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Quantum-circuit model of Hamiltonian search algorithms
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~Received 19 February 2003; published 15 December 2003!

We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover’s algo-
rithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolu-
tion. We show that these algorithms are closely related in the sense that they all perform a rotation, at a
constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible
to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the
quadratic speedup of Grover’s original algorithm. It also clarifies the link between the adiabatic search algo-
rithm and Grover’s algorithm.
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I. INTRODUCTION

While the standard paradigm of quantum computat
uses quantum gates~i.e., unitary operators! applied sequen-
tially on a quantum register, recent developments have in
duced a new type of quantum algorithm where the state
the quantum register evolves continuously in time under
action of some Hamiltonian. It includes, for instance, t
‘‘analog analogue’’ of Grover’s algorithm@1# or the quantum
algorithms by adiabatic evolution that have been intensiv
studied lately@2,3#. It has been shown that these Hamiltoni
algorithms are genuinely quantum in the sense that they
produce the quadratic speedup of Grover’s algorithm~see, in
particular, thelocal adiabatic version of Grover’s algorithm
@3,4#!. The purpose of this paper is, on one hand, to cla
the link between these Hamiltonian algorithms and their c
ventional discrete equivalents, and, on the other hand
show how they can be implemented on a traditional quan
circuit. This second issue is important because it was ne
shown how to do so while keeping the quadratic speedu
Grover’s algorithm. It appears that all these algorithms tak
very similar form in the high dimension limit, which is pa
ticularly unexpected for the case of the adiabatic search
gorithm. Specifically, we see that the mixing parame
~which measures the mixing between the initial and fi
Hamiltonians in the adiabatic search algorithm! has to evolve
in such a way that the instantaneous ground state rotates
constant rate from the initial to the final ground state. T
makes the link fully explicit with Grover’s original algo
rithm.

II. TRADITIONAL GROVER’S ALGORITHM

First of all, let us briefly recall the principle of Grover’
algorithm@5,6#. It is designed to solve the problem of findin
the valuesx for which a function f (x), usually called the
‘‘oracle,’’ is equal to 1~while it vanishes everywhere else!.
As quantum gates have to be reversible, the quantum or
must take the form

Of :HN^ H2→HN^ H2 ,

ux& ^ uy&°ux& ^ uy% f ~x!&, ~1!
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where theN candidate solutionsux& are taken as the basi
states of the Hilbert spaceHN , while % stands for the addi-
tion modulo 2. By considering the second registerH2 as an
ancilla and preparing it in the state (1/A2)@ u0&2u1&], the
application ofOf on both registers is equivalent to the fo
lowing unitary operation on the first one:

U f :HN→HN ,

ux&°~21! f (x)ux&. ~2!

To clarify the notations, we will restrict ourselves to the ca
where there is only one solutionx5m throughout this article
~our results may easily be generalized to the case ofM solu-
tions, roughly speaking by replacingN with N/M in all the
formulas below!. In this case, f (m)51 while f (x)
50 (; xÞm) so thatU f may be rewritten as

U f5I 22um&^mu. ~3!

Initially, we have no idea of what the solution could be,
we prepare the system in a uniform superposition of all p
sible solutions

us&5
1

AN
(
x50

N21

ux&. ~4!

This state may easily be obtained by applying a Hadam
transformH on each of then5 log2N qubits realizing the
quantum registerHN , initially prepared in stateu0& ~we as-
sume here thatN is an integer power of 2!. The algorithm
will also require the operation

U05H ^ n~ I 22u0&^0u!H ^ n5I 22us&^su, ~5!

which is simply the oracle operation when the solution
m50, rotated in the Hadamard basis.

Let us define the operatorG52U0U f as the Grover it-
eration. Throughout this article, we will always assume t
N@1 for simplicity reasons and because the link between
different versions of the algorithm will then appear mo
clearly. In that limit, it may be shown that the Grover iter
tion becomes a simple rotation of angle 2/AN in the two-
dimensional subspace spanned byus& and um&. More pre-
©2003 The American Physical Society11-1
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cisely, successive applications ofG on the initial stateus&
progressively rotate it onto the solution stateum&:

uc j
dis&5Gj us&5S cosa j

dis2
1

AN21
sina j

disD us&

1A N

N21
sina j

disum&

5@cosa j
dis1O~N21/2!#us&1@sina j

dis1O~N21!#um&,

~6!

where

a j
dis5 j S arcsin 2

AN21

N D 5
2 j

AN
@11O~N21!#. ~7!

Thus, by applying the Grover iterationRdis'(p/4)AN times,
we obtain the solution stateum& with a probability close to 1
with a quadratic speedup with respect to a classical sea
which would necessarily require a number of calls to
oracle f (x) of orderN.

Let us notice that as (p/4)AN is generally not an intege
we have to round it, for instance, to the nearest lower inte
so thatRdis5 b(p/4)ANc. This results in an error

iucRdis
dis &2um&i,sin

2

AN
PO~N21/2!, ~8!

which tends to zero forN→`.

III. HAMILTONIAN VERSION OF THE ORACLE

In the two Hamiltonian-evolution quantum search alg
rithms discussed below, we will need the Hamiltonian

H f5I 2um&^mu. ~9!

Let us show why it can be considered as equivalent to
oracleU f . If we apply this Hamiltonian on a basis stateux&
during a timet, it yields

e2 iH f tux&5H ux&, x5m,

e2 i t ux& ; xÞm,

5e2 i (12 f (x))tux&. ~10!

We immediately see that by takingt5p we reproduce the
operation2U f , that is,

e2 iH fp52U f . ~11!

Conversely, it is possible to simulate the application ofH f
during a time t with a quantum circuit using a one-qub
ancilla prepared in stateu0&, two calls to the oracleOf , and
an additional phase gate

Ut5e2 i t u0&^0u1u1&^1u. ~12!

Considering the circuit represented in Fig. 1, we have
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Of@ ux& ^ u0&] 5ux& ^ u f ~x!&,

I ^ Ut@ ux& ^ u f ~x!&] 5e2 i (12 f (x))tux& ^ u f ~x!&,

Of@e2 i (12 f (x))tux& ^ u f ~x!&] 5e2 i (12 f (x))tux& ^ u0&,

5e2 i tH f ux& ^ u0&,
~13!

which indeed coincides with the result of evolvingux& with
H f during timet.

IV. ANALOG QUANTUM SEARCH

Let us now consider the ‘‘analog’’ algorithm introduce
by Farhi et al. in @1#. In addition to the oracle Hamiltonian
H f , we will need a second Hamiltonian

H05H ^ n~ I 2u0&^0u!H ^ n5I 2us&^su, ~14!

which is related toU0 as defined in Eq.~5! in the same way
as H f is related toU f . The algorithm consists in preparin
the system in the starting stateucan(t50)&5us& and then let
it evolve under the time-independent HamiltonianHan5H0
1H f . A simple calculation shows that

ucan~ t !&5e2 i tH an
us&5e2 i tFcos

t

AN
us&1 i sin

t

AN
um&G

5e2 i t@cosaan~ t !us&1 i sinaan~ t !um&], ~15!

where

aan~ t !5
t

AN
. ~16!

Thus, the quantum search simply works via a rotation fr
us& to um&, just as in the traditional algorithm. Howeve
here the rotation is continuous and follows a different p
because of the presence ofi in the second term of Eq.~15!.
The solution state is thus obtained with probability 1 if w
apply Han during a timeTan5(p/2)AN. Let us also notice
that

aan~2 j !5a j
dis@11O~N21!#, ~17!

which shows that the application ofHan during a time
Tan/Rdis52 corresponds roughly to one Grover iteration.

Suppose now that we want to implement this analog
gorithm on a quantum circuit. We showed in the previo
section how to reproduce the application ofH f with a circuit,

FIG. 1. Circuit for implementing the evolution of a Hamiltonia
H f during a timet by using twice the corresponding oracleOf .
1-2
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but this does not allow us to directly applyHan5H01H f . In
order to achieve this, we need to cut the evolution timeTan

into Ran small intervalsDT5Tan/Ran5(p/2)AN/Ran such
that we may approximate

U~DT!5e2 i (H01H f )DT ~18!

by

UDT8 5e2 iH 0DTe2 iH fDT. ~19!

Using the Campbell-Baker-Hausdorff approximation, whi
states thatuuueA1B2eAeBuuu2PO(uuu@A,B#uuu2) with uuuAuuu2
5maxux&:iux&i51iAux&i denoting the operator norm ofA, we
have

uuuU~DT!2UDT8 uuu2PO~ uuu@H0 ,H f #uuu2DT2!. ~20!

Since

uuu@H0 ,H f #uuu25A1

N
A12

1

N
POS 1

AN
D , ~21!

the error introduced in each step is

uuuU~DT!2UDT8 uuu2POS AN

~Ran!2D . ~22!

Since there areRan successive steps, the total error made
this discretized version of the analog algorithm is

uuuU~Tan!2~UDT8 !Ran
uuu2POS AN

RanD . ~23!

This simply results from the property that if the conditio
uuuU j2U j8uuu2!1 is satisfied; j , then

UUU)
j

U j2)
j

U j8UUU
2

<(
j

uuuU j2U j8uuu2 . ~24!

We thus observe that for a number of stepsRan5 bAN/e c ~of
the same order inN as in Grover’s algorithm!, we get the
solution state with an error of ordere.

Furthermore, using the result of the previous section,
see that each step has the same forme2 iH 0DTe2 iH fDT as a
Grover iterationG52U0U f and therefore requires two cal
to the oracleOf if it is implemented on a quantum circuit.

V. QUANTUM SEARCH BY LOCAL ADIABATIC
EVOLUTION

For this third algorithm, exposed in@3# and @4#, we once
more need the HamiltoniansH0 and H f , and initially pre-
pare our system in a uniform superposition of all possi
solutionsucad(t50)&5us&. This time, however, we apply a
time-dependent Hamiltonian

H̃~s!5~12s!H01sHf , ~25!
06231
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where the mixing parameters5s(t) is a monotonic function
with s(0)50 ands(Tad)51. As us& is the ground state o
H̃(0)5H0, the adiabatic theorem@7# tells us that the system
will stay near the instantaneous ground state ofH̃(s) as long
as the evolution ofH̃(s) imposed bys(t) is ‘‘slow enough.’’
If this condition is satisfied, the system will thus end up
the ground state ofH̃(1)5H f , which is the solution state
um&. Let us recall that, following@4#, we use the termlocal
adiabatic evolution when the evolution rate is optimized
each time, whereas for aglobal adiabatic evolution the adia
batic condition is applied globally on the whole time inte
val, using a linears(t).

Let us first study the path followed byucad(t)& during the
time evolution. AsH̃(s) acts only on the subspace spann
by us& andum& and, as we start fromus&, the path followed
by ucad(t)& will remain in this subspace so that the proble
may again be studied in this two-dimensional space. By c
culating the eigenstates ofH̃(s), we find

uE0 ;s&5
AN@E1~s!2s#us&1sum&

AE1~s!21~N21!@E1~s!2s#2
, ~26!

uE1 ;s&5
AN@E0~s!2s#us&1sum&

AE0~s!21~N21!@E0~s!2s#2
, ~27!

where

E0~s!5
1

2 F12A124
N21

N
s~12s!G , ~28!

E1~s!5
1

2 F11A124
N21

N
s~12s!G . ~29!

The adiabatic theorem states that if the adiabatic conditio
obeyedlocally ~see@4# for details!, that is, if

ds

dt
<eg2~ t ! ; tP@0,Tad#, ~30!

whereg(t)5E1@s(t)#2E0@s(t)# is the gap between the tw
eigenvalues, then we have

ucad~s!&5A12h2~s!uE0 ;s&1h~s!eif(s)uE1 ;s&, ~31!

whereh2(s)<e2 is the error probability andf(s) is a rela-
tive phase appearing during the evolution. Note that, h
and throughout the rest of the paper, we omit an irrelev
global phase in front ofucad(s)&, assuming that the phas
has been modified such that the amplitude of the first term
real. As expected,ucad(s)& stays close to the ground sta
uE0 ;s&, which may be rewritten as

uE0 ;s&5@cosaad~s!1O~N21/2!#us&

1@sinaad~s!1O~N21!#um& ~32!

with
1-3
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aad~s!5
1

2
arctanF 2AN21s

N22~N21!sG ~33!

5
1

2
arctanF 2s

AN~122s!
@11O~N21!#G

~34!

in analogy to Eq.~6!.
The functionaad(s) is plotted in Fig. 2. We see that th

evolution is once again a rotation fromus& to um&, but it is
not performed at a constant angular velocity ifs(t) is chosen
to be linear int, which corresponds to the quantum search
global adiabatic evolution originally described in@2#. The
observed angular velocity is indeed greater fors close to 1/2
while it is smaller at the beginning and the end of the tim
evolution. Let us also notice that at discrete valuess(t)
5sk , the continuous pathucad(s)& coincides with the state
uc j

dis& of Grover’s traditional algorithm. Thus, in the glob
adiabatic search algorithm, the system exactly follows
path of Grover’s algorithm, but at a varying rate. This su
gests that this algorithm is not the correct adiabatic equ
lent to Grover’s algorithm. Moreover, we note that ifs(t)
5t/Tad, then the adiabatic theorem imposes thatTad

PV(N), so that we lose the quadratic speedup of Grove
algorithm ~see@4#!.

In order to circumvent this problem, we must perform
local adiabatic evolution according to Eq.~30!, as shown in
@4#. Then, we get the solution state with an error probabi
less thane2

iucad~Tad!&2um&i2<e2, ~35!

provided that we evolve at a rate such that

t~s!5
N

2eAN21
$arctan@AN21~2s21!#1arctanAN21%

5
N

2eAN21
arctanF 2AN21s

N22~N21!sG
5

AN

2e
arctanF 2s

AN~122s!
@11O~N21!#G ~36!

in the limit N@1. Thus, for a local adiabatic evolution,

FIG. 2. Rotation angleaad(s) for the adiabatic quantum searc
algorithm withN532.
06231
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aad~ t !5
eAN21t

N
~37!

5
et

AN
@11O~N21!#. ~38!

This is now a rotation at a constant rate, which yields
solution state after a timeTad5(p/2e)AN, so that we may
consider this local adiabatic evolution as the proper equ
lent to Grover’s algorithm.

Let us study the implementation of this algorithm on
quantum circuit~we will closely follow the lines of the de-
velopment exposed in@3#!. As for the analog quantum
search, we discretize the evolution by cutting the timeTad

into Rad intervals DT5Tad/Rad. During each interval
@ t j 21 ,t j # (t j5 j DT), we approximate the varying Hamil
tonian H̃„s(t)… by the constant oneH j5(12sj )H0
1sjH f @sj5s(t j )#, which is equivalent to replacing the ac
tual HamiltonianH(t)5H̃„s(t)… by H8(t)5H̃„s8(t)… where
s8(t) is a monotonic function approachings(t) but varying
at timest j only ~see Fig. 3!

In order to evaluate the error introduced by this appro
mation, we will use a straightforward generalization of
lemma introduced in@3#. Considering two time-dependen
HamiltoniansH(t) and H8(t) such thatuuuH(t)2H8(t)uuu2
<d(t) for 0<t<T, the goal will be to find an upper boun
on the distance between the unitaries induced by them.
difference with the lemma in@3# is that here the Hamiltonian
differenced(t) may vary in time. This will be crucial in
order to keep the quadratic speedup of Grover’s search a
this discretization procedure~this is reminiscent to the dis
tinction between the global and the local adiabatic evo
tion!. Let uc(t)& and uc8(t)& be the trajectories induced b
H(t) and H8(t) starting from a common initial state
uc(0)&5uc8(0)&5uc0&. We have

d

dt
^c~ t !uc8~ t !&52 i ^c~ t !uH~ t !2H8~ t !uc8~ t !& ~39!

and

FIG. 3. s(t) and its discrete approximations8(t) ~using Rad

520 steps! for the local adiabatic algorithm withN532.
1-4
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TABLE I. Summary of the properties of the three quantum search algorithms. Heredt0,j anddt f , j are the times during whichH0 andH f

have to be applied in stepj. Notice that we have omitted some irrelevant global phases in front ofuc j& and ucR&
n

n

ad ad

nal

er-

ill
U d

dt
z^c~ t !uc8~ t !& z2U<2z^c~ t !uH~ t !2H8~ t !uc8~ t !& z

~40!

<2d~ t !, ~41!

which gives after integration, with the initial conditio
^c(0)uc8(0)&51,

z^c~T!uc8~T!& z2>122E
0

T

d~ t !dt. ~42!

Introducing the unitary evolutionsU(T) andU8(T) induced
by the application of these Hamiltonians fromt50 to t
5T, this last equation may be rewritten

iU~T!uc0&2U8~T!uc0&i<A2E
0

T

d~ t !dt. ~43!

As uc0& is arbitrary, we find the following upper bound o
the error introduced by replacingH(t) by H8(t):

uuuU~T!2U8~T!uuu2<A2E
0

T

d~ t !dt. ~44!

This concludes the generalization of the lemma in@3#.
In our problem, the approximation ofH(t) by H8(t) is

such that

uuuH~ t !2H8~ t !uuu25uuuH̃~s~ t !!2H̃~s8~ t !!uuu2

5us8~ t !2s~ t !u uuuH02H f uuu2

<us~ t1DT!2s~ t !u uuuH02H f uuu2

<us~ t1DT!2s~ t !u, ~45!

where we have assumed thats(t)51 for t.Tad and used the
fact that

uuuH02H f uuu25uuu um&^mu2us&^su uuu25A12
1

N
<1.

~46!

We may now use Eq.~44! with d(t)5s(t1DT)2s(t), and
06231
E
0

T
d~ t !dt5E

0

T
@s~ t1DT!2s~ t !#dt

5DT2E
0

DT

s~ t !dt<DT. ~47!

Finally, we get

uuuU~Tad!2U8~Tad!uuu2<A2DT5A2
Tad

Rad
, ~48!

so that in order to keep an error of constant ordere for
growing N, we must choose a number of steps proportio
to Tad, that is,Rad5 bAN/e3c.

For each step, we have to applyH j during a timeDT
5Tad/Rad, that is, the unitary operation

U j85e2 iH jDT5e2 i (12sj )H0DT2 isjH fDT. ~49!

As for the analog algorithm, we use the Campbell-Bak
Hausdorff approximation and replaceU j8 by

U j95e2 i (12sj )H0DTe2 isjH fDT. ~50!

The error introduced at each step by this approximation w
be

uuuU j82U j9uuu2PO~sj~12sj !DT2uuu@H0 ,H f #uuu2! ~51!

POS sj~12sj !
AN

~eRad!2D . ~52!

For theRad steps we haveU8(Tad)5) jU j8 , so that using Eq.
~24! gives

uuuU8~Tad!2)
j

U j9uuu2POS AN

e2RadD . ~53!

Consequently, the number of stepsRad5 bAN/e3c required in
the previous approximation@i.e., replacingH(t) by H8(t)]
results in an error of ordere.
1-5
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VI. CONCLUSION

We have shown that, in spite of their different origin
formulations, the three quantum search algorithms that h
been found so far are very closely related. They all perfo
a rotation from the uniform superposition of all states to
solution state at a constant angular velocity, even thoug
slightly different path is followed by the analog quantu
search algorithm. Their similarities become even more ob
ous when they are implemented on a quantum circuit as
all require a number of steps of orderAN, each step having
the same forme2 iH 0dt0e2 iH fdt f . Note that the ‘‘duty cycle’’
dt f /(dt01dt f) varies along the evolution according to a sp
cific law in the case of the local adiabatic search algorith
while it is 50% for the traditional Grover’s algorithm as we
as its Hamiltonian analog. Finally, we have shown how o
rin

Sc
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can realize these basic steps on a quantum circuit by u
two calls to the quantum oracle. This will be helpful to u
these algorithms as building blocks to solve more advan
structured search problems~see@8#!. These results are sum
marized in Table I.

ACKNOWLEDGMENTS

J.R. acknowledges financial support from the Belg
FRIA foundation. We also acknowledge funding from th
European Union under the project RESQ~Grant No. IST-
2001-37599! in the IST-FET-QIPC program, from the Com
munaute´ Française de Belgique under the ‘‘Action de Re
cherche Concerte´e’’ Grant No. 00/05-251, and from the IAP
program of the Belgian federal government under Grant N
V-18.
on
@1# E. Farhi and S. Gutmann, Phys. Rev. A57, 2403~1998!.
@2# E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, e-p

quant-ph/0001106.
@3# W. van Dam, M. Mosca, and U. Vazirani, inProceedings of the

42nd Annual Symposium on the Foundations of Computer
ence ~IEEE Computer Society Press, New York, 2001!,
pp. 279–287.

@4# J. Roland and N.J. Cerf, Phys. Rev. A65, 042308~2002!.
t

i-

@5# L.K. Grover, inProceedings of the 28th Annual Symposium
the Theory of Computing~ACM Press, New York, 1996!,
pp. 212–219.

@6# L.K. Grover, Phys. Rev. Lett.79, 325 ~1997!.
@7# L.I. Schiff, Quantum Mechanics~McGraw-Hill, Singapore,

1955!.
@8# J. Roland and N.J. Cerf, following paper, Phys. Rev. A68,

062312~2003!.
1-6


