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We report on a fiber-optics implementation of the Deutsch-Jozsa and Bernstein-Vazirani quantum
algorithms for 8-point functions. The measured visibility of the 8-path interferometer is about 97.5%.
Potential applications of our setup to quantum communication or cryptographic protocols using several
qubits are discussed.
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(the number of optical components) and the time require-
ment both grow exponentially with the number n of qubits

state simply yields a uniform superposition of all states:
Hj0i � 2�n=2

P
x jxi. This state is then sent through the
The last decade has seen the emergence of the field of
quantum information processing. A particularly promis-
ing application is the concept of quantum algorithms,
which allow certain problems such as factorization [1]
or searching [2] to be solved much faster than on a
classical computer. Another algorithm which we will be
interested in here is Deutsch’s algorithm [3], the first
quantum algorithm ever discovered, which was later gen-
eralized by Deutsch and Jozsa (DJ) [4]. The DJ algorithm
discriminates between a constant and a balanced N-point
binary function using one single quantum query, while a
classical algorithm requires O�N� classical queries. It was
later adapted by Bernstein and Vazirani (BV) for effi-
ciently querying a quantum database [5,6].

In this Letter, we report on a fiber-optics implementa-
tion of the DJ algorithm using standard telecom optical
components and a single-photon detector. The DJ algo-
rithm has already been implemented using NMR [7] (see
also [8] for a NMR implementation of the BValgorithm),
tabletop optics [9] (optical demonstrations of other quan-
tum algorithms also include Grover’s algorithm [10,11]),
molecular states [12], and, very recently, an ion trap [13].
However, our setup separates from these realizations (es-
pecially that of [9]) on several major aspects. First, it
relies on guided optics components, which makes it un-
necessary to perform a precise alignment, and it is made
robust against phase fluctuations by use of an autocom-
pensation technique. Second, although it relies on linear
optics, our realization is relatively efficient in terms of
used optical resources compared to standard linear opti-
cal implementations of quantum computation. The central
idea of such implementations consists in representing the
basis states of a N-dimensional Hilbert space by N optical
paths so that unitary transformations are obtained by
chaining linear optics components that make these paths
interfere [14,15]. Such implementations seem, however,
to be inherently inefficient since the space requirement
0031-9007=03=90(15)=157902(4)$20.00
(with N � 2n) [16]. In contrast, in our setup, the number
of components is kept linear in n, while the time needed
still grows exponentially. Note that any implementation
of an algorithm involving an arbitrary 2n-point function
(also called oracle) does in any case require exponential
resources to simulate this function. Therefore, the linear
optical implementation of quantum algorithms involv-
ing oracles can reasonably be made as efficient as any
other implementation in this respect. For all these rea-
sons, our experimental demonstration works with an
8-point (3-qubit) function and might probably be ex-
tended even further without fundamental difficulty, while
today’s largest size optical demonstrator of the DJ algo-
rithm involves a 4-point function [9].

Let us start by recalling the principle of the DJ algo-
rithm. At the core of the algorithm is the oracle which
computes a function f�x�, where x 2 f0; 1gn is an n bit
string, and f 2 f0; 1g is a single bit. The DJ problem is to
determine whether f is a constant or a balanced function,
while querying the oracle as few times as possible. A
balanced function is such that the number of x’s on which
f�x� � 0 is equal to the number of x’s on which f�x� � 1.
Classically, 2n�1 � 1 queries are necessary in the worst
case, whereas the DJ algorithm requires a single query as
we shall see. In this algorithm, n qubits are used, and the
basis of the Hilbert space is chosen as jxi � jx1x2 . . . xni
where xi 2 f0; 1g. The quantum oracle carries out the
transformation jxijyi ! jxijy � f�x�i, where jyi is an an-
cilla qubit. By choosing jyi � �j0i � j1i�=

���
2

p
, this sim-

plifies into jxi ! ��1�f�x�jxi since jyi then remains
unchanged.

The DJ algorithm starts with the system in the state
j0i � j00 � � � 0i. Next, a Hadamard transform H is ap-
plied independently on each of the n qubits. Using the
definition Hjxi � 2�n=2

P
z2f0;1gn��1�x�zjzi, where x � z �P

i xizimod2 is the inner product of two n-bit strings, we
see that the Hadamard transform acting on the initial
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oracle where it becomes

2�n=2
X
x

��1�f�x�jxi : (1)

The superposition principle allows the oracle to be
queried on all input values in parallel. A second Hada-
mard transform is then carried out to obtain the state

2�n
X
x;z

��1�x�z�f�x�jzi; (2)

which is finally measured in the z basis. Therefore, when
f is constant, the probability of measuring j0i is one. In
contrast, when f is balanced, this probability is always
zero, so the DJ algorithm can distinguish with certainty
between these two classes of functions by querying the
oracle a single time. The BV variant of this algorithm is
also based on the transformation leading to Eq. (2).
Suppose that the oracle is restricted to be of the form
fj�x� � x � j where j 2 f0; 1gn is an arbitrary n-bit string.
The aim is to find the bit string j with as few queries as
possible. Classically one needs at least n queries since
each query provides one independent bit of information at
most about j. Quantum mechanically, a single query
suffices since using fj�x� in Eq. (2) shows that the mea-
surement outcome is z � j with unit probability.

Our all optical fiber (standard SMF-28) setup is illus-
trated in Fig. 1. Initially, a 3 ns light pulse is produced by
a laser diode at 1; 55 m, attenuated by an optical attenu-
ator (Agilent 8156A), and then is processed through three
unbalanced Mach-Zehnder (MZ) interferometers with
path length differences 	l (l � 1; 2; 3) obeying 	3 �
2	2 � 4	1 � 50 ns (in what follows we express path
lengths in time units where convenient). Each MZ inter-
ferometer doubles the number of pulses so that, at the
coupler C6, we get eight equally spaced pulses. This
corresponds to the action of the Hadamard transform on
the three input qubits in state j0i. The pulses are then
reflected by a Faraday mirror and, on their way back, are
modulated by a phase modulator (Trilink) commanded by
a pattern generator (Agilent 81110A) which selectively
puts a phase shift of 0 or � on each pulse according to the
8-point function [see Eq. (1)]. The pulses then pass back
through the three MZ interferometers, thereby realizing
a second triple Hadamard transform, and are sent via a
circulator to a single-photon detector (id Quantique
FIG. 1. Fiber optics setup implementing the eight-dimensional
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id200), which completes the DJ or BV algorithm. The
additional delay lines L1, L2, and L3, which obey L3 >
2L2 > 4L1 > 8	3, ensure that the different outputs of the
DJ or BV algorithm all reach the detector at different
times. The delay lines L2 and L3 also contain an isolator
so that the pulses are not transmitted on their way to the
mirror. The photodetector was gated during 5 ns around
the arrival time of each pulse by the pattern generator.
The output of the detector was registered using a time
to digital delay converter (ACAM-GP1) connected to a
computer. All delays 	i and Li were chosen to be integer
multiples of 	1 within 0,2 ns. All electronic components
were triggered by a pulse generator (Standford Research
Inc. DG535). In order to maximize the visibility, polar-
ization controllers were introduced in the long arm of
each MZ interferometer and in front of the polarization-
sensitive phase modulator. Once optimized, the setup was
stable for days.

This implementation of the DJ and BV algorithms
differs from an earlier optical implementation of the DJ
algorithm [9] in several important aspects. First, we run
the algorithm for n � 3 qubits and, more importantly, we
measure all eight outcomes, which makes it possible to
realize the BValgorithm as well (the previous implemen-
tation [9] works with n � 2 qubits and measures only the
outcome z � 0). Second, we operate at telecom wave-
lengths in optical fibers using a setup closely inspired
from the ‘‘plug-and-play’’ quantum cryptographic system
developed by Gisin and collaborators (see, e.g., [17]). For
this reason, the present setup in a slightly modified ver-
sion can be adapted to implement quantum cryptography
using higher dimensional systems [18] or to illustrate
quantum communication complexity protocols [19] over
distances of a few kilometers. These potential applica-
tions will be discussed below. Third, the used resources
are quite different in the two implementations: when
scaled to a large n, the implementation of [9] requires
exponential time and exponentially many optical ele-
ments, whereas our implementation requires exponential
time but only a linear number of optical elements. This is
because the n qubits are realized as 2n separate optical
paths in [9], whereas in our case they are represented as 2n

light pulses traveling in a single optical fiber, extending
naturally the ‘‘time-bin’’ realization of qubits used in
[17]. The small number of optical elements in our setup
Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms.
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therefore implies that it is relatively easy to increase the
number of qubits n while keeping the optical setup stable.
As we shall see, a disadvantage of our setup is that the
Hadamard transform can be implemented with a proba-
bility of success of only 1=2. Since 2n Hadamard trans-
forms are needed for the DJ algorithm with n qubits, the
resulting attenuation is 2�2n.

Let us now prove that our optical setup indeed realizes
the DJ and BValgorithms. The quantum state describing
the eight pulses at coupler C6 can be written, up to a
normalization factor, as

j i /
X111
x�000

exp

�
i
X3
l�1

�kxl	l � �xl�
��������

X3
l�1

xl	l

�
; (3)
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where x stands for �x1; x2; x3� and jpi denotes a pulse
located at position p. The 3 bits x1; x2; x3 � 0; 1 label
whether the pulse took the short (x � 0) or the long
(x � 1) path through each interferometer. The factor
exp�ik

P
l xl	l� with k being the wave number takes into

account the phase difference between a pulse traveling
along the short or long paths of the interferometers. The
factor exp�i

P
l �xl� takes into account the phase accumu-

lated at the couplers: if the pulse takes the short path, it is
transmitted at two couplers, whereas if it takes the long
path, it is reflected twice. After reflection at the Faraday
mirror and phase modulation, the pulses cross again the
three MZ interferometers and reach the photodetector in
the state
j i /
X
x;y;z

��1�f�x� exp

�
i
X3
l�1

�
k�xl � yl�	l � �

	
xl � yl � yl�zl � zl�1� �

zl � zl�1

2


���������
X3
l�1

�
�xl � yl�	l � zlLl

��
; (4)
TABLE I. Measured average visibility V�z� in the zth time
bin for the DJ or BV algorithm with n � 2 and n � 3 qubits.

z 1 2 3 4 5 6 7 8

V�z�n�2 98.4 97.4 98.5 98.6
V�z�n�3 96.78 97.99 97.68 97.32 97.33 97.56 97.37 97.28
where the bits y1; y2; y3 equal 0 or 1 according to whether
the pulse passed through the short or the long path of each
of the interferometers on its way back, and the bits
z1; z2; z3 equal 0 or 1 according to whether or not the
pulse exited each of the interferometer in the path con-
taining the delay lines L1, L2, or L3. Note that we put
z4 � 0. We have again taken into account the phases
induced by transmission or reflection at the couplers
C1–C6. The final state contains 120 pulses, but we are
interested in only the eight pulses such that x1 � y1 �
x2 � y2 � x3 � y3 � 1, which are those that exhibit
8-path interference. The other pulses are filtered out in
the computer analysis (they correspond to different time
bins). The final state then becomes

j i /
X
z

��i�z1��1�z2�z3

�
X
x

��1�f�x1;x2;x3��x1�z1�z2��x2�z2�z3��x3z3

� j	1 �	2 �	3 � z1L1 � z2L2 � z3L3i: (5)

By relabeling the time bins according to the substitution
z1 ! z1 � z2 � z3 mod 2, z2 ! z2 � z3 mod 2, and z3 !
z3, this equation coincides (up to irrelevant phases and
an overall normalization factor) with Eq. (2) with the
eight logical states jzi identified as specific time bins.

The setup thus realizes the DJ or BV algorithm, the
main difference with an ideal algorithm being an extra
attenuation by a factor of 2�7. A factor 2�3 originates
from the couplers C2, C4, and C6 because each time a
pulse passes through these couplers it has a probability of
only 1=2 of exiting by the right path. Otherwise, it is
absorbed by the isolators I1 and I2 or by the unconnected
fiber pigtail at coupler C6. Another factor 2�3 is due to
the filtering out of the 112 pulses produced on the way
back that do not correspond to 8-path interferences. The
remaining factor 2�1 is due to the coupler C7. This
overall loss of 21 dB could be remedied by replacing
the couplers C2, C4, C6, and C7 by optical switches
which would direct the light pulses along the appropriate
path. High speed, low-loss optical switches are not avail-
able commercially at present, so we had to use couplers in
the present experiment. However, we emphasize that this
is a technological rather than a fundamental limitation.

In order to characterize the performances of our setup,
we considered the 2n oracles of the form fj�x� � x � j and
fj�x� � x � j� 1mod 2 (i.e., the oracles in the BV algo-
rithm and their complements). For each oracle fj (or fj),
we ran the algorithm 500 000 times and registered the
number of counts in time bin z, denoted as Nj�z� [or
Nj�z�]. The algorithm gives constructive interference in
the time bin z � j for the oracle fj or fj, and destructive
interference elsewhere. We then computed

Vj�z� �
1

2

	
Nz�z� � Nj�z�

Nz�z� � Nj�z�
�
Nz�z� � Nj�z�

Nz�z� � Nj�z�



(6)

for each pair of oracles with j � z, and calculated the
visibility V�z� in time bin z by taking the average of Vj�z�
over all values of j. The measured visibilities V�z� for
two and three qubits are shown in Table I. Remarkably,
they remain relatively high when going from two to
three qubits in spite of the fact that eight path interfer-
ences are involved. This is because the path differences
are automatically compensated and only n� 1 polariza-
tions must be adjusted. It should therefore be relatively
easy to go beyond n � 3 without significantly decreasing
the visibilities.
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Because of the attenuation in our setup along with the
quantum efficiency (’10:5%) and the dark count proba-
bility (’10�4 ns�1) of our detector, the signal-to-noise
ratio was not high enough to perform these visibility
measurements in the single-photon regime. In our ex-
periment, approximatively 20 photons per pulse entered
the phase modulator (oracle) in four dimensions, and
approximatively 50 in eight dimensions. However, mini-
mal modifications should allow us to decrease the number
of photons while keeping the signal-to-noise ratio con-
stant. In particular, by reducing the pulse length or using
two detectors instead of the coupler C7, it should be
possible to operate in the single-photon regime in four
(and possibly eight) dimensions. Moreover, as already
mentioned, the Hadamard transform could be rendered
deterministic by using fast low-loss optical switches in-
stead of couplers, which would strongly reduce the losses.

The present experiment can be extended in several
ways. For example, one could implement the distributed
Deutsch-Jozsa problem [19] where two parties, which
each receive as input a 2n-bit string (denoted as f and
g), must decide whether f � g or f differs from g in
exactly 2n�1 bits (they are promised that only one of these
two cases can occur). The distributed Deutsch-Jozsa al-
gorithm could be realized with a slight modification of
our setup in which the two parties, separated by a few
kilometers of optical fiber, would each use a phase modu-
lator. This quantum protocol can also be easily adapted to
multidimensional quantum cryptography, where two par-
ties randomly choose their patterns f and g. By publicly
revealing part of f and g, the parties can use the corre-
lations between the measurement outcomes to establish a
secret key. A detailed analysis shows that for n � 2, this
exactly coincides with the four-dimensional cryptosys-
tem based on two mutually conjugate bases, which has
been shown to present advantages over quantum cryptog-
raphy in two dimensions [20]. A final potential applica-
tion of this setup is to test quantum nonlocality using the
entanglement-based Deutsch-Jozsa correlations [21]. An
entangled state of 2n time bins must be produced, for
example, using the source [22], and each party must then
carry out phase modulation and a Hadamard transform
(which we have demonstrated are easy to realize on time
bin entangled photons). The correlations between the
chosen phases and the measured time of arrival of the
photons at each side should exhibit quantum nonlocality.
It has recently been shown that these correlations are
nonlocal for n � 4 [23], and that they exhibit exponen-
tially strong resistance to detector inefficiency for large n
[24], which means here that the 3 dB losses at each
Hadamard transform could in principle be tolerated.

In summary, we have demonstrated, by implementing
the DJ and BV algorithms for three qubits, a simple and
robust method for processing quantum information en-
157902-4
coded in time bins in optical fibers. We anticipate that our
method will have wide applicability for quantum infor-
mation processing and quantum communication using
multidimensional systems.
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