time
T2YRYS=2 corresponds roughly to one Grover iteration.

Suppose now that we want to implement this analog al-
gorithm on a quantum circuit. We showed in the previous
section how to reproduce the applicationHf with a circuit,
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but this does not allow us to directly apgh"=Hg+H;. In
order to achieve this, we need to cut the evolution tifie
into R™ small intervalsAT=TYR®=(7/2)/N/R®" such
that we may approximate

U(AT):e—i(HO+Hf)AT (18)

by

UAT:e_iHOATe_inAT. (19)
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where the mixing parametsr=s(t) is a monotonic function
with s(0)=0 ands(T®)=1. As|o) is the ground state of
H(0)=Hy,, the adiabatic theorefi7] tells us that the system
will stay near the instantaneous ground statéi ($) as long

as the evolution ofi(s) imposed bys(t) is “slow enough.”

If this condition is satisfied, the system will thus end up in
the ground state ofi(1)=H;, which is the solution state
|m). Let us recall that, following4], we use the terntocal
adiabatic evolution when the evolution rate is optimized at
each time, whereas forglobal adiabatic evolution the adia-

Using the Campbell-Baker-Hausdorff approximation, whichpatic condition is applied globally on the whole time inter-

states thaf||e”"®—e”e®|||,e O(|||[A,B]|||2) with [[|A[]l;
= maXyx|=1lAX)| denoting the operator norm oA, we
have

UAT)=U+lll2e OUIIIHo HAllAT?). (20
Since
1 1 1
[II[Ho Hellll2= \/%\/;EO N (21)
the error introduced in each step is
IUAT)=U4+lll.€O %) (22

Since there ar®?" successive steps, the total error made by

this discretized version of the analog algorithm is

[U(Ta) = (Us)R| |, O (23)

N

This simply results from the property that if the condition

[[|Uj—Uj][||<1 is satisfiedV j, then
LR

We thus observe that for a number of st&38=|/N/¢| (of
the same order ilN as in Grover’s algorithm we get the
solution state with an error of ordet

gg U;=Uilll,. (29
2

Furthermore, using the result of the previous section, we

see that each step has the same ferrif'o*Te HiAT a5 a
Grover iterationG= —UyU; and therefore requires two calls
to the oracleO; if it is implemented on a quantum circuit.

V. QUANTUM SEARCH BY LOCAL ADIABATIC
EVOLUTION

For this third algorithm, exposed i8] and[4], we once
more need the Hamiltoniarid, andH;, and initially pre-

pare our system in a uniform superposition of all possible

solutions| y2(t=0))=|o’). This time, however, we apply a
time-dependent Hamiltonian

H(s)=(1—s)Hqy+sH;, (25)

val, using a lineas(t).

Let us first study the path followed HBy®{t)) during the
time evolution. AsH(s) acts only on the subspace spanned
by |o) and|m) and, as we start froffv), the path followed
by |42{t)) will remain in this subspace so that the problem
may again be studied in this two-dimensional space. By cal-

culating the eigenstates &f(s), we find

VN[Ey(s)—s]|o)+s|/m)

Eq:s)= , (26)
1Eois) VEL(9)Z+(N—1)[Ey(S)—s]°
. IN[Eq(s)—s]|a)+s|m)

|E1’3>_¢E0<s>2+(N—1)[Eo<s>—s]2' 20
where

Eo(s)=;[1— \/1—4%3(1—5) , (28)

1 \/ N—1
El(S)ZE 1+ 1—4TS(1—S) . (29

The adiabatic theorem states that if the adiabatic condition is
obeyedlocally (see[4] for detail9, that is, if

ds
i eg?(t) V te[0,T3, (30

whereg(t) =E[s(t)]—Eg[s(t)] is the gap between the two
eigenvalues, then we have

[4°4(8))=V1— 7°(5)|Eo;s) + n(s)e'"I|Ey;s), (31)

where ?(s)<¢€? is the error probability and(s) is a rela-

tive phase appearing during the evolution. Note that, here
and throughout the rest of the paper, we omit an irrelevant
global phase in front ofy2{(s)), assuming that the phase
has been modified such that the amplitude of the first term is
real. As expected|,¢,//ad(s)) stays close to the ground state
|Eq;s), which may be rewritten as

|Eq;s)=[cosa®{s)+O(N ¥2)]| o)

+[sina®{s)+O(N"1)]|m) (32

with
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FIG. 2. Rotation angle®{s) for the adiabatic quantum search FIG. 3. s(t) and its discrete approximatios' (t) (using R

algorithm withN=32. =20 steps for the local adiabatic algorithm witN=32.
1 2N—1s \/—
adq)= — -y eyN—1t
a*{s) Zamta{N—Z(N—l)s (33 a*{t)=—F— (37
! t 2s [1+O(N™ Y]
=zarctang—————
? N(1-2s) oY) 39)
(34) N '

in analogy to Eq(6).
The functiona®{s) is plotted in Fig. 2. We see that the

evolution is once again a rotation frofw) to |m), but it is This is now a rotation at a constant rate, which yields the

P i ad_
not performed at a constant angular velocitg(f) is chosen solution state after a tim@*'= (/2¢) N, so that we may

to be linear int, which corresponds to the quantum search bylcorlst'decg this Ipcall ad_lt?]batlc evolution as the proper equiva-
global adiabatic evolution originally described {2]. The enL (t) rO\;e(rjs ";‘hgof' T tat f this algorith
observed angular velocity is indeed greaterdatose to 1/2 et us study the implementation of this aigorithm on a

while it is smaller at the beginning and the end of the timeduantum circuitiwe will closely follow the lines of the de-
evolution. Let us also notice that at discrete valsgs) velopment exposed ifi3]). As for the analog quantum

—s,, the continuous pathy®(s)) coincides with the states search, we discretize the evolution by cutting the tififé

. H ad _ Tad/pad i P
|zp§"3 of Grover’s traditional algorithm. Thus, in the global into R 'ntfr.\f_lrs AT=TT/R™. Durmhg each |n;[f|arvqll
adiabatic search algorithm, the system exactly follows thétiﬁl’tj],, (tj=jAT), we approximate the varying Hamil-
path of Grover’s algorithm, but at a varying rate. This sug-tonian H(s(t)) by the constant oneH;=(1-s;)H,
gests that this algorithm is not the correct adiabatic equiva® SjHs [S;=5(t;)], which is equivalent to replacing the ac-
lent to Grover’s algorithm. Moreover, we note thatsift) tual HamiltonianH (t) =H(s(t)) by H' (t)=H(s'(t)) where
=t/T® then the adiabatic theorem imposes tHE!Y s’(t) is a monotonic function approachirgft) but varying
e Q(N), so that we lose the quadratic speedup of Grover'sat timest; only (see Fig. 3
algorithm (see[4)). In order to evaluate the error introduced by this approxi-
In order to circumvent this problem, we must perform amation, we will use a straightforward generalization of a
local adiabatic evolution according to E(0), as shown in  lemma introduced ir{3]. Considering two time-dependent
[4]. Then, we get the solution state with an error probabilityHamiltoniansH(t) and H'(t) such that|||H(t)—H’(t)|||»

less thane? < §(t) for 0O<t<T, the goal will be to find an upper bound
on the distance between the unitaries induced by them. The
429 T3Y) — | m)||?>< €2, (35) difference with the lemma i8] is that here the Hamiltonian
difference 6(t) may vary in time. This will be crucial in
provided that we evolve at a rate such that order to keep the quadratic speedup of Grover’s search after

this discretization procedurghis is reminiscent to the dis-
N tinction between the global and the local adiabatic evolu-
t(s)= ——=—={arctaf yN—1(2s—1)] +arctanyN—1} tion). Let |4(t)) and|#’(t)) be the trajectories induced by
2eyN-1 H(t) and H'(t) starting from a common initial state
N + 2 N=1s |4(0))=14'(0))=|4o). We have
arctafn —————

2e/N—1 N—-2(N—-1)s
d
JN 2s - &<¢(t)|</f’(t)>=—i<¢(t)|H(t)—H’(t)ldf’(t)> (39
=Zarcta m[l-i-O(N 1)] (36
in the limit N>1. Thus, for a local adiabatic evolution, and
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TABLE I. Summary of the properties of the three quantum search algorithms.dtigrand ot ; are the times during whicH, andHj
have to be applied in stgp Notice that we have omitted some irrelevant global phases in frohﬁjg»fandh,//R)

Grover Analog Adiabatic
No. of steps R [ (/4) \/ﬁj [\/ﬁ/ej [\/ﬁ/e3j

State |¢;) cos ajlo)+sin am)
Angle «; 2j/INN
Error || g} —|m)] O(1/JN)

Sty =(1—s;)€m/2
Sto =1, = €m2 { o= (1=s) €

5rf’j=sjez7'r/2
cos a;|o)+i sin alm)
(ej/NN)m/2
O(e)

cos aj|o)+sin aj|m)

(€jINNym/2
O(e)

<2Ky(O[HO—H"(O)|y" (V)]
(40

d
gl ()P

<25(1), (41

Tad Tad
J 5(t)dt=J' [s(t+AT)—s(t)]dt
0 0

which gives after integration, with the initial condition Finally, we get

(W(0)|y'(0))=1,

g
Kp(T)|y' (T))P=1-2 fo s(t)dt. (42

Introducing the unitary evolutiond(T) andU’(T) induced
by the application of these Hamiltonians frote=0 to t
=T, this last equation may be rewritten

:
VDI~ (Dl = 2] st (@3

As i) is arbitrary, we find the following upper bound on

the error introduced by replacirtg(t) by H'(t):

i
U =" (T)][[,= \/zfo Syt

This concludes the generalization of the lemm&3h
In our problem, the approximation ¢i(t) by H'(t) is
such that

(44)

[IIH® =H" Ol[2=[I[H(s(t) = H(s"(t)]]]2
=|s"(t)=s(O)] [|[[Ho—H+lll2
<[s(t+AT)—s(t)| [[[Ho—Hlll2
<|s(t+AT)—s(t)|, (45)

where we have assumed tisgt) =1 for t>T3%and used the
fact that

1
[[Ho=Hlll2=I[l fm)(m[—[o) (o] [[[2= \/ 1 - {=1.

(46)

We may now use Eq44) with 5(t)=s(t+AT)—s(t), and

AT
=AT—f s(t)dt<AT. 47
0
Tad
[U(T3)—U’ (T3] ,<\2AT= zR—a, (48)

so that in order to keep an error of constant ordefor
growing N, we must choose a number of steps proportional
to T2 that is,R2%=| N/ €°|.

For each step, we have to appty; during a timeAT
=T3YR3 that is, the unitary operation

U r— e*IH]AT: e*i(l*Sj)HoAT*iSijAT.

, (49)

As for the analog algorithm, we use the Campbell-Baker-
Hausdorff approximation and replat‘.t{ by

U}/:e—i(l—sj)HOATe—istfAT_ (50)

The error introduced at each step by this approximation will
be

|||Uj,_UE’|||2EO(Sj(l_sj)AT2|||[H0:Hf]|||2) (51)

N
eO Sj(l_sj)@ . (52)

For theR™" steps we have)’ (T®)=1I1;U/ , so that using Eq.
(24) gives

N ) . (53

=TT uflll.=0| 5z
Consequently, the number of steR&'=| \/N/ €| required in
the previous approximatiofi.e., replacingH(t) by H'(t)]
results in an error of ordet.
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VI. CONCLUSION can realize these basic steps on a quantum circuit by using
. . - .. two calls to the quantum oracle. This will be helpful to use

for\r;vslazi)\;es Strr]]%v‘;ﬂrteheat’u'gmsupr'rt]esg;r?ﬁ I;I dgﬁ;?;‘; ?hrgﬂzlvthese algorithms as building blocks to solve more advanced

’ q 9 Structured search problentsee[8]). These results are sum-

been found so far are very closely related. They all perform__". ;

) . " marized in Table I.

a rotation from the uniform superposition of all states to the

solution state at a constant angular velocity, even though a
slightly different path is followed by the analog quantum

search algorithm. Their similarities become even more obvi- J.R. acknowledges financial support from the Belgian

ous when they are implemented on a quantum circuit as thegRIA foundation. We also acknowledge funding from the
all require a number of steps of ordgN, each step having European Union under the project RESGrant No. IST-
the same forme™Hode~H1%%  Note that the “duty cycle” 2001-37599in the IST-FET-QIPC program, from the Com-
St;/(8to+ Stg) varies along the evolution according to a spe-munauteFran@ise de Belgique under the “Action de Re-
cific law in the case of the local adiabatic search algorithmcherche Conceré Grant No. 00/05-251, and from the IAP
while it is 50% for the traditional Grover’s algorithm as well program of the Belgian federal government under Grant No.
as its Hamiltonian analog. Finally, we have shown how onev-18.
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