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Adiabatic quantum search algorithm for structured problems

Jérémie Roland and Nicolas J. Cerf
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1050 Brussels, Belgium
~Received 4 April 2003; published 15 December 2003!

The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms
for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have
been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as
Grover’s algorithm. In this paper, we study how the structure of the search problem may be exploited to further
improve the efficiency of these quantum adiabatic algorithms. We show that by nesting a partial search over a
reduced set of variables into a global search, it is possible to devise quantum adiabatic algorithms with a
complexity that, although still exponential, grows with a reduced order in the problem size.
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I. INTRODUCTION

Grover’s quantum algorithm solves an unstructur
search problem in a time of orderAN, whereN is the dimen-
sion of the search space, which corresponds to a quad
speedup over a classical search@1#. This algorithm is proved
to be optimal in the case of unstructured search problems@2#.
Naturally, it can also be used to solve a structured sea
problem with a quadratic speedup over a naive class
search that would exhaustively check every possible s
tion. However, exploiting the structure of the problem is w
known to lead to better classical search algorithms. It
therefore tempting to imagine that better quantum search
gorithms may be devised similarly by exploiting the proble
structure. Following this, Cerf, Grover, and Williams show
that this could be done by partitioning the unknown variab
into two ~or more! sets and nesting a quantum search o
one set into another search over two~or more! sets, yielding
an average complexity of orderANa, with a,1 @3#.

While this algorithm, as well as Grover’s original algo
rithm, stay within the standard paradigm of quantum com
tation based on quantum circuits, a different type of quant
algorithm based on adiabatic evolution has been introdu
lately @4#. In particular, a quantum adiabatic analogue
Grover’s search algorithm has been independently develo
in Refs. @5# and @6#, which works for unstructured searc
problems. The use of quantum adiabatic algorithms has
been analyzed for solving structured problems such
k-satisfiability (k-SAT), but in such a way that until now
only a numerical study has been possible@7#. Recently, the
study of quantum adiabatic algorithms progressed even
ther after Aharonov and Ta-Shma demonstrated that
quantum state that may be efficiently generated in
quantum-circuit model can also be efficiently generated
an adiabatic quantum state generation algorithm@8#. This
result could hopefully lead to the proof of the universality
algorithms by quantum adiabatic evolution and thus provi
a strong incentive in the search for further quantum adiab
algorithms.

The purpose of this paper is to bring the ideas of nes
quantum search and quantum adiabatic computation toge
in order to devise a quantum adiabatic algorithm adapte
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structured problems. More specifically, we will show that
adiabatic search over a subset of the variables can be us
build a better initial Hamiltonian for the global adiabat
search. With this adiabatic algorithm, we recover the sa
complexity as for the nested circuit-based algorithm
Ref. @3#, although we will see that it is slightly more gener
in that it does not require the exact number of solutions~and
partial solutions! to be knowna priori.

II. ADIABATIC THEOREM

Let us briefly recall the adiabatic theorem and how it m
be used to design quantum algorithms by adiabatic evolut

We know that if a quantum system is prepared in t
ground state of the time-independent Hamiltonian driving
evolution, it remains in this state. The adiabatic theor
states that, if this Hamiltonian becomes time dependent,
system will still stay close to its instantaneous ground st
as long as the variation isslow enough.

More specifically, ifuE0 ;t& anduE1 ;t& are the ground and
first excited states of the HamiltonianH(t), with energies
E0(t) andE1(t), we define the minimum gap between the
eigenvalues as

gmin5 min
0<t<T

@E1~ t !2E0~ t !# ~1!

and the maximum value of the matrix element ofdH/dt
between the eigenstates as

Dmax5 max
0<t<T

U K dH

dt L
1,0
U ~2!

with ^dH/dt&1,05^E1 ;tudH/dtuE0 ;t&. The adiabatic theo-
rem states that, if we prepare the system at timet50 in its
ground stateuE0 ;0& and let it evolve under the Hamiltonia
H(t), then

z^E0 ;Tuc~T!& z2>12«2 ~3!

provided that
©2003 The American Physical Society12-1
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Dmax

gmin
2

<«, ~4!

where«!1.
Now, we may apply to the system a Hamiltonian f

which the ground state encodes the unknown solution o
problem. According to the adiabatic theorem, we know t
we may get the system very close to this solution state
preparing it in the~known! ground state of another Hami
tonian, and then by progressively changing it to the Ham
tonian of our problem. This simple idea is central to t
quantum algorithms by adiabatic evolution@4,5#.

III. QUANTUM SEARCH BY LOCAL ADIABATIC
EVOLUTION

As exposed in@6#, this principle may be used to perform
a quantum search. Suppose that amongN states, we have to
find theM-times degenerate ground state of a Hamiltonia

H f5I 2 (
mPM

um&^mu, ~5!

whereM is the ensemble of solutions~of sizeM ). We ini-
tially prepare the system in an equal superposition of
could-be solutions:

us&5
1

AN
(
i PN

u i &. ~6!

This superposition is the ground state of the followi
Hamiltonian:

Hi5I 2us&^su. ~7!

We now applyHi to the system and switch adiabatically
H f . If we perform an adiabatic evolution

H~ t !5@12s~ t !#Hi1s~ t !H f , ~8!

wheres(t) is a ~carefully chosen! monotonic function with
s(0)50 ands(T)51, we will finally obtain a state close to
a ground state ofH f :

uc f&'
1

AM
(

mPM
um& ~9!

as long as

T5OSAN

M D . ~10!

This algorithm is referred to aslocal becauses(t) is chosen
such that the adiabatic theorem is obeyed locally, at e
time ~see@6# for details!.

Note that if there is more than one solution (M.1) each
solution corresponds to a ground state ofH f and the system
gets to the uniform superposition of all of these states~9!
because the whole problem is symmetric under permuta
06231
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of the solution statesum&. If the number of solutionsM is
unknown, we may use in Eq.~10! an arbitrary valueM 8 of
the order ofM which will affect only the error probability of
the computation by a factor ofM 8/M ~if M 851 is chosen,
then the error probability can only be lower than withM 8
5M , but the computation time will be longer!. This is a
major difference to Grover’s conventional algorithm, whe
the computation has to be run several times when the num
of solutions is unknown, and will be helpful in our structure
search.

IV. STRUCTURED PROBLEMS

In this article, we consider a class of problems where o
has to find an assignment for a set of variables. For e
additional variable considered, new constraints appear
reduce the set of satisfying assignments. This correspond
most problems encountered in practice (k-SAT, graph color-
ing, planning, combinatorial optimization, etc.!.

For a set ofnA variables denoted asA, there is a corre-
sponding set of constraintsCA . We may define a functionf A
that tells if an assignment of the variables inA satisfies the
constraints inCA :

f A :~Zd!nA→$0,1%

:x→H 0 if x does not satisfyCA ,

1 if x satisfiesCA ,
~11!

whered is the number of possible assignments for each v
able (d52 for bits!. As quantum gates have to be reversib
the quantum equivalent of this function will be an oracle:

OA :HNA
^ H2→HNA

^ H2 :ux& ^ uy&→ux& ^ uy% f A~x!&,
~12!

where NA5dnA. It is shown in Ref.@9# that this oracle is
closely related to a Hamiltonian whose ground states, of
ergy 0, are the basis states encoding a satisfying assign
and whose excited states, of energy 1, are all other b
states:

HAux&5H ux& if x does not satisfyCA ,

0 if x satisfiesCA ,
~13!

or

HA5I A2 (
mAPMA

umA&^mAu, ~14!

whereMA is the set of satisfying assignments for the va
ables inA. It is possible to efficiently simulate the time evo
lution according to this Hamiltonian, that is, the unitary o
eratore2 iHt can be well approximated using a sequence
one- and two-qubit gates and two oracle calls~see@9# for
details!.

Now suppose we consider a larger set of variablesnAB
5nA1nB that have to satisfy a set of constraintsCAB.CA .
To discriminate between assignments satisfyingCAB or not,
2-2
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we will use an oracleOAB or a corresponding Hamiltonia
HAB defined as in Eqs.~12! and ~13!. The basic idea of our
structured search will be to find the solutions ofCAB by first
building the assignments of thenA primary variables satisfy-
ing CA , then by completing them with all possible assig
ments of thenB secondary variables, and finally by searchi
among these could-be solutions the global satisfying ass
ments.

V. STRUCTURED SEARCH BY NESTED ADIABATIC
EVOLUTION

This problem is of the same type as the one considere
@3#, for which the technique of nesting was introduced in t
context of the traditional implementation of Grover’s alg
rithm on a conventional quantum circuit. Here, we apply t
technique to the adiabatic quantum search algorithm.

Suppose we divide the variables of our problem into t
subsetsA (nA elements! andB (nB elements!. First, we will
perform a search on the variables inA using the Hamiltonian
HA that encodes the constraints inCA :

HA5I A2 (
mAPMA

umA&^mAu. ~15!

Then we will use the HamiltonianHAB acting on all vari-
ables inAøB and encoding the whole set of constraintsCAB

HAB5I AB2 (
(mA ,mB)PMAB

umA&^mAu ^ umB&^mBu ~16!

to construct a superposition of the solutions of the full pro
lem MAB . A final measurement of the quantum register th
gives one of the global solutions at random.

A. Adiabatic search on the primary variables

The preliminary search on the variables inA is a simple
unstructured search as explained in Sec. III. As there arenA
variables inA, the corresponding Hilbert space is of dime
sion NA5dnA. Let MA be the number of solutions inMA .
Performing an adiabatic quantum search, we may thus tr
form the initial state

usA&5
1

ANA
(

i PNA

u i &A ~17!

into a state close to the uniform superposition of all solutio
in MA ,

ucmA
&5

1

AMA
(

mAPMA

umA&, ~18!

in a time of order

TA5OSANA

MA
D . ~19!
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Let us point out that, here and throughout the rest of
article, it seems that the number of solutionsMA ~and later
MB/mA

andMA
S) must be known to derive the minimal tim

TA ~and laterTB andTC) needed to perform the computatio
with a bounded error probability. Actually, as already e
plained in the case of the unstructured search at the en
Sec. III, an approximate valueM 8 of the order of the actua
M is sufficient as it will affect the error probability only by
factor of M 8/M . In real problems, this issue may thus b
addressed by using approximate methods to evaluate
number of solutions~such as Eq.~57! of Sec. VII fork-SAT!.

B. Adiabatic search on the secondary variables

We will now perform a preliminary search in the Hilbe
space of dimensionNB5dnB of the secondary variables inB
by extending the partial solutionsumA&. We prepare the vari-
ables inB in a state that is the uniform superposition

usB&5
1

ANB
(

j PNB

u j &B . ~20!

Globally, the system is thus in the superposition

uc0&AB5ucmA
& ^ usB&

5
1

AMANB
(

mAPMA
j PNB

umA& ^ u j &B , ~21!

where some terms correspond to a global solution of
problem @(mA , j )PMAB satisfying all constraints inCAB]
and the others to a partial solution only@mAPMA satisfies
CA but (mA , j )¹MAB does not satisfyCAB]. We now divide
the setMA of solutions ofCA into two subsets:M A

S will be
the set ofmA’s for which there exists at least one solutio
(mA ,mB) of CAB andM A

NS the set ofmA’s for which there is
no such solution,

M A
S5$mAPMAu'mB ,~mA ,mB!PMAB%, ~22!

M A
NS5$mAPMAu; j ,~mA , j !¹MAB%. ~23!

Of course, we thus haveMA5M A
SøM A

NS. We may now
rewrite our initial state~21! as

uc0&AB5
1

AMANB
(

mAPM A
NS

j PNB

umA& ^ u j &B

1
1

AMANB
(

mAPM A
S

j PNB

umA& ^ u j &B . ~24!

In the first part of this expression, no term corresponds t
solution of the full problem, whereas in the second pa
some terms do and others do not. The goal of this stag
the computation will be to increase the amplitude of the
2-3
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lution terms in this last part. To achieve this, we perform
adiabatic evolution using as initial Hamiltonian

Hi5I A^ ~ I B2usB&^sBu!, ~25!

that hasuc0&AB as a ground state. The final Hamiltonian w
be

H f5HAB2HA^ I B . ~26!

We see that these Hamiltonians share the following prop
ties.

~1! They do not induce evolution of statesu i &A^ usB& cor-
responding to assignmentsi of NA that do not satisfyCA :
Hi , f u i &A^ usB&50 ; i ¹MA .

~2! They do not couple states corresponding to differ
mA’s: B^ j u ^ ^mAuHi , f umA8 & ^ u j 8&B50, ; mAÞmA8PMA ,
; j , j 8PNB .

It follows that the instantaneous Hamiltonian of the adiaba
evolutionH(t) satisfies the same properties. Keeping this
mind, it may easily be shown that the effect of the adiaba
evolution will be to perform independent adiabatic searc
for eachmAPMA . More precisely, each term inuc0&AB

1

ANB
(

j PNB

umA& ^ u j &B ~27!

will evolve to

1

AMB/mA

(
mBPMB/mA

umA& ^ umB&, ~28!

as long as

TmA
5OSA NB

MB/mA
D , ~29!

whereMB/mA
is the set ofmB’s such that (mA ,mB)PMAB

andMB/mA
is the number of these elements. For this con

tion to be satisfied for allmA’s simultaneously, we must tak

TB5max
mA

TmA
5OSA NB

min
mA

MB/mA
D . ~30!

Here is the major advantage of this adiabatic algorit
compared to its circuit-based counterpart@3# where allMA’s
had to be supposed equal to 1, as here it is sufficient that
are of the same order of magnitude to ensure an error p
ability of the same order for each term.

At the end of this second stage, we have thus constru
a state close to
06231
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ucAB&5
1

AMANB
(

mAPM A
NS

j PNB

umA& ^ u j &B

1
1

AMA
(

mAPM A
S

eifmAumA&

^
1

AMB/mA

(
mBPMB/mA

umB&

5AMA
NS

MA
ucNS&1AMA

S

MA
ucS&, ~31!

where thefmA
’s are phases appearing during the evolutio

ucNS&5
1

AMA
NSNB

(
mAPM A

NS

j PNB

umA& ^ u j &B , ~32!

ucS&5
1

AMA
S (

mAPM A
S

eifmAumA& ^
1

AMB/mA

(
mBPMB/mA

umB&,

~33!

and MA
NS (MA

S) is the number of elements in setM A
NS

(M A
S).

C. Global adiabatic search

The stagesA andB define a unitary evolutionU that ap-
plies the initial stateusA& ^ usB& onto ucAB&:

UusA& ^ usB&'ucAB& ~34!

5AMA
NS

MA
ucNS&1AMA

S

MA
ucS&. ~35!

In this state, we now need to decrease the amplitude of
first term, corresponding to partial solutions only, and
crease the amplitude of the second term, correspondin
global solutions. This could be realized efficiently by pe
forming an adiabatic search using as initial Hamiltonian:

Hi5I AB2ucAB&^cABu ~36!

'U~ I AB2usA&^sAu ^ usB&^sBu!U† ~37!

'UH0U†, ~38!

where H05I AB2usA&^sAu ^ usB&^sBu, and as final Hamil-
tonian

H f5HAB

5I AB2 (
(mA ,mB)PMAB

umA&^mAu ^ umB&^mBu ~39!

during a time
2-4
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TC50SAMA

MA
SD . ~40!

Unfortunately, we do not have access toHi , so that the in-
terpolating HamiltonianH(s)5(12s)Hi1sHf cannot be
applied directly. However, we will see in Sec. VI that th
basic steps of the quantum-circuit implementation of t
adiabatic algorithm require only the application ofHi during
a particular timet, that is,

e2 iH i t'e2 iUH 0U†t5Ue2 iH 0tU†. ~41!

Hence, each application ofHi during a timet will be equiva-
lent to sequentially applyingU†, e2 iH 0t, and U, which
means performing the adiabatic evolutionU ~stagesA andB)
backward, then applyingH0 for a timet, and finally rerunU
forward ~stagesA andB).

In Sec. VI, we will see that, when discretizing the evol
tion, we must take a number of stepsr C of order TC . We
may now evaluate the complexity of this algorithm. As
consists ofr C steps, each involving two applications ofU or
U†, that last a time of orderTA1TB , the algorithm finally
takes a time of order

T5~TA1TB!r C ~42!

5OS SANA

MA
1A NB

min
mA

MB/mA
DAMA

MA
SD

5OSANA

MA
S
1A MANB

MA
S min

mA

MB/mA
D . ~43!

Let us notice that, with the same hypothesis as in Ref.@3#,
namely,

MB/mA
51 ; mA , ~44!

MA
S5MAB , and the computation time is

T5OS ANA1AMANB

AMAB
D , ~45!

so that the complexity is the same as that of the equiva
circuit-based algorithm described in Ref.@3#. A more de-
tailed analysis of this complexity will be performed in Se
VII.

VI. DISCRETIZING THE ADIABATIC EVOLUTION

A. General method

The implementation of aglobal adiabatic evolution algo-
rithm on a discrete quantum circuit was initially shown
@4#, further studied in@5#, and extended to the case of alocal
adiabatic evolution algorithm in@9#. Let us recall that we use
the term ‘‘global’’ when the adiabatic condition is impose
globally and the evolution interpolates linearly between
06231
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initial and the final Hamiltonians, whereas ‘‘local’’ mean
that the evolution is optimized at each time, using a lo
version of the adiabatic condition, which is the case here.
now quickly review the discretization of this last metho
which uses two successive approximations.

The first approximation consists in cutting the evoluti
time T into r intervalsDT5T/r and replacing the continu
ously varying HamiltonianH(t) by a HamiltonianH8(t) that
is constant during each intervalDT and varies at timest j
5 j DT only:

H8~ t !5H~ t j ! if t j 21<t<t j . ~46!

It is shown in @9# that, for H(s)5(12s)Hi1sHf with s
5s(t), this approximation introduces a global error on t
corresponding evolution such that

uiU~T!2U8~T!iu2<A2
T

r
uiHi2H f{u2, ~47!

whereuiAiu25maxiux&i51iAux&i is the operator norm ofA. Our
algorithm now requiresr steps of the form

U j85e2 iH (t j )DT5e2 i (12sj )HiDT2 isjH fDT, ~48!

wheresj5s(t j ). As we are able to applyHi and H f sepa-
rately but not necessarily a simultaneous combination
them, we will approximateU j8 by

U j95e2 i (12sj )HiDTe2 isjH fDT. ~49!

This will result in an error

uiU8~T!2)
j

U j9iu2POS T2

r
ui@Hi ,H f #iu2D ~50!

~see@9# for details!.

B. Application to a structured quantum search

We now consider the case of a structured quantum sea
We could apply the discretization procedure to all thr
stages (A,B,C) of our algorithm in order to implement it on
a quantum circuit, but we will concentrate on stageC, which
is the only one that requires discretization. Nonetheless,
easy to show that stageA(B) would require a number o
stepsr A (r B) of the same order as the computation timeTA
(TB).

For the final stage, the global adiabatic search, the Ha
toniansHi andH f are defined in Eqs.~36!–~39!. Evaluating
the errors introduced by the approximations, we find

uiHi2H f iu2,1, ~51!

ui@Hi ,H f #iu2,AMA
S

MA
, ~52!

and, asTC50(AMA /MA
S),
2-5
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uiU~T!2U8~T!iu2POSAAMA /MA
S

r C
D , ~53!

uiU8~T!2)
j

U j9iu2POSAMA /MA
S

r C
D . ~54!

Therefore, as announced in Sec. V, we have to cut our e
lution into a number of stepsr C5O(AMA /MA

S) of the same
order asTC . Each stepj will take the form

U j95e2 i (12sj )HiDTe2 isjH fDT ~55!

'Ue2 i (12sj )H0DTU†e2 isjH fDT, ~56!

where the applications of HamiltoniansH0 during a time
(12sj )DT and H f during a timesjDT may be realized by
the procedure described in@9#.

VII. COMPLEXITY ANALYSIS

To estimate the efficiency of this algorithm, we will fo
low the same development as in@3#: as we have seen in Se
V, under the assumption~44! that we will consider here, the
complexity of this adiabatic algorithm has exactly the sa
form as its circuit-based counterpart.

First of all let us define a few concepts~for details here
and throughout this section, we refer the reader to Ref.@3#!.
The structured search problem is to find an assignmen
nAB5nA1nB variables amongd possibilities and satisfying
e constraints, each involving at mostk of these variables. We
define as aground instancean assignment of all the variable
involved in a particular constraint. A ground instance will
said to beno goodif it violates the constraint. Letj be the
number of those no-good ground instances.

Empirical studies show that the difficulty of solving
structured problem essentially depends on four parame
the number of variablesnAB , the number of possible assign
ment per variabled, the number of variables per constraintk,
and the number of no-good ground instancesj. Intuitively,
we understand that ifj is small, there are many assignmen
satisfying the constraints so the problem is easy to solve.
the contrary, ifj is large, the problem is overconstrained a
it is easy to show that there is no solution. More precisely
may be shown that for fixednAB andd, the average difficulty
may be evaluated by the parameterb5j/nAB . The hard
problems will be concentrated around a critical valuebc .

Let us now estimate the complexity~45!. Let p(n) be the
probability that a randomly generated assignment of thn
first variables satisfies all the constraints involving the
variables. We then haveMA5p(nA)dnA and MAB
5p(nAB)dnAB while it is shown in@3# that

p~n!'d2nAB(b/bc)(n/nAB)k
. ~57!

Equation~45! becomes

T5OS AdnA1AdnAB[12(b/bc)(nA /nAB)k]

AdnAB~12b/bc!
D ~58!
06231
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or, with a5AdnAB andx5nA /nAB ,

T5OS ax1a12(b/bc)xk

a12b/bc
D . ~59!

We now optimizex, the fraction of variables for which we
perform a partial search, to minimize the computation tim
We have to solve the equation

b

bc
kxk215a(b/bc)xk1x21, ~60!

which, for largea ~that is, largenAB) approximately reduces
to

b

bc
xk1x2150. ~61!

The solution of this equationa (0<a<1) corresponds to
the optimal partial search we may perform such that
complexity grows with the smallest power ind for nAB
→`. This optimal computation time may then be written

T5OS 2aa

a12b/bc
D 5OS AdanAB

AdnAB(12b/bc)D . ~62!

Let us now consider the hardest problems for whichb
'bc . For these problems, the complexity reads

T5O~AdanAB!, ~63!

which we may immediately compare to the complexity of
unstructured quantum searchO(AdnAB). The gain in the ex-
ponenta depends onk through Eq.~61!. For instance, we
find a50.62 for k52, a50.68 for k53, anda→1 when
k→`.

As already pointed out, we recover exactly the same co
plexity as for the circuit-based structured search algorit
shown in@3#, but with fewer hypotheses as, due to the p
ticular form of the required running time for an adiaba
algorithm ~10!, the number of solutions derived from Eq
~57! must give only an order of magnitude, while it must b
a good approximation for its circuit-based analogue. Mo
over, as seen in Sec. V, the numbers of solutionsMB/mA

do

not have to be equal for allmA’s, but only of the same order
To compare these results with a classical algorithm, le

consider a specific problem, the satisfiability of Boolean f
mulas in conjunctive normal form, ork-SAT. For 3-SAT,
which is known to beNP complete, some of the best class
cal algorithms have a worst-case running time that scale
O(20.4nAB) @10,11#, while, asa50.68 fork53, our quantum
adiabatic algorithm has a computation time of ord
O(20.34nAB), which is a slight improvement. Nonetheless,
us recall that there is a distinction between the worst-c
complexity used for characterizing classical algorithms a
the average-case complexity for hardest problems (b5bc)
used for characterizing our quantum algorithm. However,
us also notice that this scaling could be further improved
using several levels of nesting, i.e., by replacing the preli
2-6
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nary search over the primary variables by another ne
structured search~see the analysis of the circuit-based cou
terpart of this idea in the Appendix of@3#!.

VIII. CONCLUSION

We have introduced a quantum search algorithm com
ing the approach based on local adiabatic evolution de
oped in @6# and the nesting technique introduced in@3#. It
allows one to adiabatically solve structured search proble
with an improved complexity over a naive adiabatic sea
that would not exploit the structure of the problem.

The basic idea is to perform a preliminary adiaba
search over a reduced number of variables of the problem
order to keep only a superposition of the assignments
respect the constraints of this partial problem, and then
complete these partial solutions by finding satisfying assi
ments for the remaining variables. We have seen that
implement this algorithm, the global adiabatic evoluti
on

n

rin

Sc

A

06231
d
-

-
l-

s
h

in
at
to
-

to

~stageC) has to be discretized, which makes it possible
nest the preliminary adiabatic search~stagesA and B) into
the global one. Each step of the discretized algorithm
quires alternating partial adiabatic searches backward
forward with global search iteration steps.

A complexity analysis shows that the average compu
tion time of this adiabatic algorithm, although still expone
tial, grows with a reduced exponent compared to quant
unstructured search algorithms to solve a problem such
3-SAT.
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@10# U. Schöning, inProceedings of the 40th Annual Symposium
the Foundations of Computer Science~IEEE Computer Soci-
ety Press, New York, 1999!, pp. 410–414.

@11# T. Hofmeister, U. Scho¨ning, R. Schuler, and O. Watanabe,
Proceedings of the 19th Annual Symposium on Theoretical
pects of Computer Science, edited by H. Alt and A. Ferreira,
Lecture Notes in Computer Science Vol. 2285~Springer,
Berlin, 2002!, pp. 192–202.
2-7


