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Résumé

Un problème fondamental posé par la théorie quantique de l’information est de dé-
terminer comment l’information contenue dans l’état d’un système quantique peut
être répartie dans plusieurs autres systèmes. Deux sujets où ce problème joue une
rôle central sont ici étudiés. Le clonage et la cryptographie quantique. Ces deux sujets
sont par ailleurs reliés. Nous considérons principalement le cas de variables quantiques
continues. Nous justifions cet intérêt par l’importance croissante prise par ce type de
système dans les communications quantiques.

Dans la première partie de cette thèse, nous nous intéressons au clonage de systèmes
discrets et surtout continus. Nous établissons des bornes sur le clonage optimal, puis
proposons des machines atteignant ces bornes. Cette étude permet de comparer di-
verses manières d’encoder de l’information dans un système quantique.

Ensuite, nous nous intéressons à la cryptographie quantique, et étudions la sécurité
de protocoles continus de distribution quantique de clef. En particulier, nous analysons
la sécurité de protocoles prometteurs d’un point de vue expérimental: les protocoles
à états cohérents, et montrons comment ces protocoles peuvent être rendus sûrs et
efficaces.
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Chapter 1

Introduction

Information and quantum mechanics

Since the seminal work of Shannon [1], we have an operational understanding of infor-
mation well adapted to study problems of communication. Information is a quantity
measuring our ignorance of the outcome of a statistical experiment1. Interestingly,
there is a sense in which this notion of information matches our familiar conceptions.
For example, what we find to be (relevant) information when listening to the radio
news is precisely the part of what the speaker says that we couldn’t foresee.

The applications of the mathematical theory of information are countless. They
can be found in (tele-)communications, of course, or Physics, but also in Biology
or Linguistics for example [2]. The main feature of information theory making it
powerful is that it deals only with abstract objects (probability distribution of random
variables), and give us so-called coding theorems, ruling the way information can be
efficiently and reliably transmitted. But for this very reason, the theory is also limited
because it leaves aside a crucial feature of information: it is always represented by the
state of a physical system. That is, the statistical experiments with which information
is concerned are physical experiments. The major achievement of quantum information
theory is to have shown that Shannon’s theory is in fact limited to those experiments
involving classical systems. When information is represented by quantum systems, one
can go beyond this theory and define a new kind of information: quantum information
[3].

”Quantum information is that kind of information which is carried by quan-
tum systems from a preparation device to a measuring apparatus in a
quantum mechanical experiment.”

This kind of information is distinct from classical information. Indeed, classical
information, the kind of information described by Shannon’s theory, is fungible. It can
be, at least in principle, transparently converted from one representation to another.
We can, for example, read a text on a sheet of paper, and orally transmit it to some-
one who will store it in the form of bits on the hard disk of a computer without the
information undergoing any damage during these operations. Quantum information
enjoys similar properties. For example, we can, in principle, transfer the quantum
information encoded in the polarisation state of a photon into the spin state of an
electron, etc. But quantum information cannot be converted into any equivalent (rep-
resentation of) classical information. That is, it cannot be transformed into classical

1We are not concerned here in the concept of information as opposed to ”misinformation”. The
context of this thesis is purely technical.
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information in such a way that it can be transformed back into quantum information
transparently: the device depicted in Fig.1.1, which we call a classical teleporter is
an impossible machine. Indeed, since the classical information in between is accessi-
ble, a classical teleporter would allow us to acquire knowledge about a quantum state
without disturbing it.

M P

Measurement Preparation

Quantum Information Classical Information Quantum Information

Figure 1.1: Division of a torus or a sphere into four regions.

We could present quantum information theory as founded on a fundamental ques-
tioning of classical information theory. But this wouldn’t reflect how the field devel-
oped. Rather, quantum information emerged from the discovery and the study of quite
a small number of brilliant applications where the quantum character of the systems
used to perform these tasks plays a crucial role. We will here briefly survey these
applications.

At first sight, we might wonder what can we gain from using quantum instead of
classical carriers of information, and whether there is any advantage in considering
quantum information. Indeed, when we think of the principles of quantum mechanics,
we usually have in mind statements such as:

• It is in general impossible to assign simultaneously definite values to non-commuting
observable.

• One cannot (in general) deterministically predict the result of a quantum mea-
surement.

• One cannot (in general) measure a quantum system, that is, get information
about its state, without disturbing it.

The laws of quantum mechanics are often perceived negatively, and indeed they
certainly limit our ability to manipulate quantum systems. But, as will be shown now,
quantum behavior can also turn out to be a resource.

Quantum computation

Quantum computers. Just as the fact of using quantum carriers has led to extend
our conception of information, the possibility to perform a different kind of compu-
tation, quantum computation, has been considered. A quantum computer is a device
that would operate on arrays of ”quantum bits” (or qubits), that is two-level quantum
systems, in much the same way as a classical computer operates on arrays of classical
bits, that is two-level classical systems. The interest of quantum computers lies in
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the possibility of preparing superpositions of states of qubits. These superpositions
would in some cases provide a natural means of performing parallel computation, and
exponentially outperform classical computers. Let us briefly survey two possible uses
of a quantum computer.

Efficient factoring. The best known quantum algorithm is probably Shor’s al-
gorithm for factorisation [4]. Factoring is an example of a problem where solutions
are easy to verify once found, but hard to find. Let n denote an integer. Up to now,
the best algorithms we have for extracting its prime factors from n using classical re-
sources are superpolynomial in log n. Specifically, the best known factoring algorithm
(the ”number field sieve”) requires about

exp(c(lnn)1/3(ln lnn)2/3) (1.1)

steps, where c ≈ 1.9. Shor proved, by explicit construction, that with quantum carriers
and using the superposition principle, one could factorise n in about

O((lnn)3) (1.2)

steps. This is an exponential speedup. Apart from the implications of Shor’s algo-
rithm for computational complexity theory, it also has a practical impact, because
the presumed difficulty of factorisation is the basis of many widely used public key
cryptographic schemes, such as RSA [5].

Efficient simulation of quantum systems. Another possible use of a quantum
computer is the simulation of the behaviour of quantum mechanical systems. Let
us consider a simple example, and suppose that we want to simulate a system of N
interacting two-level quantum systems. Such a system is described by 2N+1 − 2 real
parameters (if its state is pure), so that the amount of resources required to simulate
it grows exponentially fast with its size. It is thus practically impossible to simulate a
quantum mechanical system on a classical computer. On another hand, the elementary
bit of memory of a quantum computer, the ”qubit”, would itself be a two-level quantum
system, so that the amount of resources now only grows linearly with the size of the
system to simulate. This fact alone is not sufficient to assert that quantum systems
can always be efficiently simulated on a quantum computer, but at least, it leaves
open such a possibility, at least in some cases. For example, promising research has
shown how some quantum systems, such as a lattice of fermions, could be efficiently
simulated on a quantum computer [6].

Quantum error correction

Quantum computers appear to be beautiful devices, but perhaps too beautiful, and
one can wonder whether there isn’t a price to pay for the exponential advantage they
offer over classical computers. From an experimental point of view, it is a very chal-
lenging task to prepare quantum states on demand and to manipulate them at will.
Still, preparing and manipulating quantum information is not the biggest problem,
and actually very encouraging progress has been achieved during the last five to ten
years (see [7] and references therein). The real issue is noise. Information encoded in
quantum systems is very delicate, and one can wonder whether it is possible to pro-
tect it against the unavoidable noise coming from the system-environment interaction,
the decoherence, and from the non-perfection of quantum logical gates. If yes, then
would the amount of necessary resources grow dramatically with the size of the state
to protect, thus annihilating the benefit gained from quantum computation? These
questions have been answered by the discovery of quantum error correcting codes (and
fault-tolerant quantum computation).
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As their classical counterpart, quantum codes allow the protection of quantum
information so as to make it resilient to noise. The most important result of the
theory of quantum error correcting codes for quantum computation are the threshold
theorems [7]. Loosely speaking, these theorems tell us that if quantum operations
can be performed sufficiently accurately, that is with a (properly quantified) accuracy
above a certain threshold, then quantum error correcting codes can be efficiently used
to achieve quantum computation that is arbitrarily close to perfect.

Historically speaking, the discovery of quantum error correcting codes marks the
second boost of interest for quantum information theory and quantum computation
2. And indeed, this result is crucial because it shows that the difficulties encountered
towards achieving quantum computation are essentially of technological order. They
are not rooted in any fundamental physical principle.

Quantum Communication

Quantum teleportation. Along with quantum computation, it is certainly worth
saying a few words about quantum teleportation, even if we will not talk about it again
in the remainder of this thesis. Quantum teleportation perfectly illustrates the dis-
tinction between classical and quantum information, and beautifully demonstrates that
the features of quantum mechanics, in particular non-local correlations, or quantum
entanglement, are not only weird properties of nature at the quantum level, but also
valuable resources. In this sense, quantum teleportation, more appropriately called
entanglement-assisted teleportation, is the paradigm of quantum information theory.

We have seen that it is impossible to teleport classically a quantum state. Quite
surprisingly, when supplemented with non-local resources, teleportation becomes a
feasible task . We will not need the precise description of entanglement-assisted tele-
portation here [8]. But Fig.1 suffices to state our point. Thanks to entanglement, the
quantum information is non-locally transfered from A to B. In contrast to classical
teleportation, the in-between classical information now never contains any informa-
tion about the teleported quantum information, it only conveys information on how
to recover the quantum information.

M P

Measurement Preparation

Quantum Information Classical Information Quantum Information

    Entanglement

A B

Figure 1.2: Entanglement-assisted teleportation

Quantum cryptography. Quantum cryptography, more properly called quan-
tum key distribution, aims at providing two remote parties with a secure means to get

2The first boost came up with the publication of Shor’s algorithm for factorisation.
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a common secret bit string, the key. This key can later be used for confidential com-
munication. The fundamental idea in quantum cryptography is to use non-orthogonal
quantum states to transmit the key, in such a way that any intervention of a potential
eavesdropper will cause a detectable disturbance.

Quantum cryptography plays a central role in quantum information. From an
experimental point of view, it has definitely proven its feasibility [9, 10]. From a
theoretical point of view, the study of quantum cryptography is very much related to
other branches of quantum information theory, such as the theory of quantum error
correcting codes. This will be explained in details in chapters 5 and 6, which are
entirely devoted to quantum cryptography.

Experimental issues

To determine whether we will someday be able to build a quantum computer is a
very controversial matter. Many eminent scientists are very doubtful about that (see
[11] for example), and they might be right. However, one can wonder whether the
intermediate research towards building a quantum computer is worth undertaking
even if we don’t eventually get a quantum computer? Looking at the past 10 years, we
see that the quest for a reliable implementation of a quantum computer has fostered
an unprecedented interest in ion traps, NMR engineering or Josephson junctions [7].
This line of research directly enhance our ability to control quantum systems. My
opinion is that this ability will (very) soon play a crucial role in both fundamental and
applied Physics, even if not to build a quantum computer.

Unlike quantum computation, quantum communication does lie in the scope of
current technology, because the typical size of the quantum systems to manipulate
here is much smaller than for quantum computation, and because much simpler ma-
nipulations are made on quantum information carriers. In most situations, we only
require the ability to prepare and measure a small number of quantum systems, but
we don’t need to make them interact. Therefore, the use of light modes has proven a
reliable way to perform quantum communication tasks such as quantum cryptography
or quantum teleportation. Truly convincing experiments have been performed. Just to
give an example, it has been possible to perform quantum teleportation with photons
over distances of about 2 km [12]. In turn, the relative ease in performing quantum
information processing with light has driven research to focus mostly on that kind of
implementation. This is why, in this thesis, we will implicitly (or explictly) restrict to
the case where quantum information is carried by light modes.

Content of this thesis and main results

This thesis is devoted to two subjects: quantum cloning and quantum key distribution.
The first way in which these two subjects are related is that both are concerned with
the same question, fundamental in quantum information: how does the information
contained in a quantum system distribute amongst several quantum systems? The
second way in which these two subjects are related is that the formalism of quantum
cloning provides a means to study the security of quantum key distribution protocols.

We will mostly consider quantum continuous variables. These quantum informa-
tion carriers have emerged during the last five years as a promising alternative to
discrete quantum variables. Continuous variable quantum cryptographic schemes, for
instance, seem to allow for facilitated implementations and higher secret key gener-
ation rates than their discrete counterparts which often require difficult preparation
and measurement of single-photon states representing two-level quantum systems.
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This thesis is organised as follows. In chapter 2, we present the fundamentals of
quantum information theory. This chapter introduces the concepts and results that
will be explicitly and implicitly used in the subsequent chapters. In chapter 3, the
issue of cloning to which this thesis is largely devoted is introduced and discussed. A
special class of quantum cloning machines is then presented, where new evidence are
brought that the informational content of a pair of orthogonal quantum states may
be higher than that of a pair of identical states. Chapter 4 is a detailed analysis of
continuous variable quantum cloning. The issues of cloning and phase-conjugation are
considered, as well phase-conjugate input quantum cloning machines. The last two
chapters are concerned with quantum key distribution. The principles of quantum
key distribution (QKD) are reviewed in chapter 5 as well as continuous variable QKD
schemes. Chapter 6 aims at analysing the security of a particular class of continuous
variable protocols: the coherent-state protocols. We finally conclude in chapter 7 by
discussing open questions and future lines of research.

The main results of this thesis as well as their publication status are presented in
the following list.

• Upper bounds are given for optimal Gaussian cloning transformations turning
N identical replicas onto M clones (M ≥ N). Publication in Physical Review A
(Rapid Communications) [13].

• Implementations achieving optimal cloning are proposed. Publication in Physical
Review Letters [14].

• Phase conjugation of quantum continuous variables is studied. Publication in
Physical Review A [15].

• Quantum cloning machines with phase-conjugate input modes have been studied.
Publication in Physical Review Letters [16].

• Quantum cloning machines for orthogonal qubits have been proposed. Publica-
tion in Physical Review A [17].

• The security of coherent-state protocols under general conditions has been stud-
ied. Article in preparation (Joint work with Gilles Van Assche).
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Chapter 2

Fundamentals of quantum
information

We introduce the concepts, vocabulary and results that will be used in the next chapters.
The following terms can be considered as ”new” with respect to a standard book of
quantum mechanics: qubits, positive operator valued measure, cp-map, entanglement,
quantum coding.

2.1 Quantum Information Carriers

Let us start by recalling our definition of quantum information. Quantum Information
is carried by quantum systems from a preparation device to a measuring apparatus in a
quantum mechanical experiment [3]. Now a quantum system may have many degrees
of freedom. Let us consider an example where our quantum information carrier is
an isolated electron. The Hilbert space describing this system is the tensor product
Hq ⊗Hs, where Hq = L2(R3) is the Hilbert space associated with the position of this
electron and Hs = C2 is the Hilbert space associated with its spin degree of freedom.
The state of this electron generally reads:

|Φ〉 =
∑
s=↓,↑

∫
dq φ(q, s) |q〉|s〉.

Now, if the preparation device encodes quantum information only in the spin degree
of freedom of the electron, and that only the spin is measured by our measuring device,
then we are only interested in the ”substate”

TrHq
|Φ〉〈Φ| =

∑
s,s′

cs,s′ |s〉〈s′|,

where cs,s′ =
∫
dqψ(q, s)ψ̄(q, s′). This is a great simplification that is generally en-

countered in quantum information. Although the complete description of any physical
system ultimately requires an infinite-dimensional Hilbert space, we can restrict to a
smaller Hilbert space, which is often finite-dimensional.

The quantum information of our example is a quantum bit or qubit. The qubit
can be thought of as the quantum analogue of a classical bit. It is the simplest non-
trivial piece of quantum information: it is just the information carried by a two-level
quantum system. Similarly, the information carried by a d-level quantum system is
called a qudit, etc.
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2.2 States and measurements

States

Let H and B(H) denote respectively the Hilbert space associated with a quantum
system and the algebra of bounded operators on H. It is well-known that the set of
possible states (density operators) for this quantum system is

S(H) = {ρ ∈ B(H)| ρ ≥ 0, Trρ = 1}

This set is closed under convex combinations, i.e.

∀ρ1, ρ2 ∈ S(H), 0 ≤ α ≤ 1, αρ1 + (1− α)ρ2 ∈ S(H).

A state is mixed if tr ρ2 < trρ, and pure otherwise. Pure states are the extremal points
of S(H). They are one-dimensional projectors |ψ〉〈ψ|. It is common to identify the
wave function |ψ〉 with the projector |ψ〉〈ψ| when talking of a pure state.

Parametrisation of states. For a finite-dimensional system, we have H = C⊗d

and B(H) is just the algebra of complex d×d matrices. B(H) is a vector space for the
scalar product B(H) 3 (A,B) → tr(A∗B) ∈ C. For d = 2, a useful parametrisation of
S(H) is given by

S(H) = {ρ =
1
d

+
1
2
n · σ : n ∈ R3, ||n|| ≤ 1}, (2.1)

where σ are the Pauli matrices:

σ = σx, σy, σz =
(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1 ,

)
.

S(H) is then called the Bloch ball and its boundary, the set of pure states, is called
the Bloch sphere.

Measurements and Measures

The mathematical description of a measurement in quantum mechanics is usually given
by an orthogonal resolution of unity, i.e., a family of operators M = {Mx : x ∈ X}
such that

1. the Mx’s are orthogonal projectors, i.e., Mx ≥ 0, MxMx′ = δxx′Mx ∀x, x′ ∈ X;

2. The Mx’s sum up to unity:
∑
xMx = 1H,

where 1H represents the identity operator on H. M is sometimes called a von
Neumann measurement. M is often called a von Neumann, or projection valued (pv),
measure. This latter terminology comes from the fact that for a system prepared in a
state ρ, the quantities tr(ρMx) define a probability measure over the set X:

0 ≤ tr(ρMx) ≤ 1, ∀x ∈ X and
∑
x

tr(ρMx) = 1, (2.2)

in accordance with the axioms of quantum mechanics. However, a family of operators
O = {Ox : x ∈ x} need not be a pv measure in order to satisfy condition (2.2). It is
sufficient for O to satisfy

0 ≤ Ox ≤ 1H, (2.3)∑
y

Ox = 1H. (2.4)
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Such resolutions of unity are called positive operator valued (pov) measures.
Examples Consider a single qubit and let {nx : x ∈ X} denote a set of unit

vectors satisfying
∑
x cxnx = 0, where the coefficients cx satisfy 0 < cx < 1 ∀x ∈ X

and
∑
x cx = 2. The family of operators

O ≡ {Ox =
cx
2

(1 + nx · σ)}

defines a pov measure. Note that for d = 2, Y = {0, 1} and c0 = c1 = 1, we just find
a usual (”Stern-Gerlach”) pv measure for a two-level system.

The reason for considering pov measures is that there are circumstances where
they are more informative than pv measures. In the next chapter, we will talk of
measurements allowing to guess optimally about a direction from 2 quantum systems
(see Sect.3.4). In fact, the optimal is then achieved by a pov measure.

We have an idea of the measurements corresponding to a pv measure. These are
characterised by observables of the form

A =
∑
x

λxMx,

where {λx} are the real eigenvalues of A. But to what measurement does a povm
correspond? The following theorem answers this question.

Theorem 2.2.1 (Neumark) Let O = {Oy : y ∈ Y } denote a POVM over a Hilbert
space H. There exists a Hilbert space H′ such that O can be realised by extending H

to H ⊗H′, and performing a von Neumann measurement over H ⊗H′.

2.3 Evolutions

We need a mathematical tool to describe quantum information processing. This tool
is the concept of evolution, that is a map T taking density operators over a Hilbert
space H into density operators over a Hilbert space K. There are two (equivalent!)
manners to describe an evolution.

Unitary operators

The evolution of the state of an isolated system is governed by a unitary operator.
Indeed, let |ψ(x, t)〉 denote the state of a quantum system at time t (the variable x
represents the degrees of freedom of the system). From the Schrödinger equation

H|ψ〉 = i~∂t|ψ〉, (2.5)

we see that

|ψ(x, t)〉 = e
−i
∫ t

t0
dsH(s)

|ψ(x, t0)〉 ≡ U(t, t0)|ψ(x, t0)〉. (2.6)

Since H is self-adjoint, U(t, t0) is unitary. Therefore any evolution can be modelled
by a unitary operator acting jointly on the system carrying the quantum information
and an auxiliary system, often called the ancilla.

In quantum information, we will often only be interested in the ”initial” state and in
the ”final” state of the evolution of a system. (Such a situation is common in classical
information theory. When flipping a bit for example, we often don’t need to know
how the bit is actually flipped.) Therefore, when studying a quantum information
process, we will often not need Schrödinger equation, and it will be enough to describe
the evolution achieving this process in terms of a unitary operator, without caring too
much about the Hamiltonian generating it.
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CP maps

The second approach to describe the evolution of quantum systems, called ”axiomatic”
by some authors [18], consists in imposing a minimal set of requirements to make
the map T , describing the evolution, consistent with the statistical interpretation of
quantum mechanics. In particular, T must transform density operators into density
operators. Hence, (i) T must respect convex combinations of states (ii) T must map
positive operators to positive operators. In addition, the condition (ii) should also be
satisfied if T is only applied to a part of a larger system. Finally, (iii) T has to respect
normalisation. Let Hin and Hout denote respectively the ”input” and the ”output”
Hilbert space of the evolution T . Mathematically these conditions read:

1. T must be linear.

2. T : B(Hin) → B(Hout) must be positive: ∀A ∈ B(H), if A ≥ 0, then T (A) ≥ 0.
T must be completely positive: any extension of the form T ⊗ 1H′ : B(Hin) ⊗
B(H′) → B(Hout) ⊗ B(H′), where H′ is an auxiliary Hilbert space, must be
positive.

3. T must be trace-preserving: ∀A ∈ B(H), trT (A) = trA.

How can we reconcile the two apparently different descriptions of a quantum evo-
lution? Actually, each one is adapted to a specific scheme. The cp maps formalism
is well adapted to describe the evolution of an open system, whereas the unitary op-
erators formalism describes the evolution of an isolated system. Fortunately, both
approaches are equivalent. First, the unitary operator formalism is embedded in the
cp map formalism. Indeed, let H = Hin ⊗ K = Hout ⊗ K′ denote the Hilbert space
on which the unitary operator responsible for the evolution acts. One can check that
∀|φ〉 ∈ K, the mapping

T : B(Hin) → B(Hout) : ρ→ TrK′(U (ρ⊗ |φ〉〈φ|) U∗)

is indeed a trace-preserving cp map. Second, any cp map can be realised by applying
a unitary operator acting jointly on the input system and an auxiliary system and by
tracing over the ancilla. This statement is a consequence of the Stinespring dilation
theorem for cp-maps [19, 20]. This theorem allows to represent the evolution of open
systems, as unitary operators allow to represent the evolution of isolated systems. We
state this theorem here for the convenience of the reader.

Theorem 2.3.1 (Stinespring) Every completely positive map T : B(Hin) → B(Hout)
has the form

T (X) = V ∗(X ⊗ 1K)V, (2.7)

with an additional Hilbert space K and an operator V : Hout → Hin ⊗ K. This
decomposition is unique up to unitary equivalence.

2.4 Bipartite systems and quantum entanglement

Quantum entanglement is the essential feature making quantum information theory
distinct from classical information theory. It has long been considered only just as
a consequence of the weird superposition principle of quantum mechanics. But now
entanglement has been identified as the essential resource making possible applications
such as quantum teleportation, efficient quantum computation, and to a certain extent
quantum cryptography.
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Let HA⊗HB denote the Hilbert space of a composite, spatially separated, quantum
system. HA is associated with the first quantum system, and HB with the second.
A bipartite density operator ρ ∈ B(HA) ⊗ B(HB) is called separable if it admits a
convex decomposition into tensor products of density operators:

ρ =
∑
i

pi ρ
A
i ⊗ ρBi , (2.8)

where the ρAi ’s (resp. the ρBi ’s) are density operators over HA (resp. HB), and
where the coefficients pi form a probability distribution. An entangled state is a
state which is not separable. Of course, these two definitions naturally generalise
to n-partite systems. It is crucial to understand that an entangled state is not just
a correlated state. There are separable states exhibiting correlations. For example,
considering two qubits, the state 1

2 |0〉〈0|⊗|0〉〈0|+
1
2 |1〉〈1|⊗|1〉〈1| shows correlations but

is separable. The difference between separable and entangled states lies in the nature
of correlations. An entangled state cannot be prepared by means of local operations and
classical communication.

The definition (2.8) of separability and entanglement is conceptually sound but
not very operational. Unfortunately, except in some specific situations, it is difficult
to say much more: a central problem in quantum information theory is to provide
operational measures to quantify entanglement. There are a few cases where this can
be done easily, see for example [20] for a review. One case is particularly easy to
consider; bipartite pure states, thanks to the following theorem.

Theorem 2.4.1 (Schmidt decomposition) Let |Ψ〉 ∈ HA ⊗HB denote a bipartite
pure state (dim HA and dim HA need not match). There always exists an orthonormal
basis {|ai〉} of HA and an orthonormal basis {|bi〉} of HB, and positive coefficients
{λi} such that we can write

|Ψ〉 =
∑
i

√
λi|ai〉|bi〉 (2.9)

Proof. Let ρA = TrB |Ψ〉〈Ψ| denote the reduced state of system A alone. We can
always diagonalise ρA and write

ρA =
∑
i

λi|ai〉〈ai| (2.10)

for some orthonormal basis {|ai〉} of HA. In full generality, we can thus write the
expansion

|Ψ〉 =
∑
i

|ai〉|φi〉, (2.11)

where the states |φi〉 need not be orthogonal nor normalised. Thus, we have

ρA =
∑
i,j

|ai〉〈aj |〈φj |φi〉. (2.12)

Comparing (2.10) with (2.12), we see that 〈φj |φi〉 = λiδij . Setting |φi〉 =
√
λi|bi〉, we

see that {|bi〉} is a set of orthonormal vectors of HB and that Eq. (2.9) holds.�
It is easy to quantify entanglement with the Schmidt decomposition. A crude

measure is provided by the Schmidt number [21]: it is just the number of non-zero
coefficients in the Schmidt decomposition of |Ψ〉. A more subtle measure is given by
the von Neumann entropy of either part of |Ψ〉:

S(ρA) ≡ − tr ρA log ρA = S(ρB) = − tr ρB log ρB . (2.13)
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Eq. (2.9) makes it easy to compute S(ρA). We have

S(ρA) = H({λi}) =
∑
i

λi log λi. (2.14)

The interpretation of S(ρA) as a measure of entanglement is then straightforwardly
derived from the interpretation of Shannon entropy.

Consider two extreme situations. For a separable state, |φA〉|φB〉, there exists a
basis of HA (resp. HB) containing |φA〉 (resp. |φB〉), such that the outcome of a
measurement, whose associated observable is of the form xA|φA〉〈φA| + Rest (resp.
xB |φB〉〈φB |+Rest), can be predicted with certainty. For a maximally entangled state
1√
d

∑
i |ai〉|bi〉, where d = min{dim HA,dim HB}, the outcome is random whatever the

basis, and has entropy log d. This entropy is maximal for the smaller Hilbert space.
This basic example is sufficient to show what is so special about entanglement. There
is certainly some information encoded in a bipartite state |Ψ〉: there certainly exists a
basis of HA ⊗HB containing |Ψ〉. However, for an entangled state, this information
cannot be fully extracted locally. In particular, for a maximally entangled state, no
information can be extracted locally: all the information content of |Ψ〉 lies in non-local
correlations.

Example. The simplest example of an entangled state is given by the Bell (or
EPR) pure state

|φ0〉 =
1√
2
(|00〉AB + |11〉AB). (2.15)

We have TrB |φ0〉〈φ0| = TrA |φ0〉〈φ0| = 1
2 and S(ρA) = 1 bit. We will see in chapter 6

that this state plays a crucial role in quantum cryptography. The reason is that if two
parties share a system in the state |φ0〉, they can securely extract a common secret bit
from it.

2.5 Quantum error correction

Quantum error correcting codes are sophisticated procedures allowing the protection
of quantum information against environmental noise. Without them, there would be
no hope of building a quantum computer someday. The main reason for us to study
quantum error correcting codes is that they provide a very powerful formalism to
assess the security of quantum cryptographic protocols, which will be extensively used
in chapter 6.

Necessary and sufficient condition for quantum error correction

Let us first consider the case of one qubit (with Hilbert space H), subject to interactions
with its environment (with Hilbert space HE). Without loss of generality, we can
suppose that the environment is initially in some pure state |0〉E . The evolution of
this qubit and its environment can be described in terms of (some lines of) a unitary
operator:

U : H ⊗HE → H ⊗HE : |0〉|0〉E → |0〉|e00〉E + |1〉|e01〉E
|1〉|0〉E → |0〉|e10〉E + |1〉|e11〉E . (2.16)

(2.17)

Note that the four states |eij〉 need not be normalised or mutually orthogonal. By
linearity, the evolution of a state |ψ〉 = a|0〉+ b|1〉 is given by

|ψ〉|0〉E → 1|ψ〉|e1〉+X|ψ〉|eX〉+ Y |ψ〉|eY 〉+ Z|ψ〉|eZ〉, (2.18)
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where X,Y, Z is a shorthand notation for the three Pauli matrices and where the
states {|e1〉, |eX〉, |eY 〉, |eZ〉} are linear combinations of the states {|eij〉} (independent
of |ψ〉).

Eq (2.18) allows us to ”interpret” the effect of the interaction of the qubit with its
environment. The qubit might be left unaffected (1), undergo a bit-flip a|0〉+ b|1〉 →
b|0〉+a|1〉 (X), a phase-flip a|0〉+b|1〉 → a|0〉−b|1〉 (Z), or both a|0〉+b|1〉 → b|0〉−a|1〉
(Y = iXZ)1. Rigorously, such an interpretation doesn’t hold because the states
{|e1〉, |eX〉, |eY 〉, |eZ〉} are in general not mutually orthogonal. Still, we can keep the
important property that the unitary U can be decomposed in terms of the Pauli
operators {1, X, Y, Z}.

Similarly, the interaction of an n-qubit system in a pure state |ψ〉 can be modelled
as

|ψ〉|0〉E →
∑
a

Ea|ψ〉|ea〉E , (2.19)

where the operators Ea are tensor products of Pauli operators, i.e.

Gn ≡ {1, X, Y, Z}⊗n. (2.20)

Eq (2.19) constitutes our error model. The set of correctable errors is a subset E ⊆ Gn.
Each Pauli operator Ea can be assigned a weight, that is an integer 0 ≤ t ≤ n.
This weight is the number of qubits on which Ea acts non-trivially. Again, one can
”interpret” the weight of a Pauli operator as the number of qubits on which an error
occurs. Typically, in quantum error correction, one takes E to be the set of Pauli
operators of weight up to t.

A quantum code, Q ⊆ H⊗n, is a subspace of a Hilbert space, the ”logical qubits
subspace”. A quantum code is robust against errors in E if there exists an auxiliary
system A (an ancilla), and a recovery operator R ∈ B(H)⊗B(HA) such that

R⊗ 1E : H ⊗HE ⊗HA → H ⊗HE ⊗HA :
∑
a

Ea|ψ〉 ⊗ |ea〉|φ〉A →

∑
µ,a

(Rµ ⊗ 1E)(Ea ⊗ 1A)|ψ〉|ea〉E |µ〉A → |ψ〉 ⊗ |whatever〉EA, (2.21)

where |φ〉 is some initial state of the ancilla and where {|µ〉} is an orthonormal basis of
HA. We now give a necessary and sufficient condition for error recovery to be possible.

Theorem 2.5.1 (Condition for quantum error correction) [22] Let H⊗n denote
the Hilbert space of n qubits. Let Q ⊆ H⊗n denote a quantum code, and let {|̄i〉} denote
an orthonormal basis of Q. E is a set of correctable errors if and only if

〈j̄|E∗
bEa |̄i〉 = Cbaδij , ∀Ea, Eb ∈ E, ∀i, j. (2.22)

The fact that this conditions is necessary is evident. Would we have 〈j̄|E∗
bEa |̄i〉 6= 0

for some Eb, Ea ∈ E and some i 6= j, the errors would destroy the distinguishability be-
tween orthogonal codewords2, and quantum information would certainly be damaged.
It is also easy to understand that

〈j̄|E∗
bEa |̄i〉 = δbaδij , ∀Ea, Eb ∈ E, ∀i, j (2.23)

1the i phase can be absorbed in the definition of |eY 〉E .
2The codewords of a quantum code are just the vectors of this code.
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is a sufficient condition. Eq (2.23) states that distinct errors should be distinguishable.
Now the fact that Eq. (2.22) is already a sufficient condition for recovery is a bit
counter-intuitive but quite straightforward to prove ([22, 21]). A quantum code that
satisfies the condition (2.22) but not the condition (2.23) is said to be degenerate.

A binary quantum code is a 2k-dimensional logical subspace embedded into a 2n-
dimensional Hilbert space and can be represented in terms of qubits. The distance d
of a binary quantum code is the minimum weight of a Pauli operator E such that

〈̄i|E|j̄〉 6= Cδij . (2.24)

Similarly to classical error correction, it is usual to refer to a binary quantum code by a
triple [[n, k, d]]. (The double bracket notation is only used to distinguish the notation
of quantum codes from that of classical codes.)

Mimicking again the classical theory, we say that a binary quantum code corrects
t errors if the set E of correctable errors includes all Pauli operators of weight t or less.
In virtue of our definition of the distance of a code, a quantum error correcting code
with distance d = 2t + 1 can correct t errors. Also, a quantum code with distance
d = t+ 1 can correct t errors at known locations.

Stabiliser Codes

The main idea of stabiliser codes can be understood very intuitively with the following
scheme. Take a Hilbert space K, typically K will be the Hilbert space of n qubits,
which has the direct sum structure:

K = H0 ⊕ . . .⊕Hm−1, (2.25)

where all the Hilbert spaces Hi are isomorphic (dim H divides dim K). H0 is a quantum
code. This code is robust against the errors that map H0 onto one of its copies but
”doesn’t affect its internal structure”. That is, if {|vkl〉} denotes an orthonormal basis
of Hk (l = 0 . . .dimHk

), the errors of the form

E : Hk → Hk′ : |ψk〉 =
∑
l

cl|vkl〉 → |ψ′k〉 =
∑
l

cl|vk′l〉 (2.26)

can be diagnosed and reversed without damaging the quantum information contained
in |ψk〉. The whole problem of quantum error correction is to find clever decompositions
of the form Eq. (2.25), so that the set of correctable errors is physically sensible.

Let us now be more precise. Let S = {Fα} denote an Abelian subgroup of Gn,
which we call the stabiliser. A stabiliser code, HS ⊂ H⊗n , is a simultaneous eigenspace
of all operators {Fα} with a fixed set of eigenvalues {λi}. To make the presentation
simple, let us assume that HS is such that λi = 1 ∀i. Other equivalent stabiliser codes,
associated with a different set of eigenvalues, can be defined by ”translation” from HS .
The stabiliser thus preserves all codewords:

Fα|ψ〉 = |ψ〉 ∀|ψ〉 ∈ HS , ∀Fα ∈ S. (2.27)

A set of generators for S, g = {Mi} ⊂ S, is a set of independent operators (none of
them can be expressed as a tensor product of the others) and such that each element
of S can be expressed as a product of generators. One can prove that if S has n − k
generators, then dim HS = 2k. g is the set of ”check operators” for the code, the
collective observables that we measure to diagnose the errors. If Mi = 1 for all Mi ∈ g,
then we judge that the information is undamaged. If there is an operator Mi such
that Mi = −1, then an error is detected (all elements of Gn have eigenvalue either 1
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or −1). Recall that each error operator can be expanded in terms of a tensor product
of Pauli operators. Hence, we have

MiEa = (−)s
a
i EaMi (2.28)

The sai ’s, i = 1 . . . n−k constitute the syndrome of the error Ea. Now, given a stabiliser
code, we have the following sufficient condition for the error correction condition (2.22)
to hold:

∀Ea, Eb ∈ E, either E∗
aEb ∈ S, either ∃Mi ∈ g such that Mi and E∗

aEb
anticommute.

One way to prove this assertion is to show that it provides us with an algorithmic
means to operate error correction. Let a codeword |ψ〉 undergo an error

E 3 Eb : |ψ〉 → Eb|ψ〉.

Apply

E 3 E∗
a1

: Eb|ψ〉 → E∗
a1
Eb|ψ〉

for some E∗
a1

. Then measure all stabiliser generators Mi ∈ g. For all Mi, E∗
a1
Eb and

Mi either commute or anticommute3. If one of the Mi is such that Mi 6= 1 , then
apply

E 3 Ea1 : E∗
a1
Eb|ψ〉 → Eb|ψ〉.

Repeat the procedure with Ea2 , ... until one encounters Eaj such that [E∗
aj
Eb,Mi] =

0 ∀Mi ∈ g, that is, E∗
aEb ∈ S, so that the damaged state Eb|ψ〉 is transformed to the

undamaged state E∗
aj
Eb|ψ〉 = |ψ〉.

Example: Shor’s 9 qubit code. The simplest example of a quantum code is
Shor’s [[9, 1, 3]] stabiliser code [21]. This code is a natural quantum adaptation of the
3-bit majority voting classical code. Indeed the codewords of this code are the linear
span of the two logical qubit states

|0′〉 =
1

23/2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉) (2.29)

|1′〉 =
1

23/2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉) (2.30)

Denoting Xi ≡ 1⊗i−1⊗X⊗1n−i and Zi ≡ 1⊗i−1⊗Z⊗1n−i, eight stabiliser generators
of this code are for example:

Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9, (2.31)

which allow to diagnose a single bit flip error, and the operators

X1X2X3X4X5X6, X4X5X6X7X8X9, (2.32)

which allow to diagnose in which cluster of 3 qubits a single phase flip might have
occured. Note that this code is degenerate. For example, if a phase flip error has
occured on an arbitrary qubit of the first cluster of a state a|0′〉+ b|1′〉, this state will
be transformed to

1
23/2

(a(|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

3So, up to a phase, measuring the stabiliser generators doesn’t affect the stateE∗
a1
Eb|ψ〉
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+b(|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉)), (2.33)

whatever the precise error Z1, Z2 or Z3 occured. This error will be diagnosed with
the operators (2.32) and corrected upon applying X1X2X3. This is consistent with
the condition for error correction since (X1X2X3)Z1, (X1X2X3)Z2, (X1X2X3)Z3 all
belong to the stabiliser.

2.6 Summary

In summary, we have reviewed some fundamental concepts and results of quantum
information theory: povm’s, a model of evolution for quantum information processing,
quantum entanglement, and quantum codes. An appendix on classical information
theory is also presented below.

There are three excellent references for further reading. The first one are the notes
of Preskill’s course on quantum information and quantum computation [21], the second
are Keyl’s notes [20], and the third is the book of Alber et al. [3]. There, one can
find a more detailed description of the matters discussed in this chapter. Moreover,
important issues, left aside here, are discussed. An account on quantum computation
can be found in [21] or [3], for example, and [20] provides a quite detailed review of
entanglement measures and coding theorems for quantum channels. Ref.[3] also deals
with experimental aspects of quantum information.

2.7 Appendix: Classical Information Theory

The foundation of classical information theory is the study of two problems: How can
we efficiently compress a message? This problem is called ”source coding”. And how
can we reliably communicate over a noisy channel? This problem is called ”channel
coding”.

Source coding

Shannon entropy. A message is a string of ”symbols” drawn from an ”alphabet”
{x0 . . . xm−1}. We suppose that the symbols in the message are statistically indepen-
dent4, and that each xk occurs with a probability pk. We call ensemble an alphabet
together with the probabilities associated to each of its symbols: {xk, pk}.

Let us consider the simplest example of a binary alphabet, where the symbol ’0’
occurs with a probability (1− p) and consider messages of size n. In virtue of the law
of large numbers, when n >> 1, typical messages will contain (about) n(1−p) 0’s and
(about) np 1’s. The key idea of compression is to ignore other messages, since their
probability of occurrence decays exponentially fast with n. We then have a reduction
from the set {0, 1}n containing 2n strings to the set Tn(p) of typical messages. The
gain in compression is evaluated from calculating the size of Tn(p). The number of
typical messages is given by the binomial coefficient

(
n
np

)
. Using Stirling approximation

log n! = n log n− n+O(log n), we get

log
(
n

np

)
≈ n log n−n− (np log np−np+n(1−p) log n(1−p)−n(1−p)) = nh(p),

4We make this hypothesis to simplify the analysis, but it sometimes has to be relaxed. In the
English language for example, there are certainly correlations between the symbols of a message: the
probability to have four consecutive consonants is for example very low.
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where

h(p) = −p log p− (1− p) log(1− p) (2.34)

is the binary Shannon entropy. Shannon entropy is the fundamental tool of information
theory. It tells us how many bits of information are, on average, carried by each bit of
a message. Stated otherwise, h(p) quantifies our a priori ignorance about the outcome
of the statistical experiment:”draw randomly a symbol from the alphabet”.

The reasoning generalises straightforwardly to an m-symbol alphabet. The number
of typical strings is now given by

n!
πk(npk)!

≈ 2nH(X), (2.35)

where H(X) =
∑
k −pk log pk is the Shannon entropy of the ensemble X = {xk, pk}.

Let us now state the first fundamental result discovered by Shannon.

Theorem 2.7.1 (Shannon’s source coding theorem) [1] Let X = {xk, pk} de-
note an ensemble. (i) There exists a sequence of codes Γµ, compressing nµ-bit strings
into kµ-bit strings, limnµ →∞ = ∞, such that compression is asymptotically effected
without loss of information, and such that the rate of compression, limµ→∞ kµ/nµ is
asymptotically given by the Shannon entropy H(X). (ii) H(X) is the optimal rate of
lossless compression of the source X.

Channel coding

Mutual information. The mutual information I(X : X ′) quantifies the correlations
between the messages drawn from two ensembles Xn and X

′n. Consider a situation
where an emitter wants to transmit a message m = m0 . . .mn−1 to a receiver. If the
channel connecting them is noisy, the receiver will in general get a different message
m′ = m′

0 . . .m
′
n−1. I(X : X ′) quantifies the information about m which is gained

from the knowledge of m′.
The noisy channel can be characterised by the conditional probabilities p(x′|x),

i.e. the probabilities that x′ ∈ {x′k} is received when x ∈ {xk} was sent. Before
receiving x′, the symbol sent by the emitter is, from the point of view of the receiver ,
characterised by the entropy h(p). Now the knowledge of x′ allows for a re-evaluation
of the probability distribution for x. Indeed, we have (Bayes’ theorem):

p(x|x′) =
p(x′|x)p(x)

p(x′)
,

so that after having received the symbol x′, the message sent by the emitter is, from
the point of view of the receiver, characterised by the entropy

H(X|X ′) =
∑
k′

pk′H(X|X ′ = x′k) = −
∑
k′

pk′
∑
k

p(k|k′) log p(k|k′)

= H(X,X ′)−H(X), (2.36)

where p(k|k′) represents the probability that the source X has emitted the symbol
xk when the source X ′ has emitted the symbol x′k, and where H(X,X ′) represents
the Shannon entropy of the joint probability distribution of (X,X ′). H(X|X ′) can be
interpreted as the residual ignorance about X when X ′ is known. From H(X) and
H(X|X ′), we define the mutual information

I(X : X ′) ≡ H(X)−H(X|X ′) (2.37)
= H(X ′)−H(X ′|X). (2.38)
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I(X : X ′) is the reduction of entropy about X brought by the knowledge of X ′.
Re-expressing

I(X : X ′) =
∑
k,k′

pkk′ log
pkk′

pkpk′
,

we see that the mutual information quantifies the ”distance” between the two proba-
bility distributions pkk′ and pkp

′
k. Clearly, I(X : X ′) equals 0 if the variables X and

X ′ are not correlated.
Given a noisy channel exhibiting correlations between the input and the output, it

is always possible to use it for reliable communication with an appropriate code, whose
role is to introduce enough redundancy to ensure the reliability of the communication.
The simplest code for reliable communication to think of is the majority vote coding:
the emitter transmits 0n when she wants to communicate the symbol ’0’ and 1n when
she wants to communicate the symbol ’1’. But does every noisy channel allow reliable
communication? At least asymptotically. That is, can we, for every noisy channel,
devise a sequence of codes Cα, transmitting kα bits of communication with nα encoding
bits, limα→∞ nα = ∞, so that the limit of the rates of communication of this sequence,
limα→∞ kα/nα tends to a non-zero value? The answer to this question is the content
of Shannon’s second theorem.

Theorem 2.7.2 (Shannon’s channel coding theorem) [1] Let T denote a chan-
nel, whose input is represented by an ensemble X and output by an ensemble X ′. The
capacity of T , that is the optimal rate of communication over T defined as

C(T ) = sup lim
n→∞

k

n
, (2.39)

where the supremum is taken over all sequences of codes, is given by

C(T ) = sup{p(xk)}I(X : Y ). (2.40)

where {p(xk)} is the probability distribution associated to the ensemble X.

Classical linear codes

Shannon’s second theorem informs us on what is the maximal rate of transmission of
a channel effecting stochastic errors, but it doesn’t give any hint on how to construct a
code ensuring reliable communication. We conclude this survey of classical information
theory with a description of an important class of error correcting codes: linear codes.

Let Fn2 denote the vector space of n-component bit vectors. The addition of two
vectors in this space is defined component-wise and modulo 2. Furthermore, we endow
this vector space with the scalar product v ·w = (

∑
i viwi) mod2. A classical linear

code C is a k-dimensional subspace of Fn2 . The vectors of C are called the codewords.
The weight of a binary string is simply the number of components of this string different
from ’0’. The distance of a code C is the minimum of the weights of the codewords of
C.

The code orthogonal to C is defined by C⊥ = {w ∈ Fn2 |w · v = 0 ∀v ∈ C}. Note
that C ∩C⊥ may not be trivial. A parity check matrix for C is an (n− k)× n matrix
H whose rows are a basis of C⊥. An l-bit string v is a codeword of C iff

Hv = 0. (2.41)

If a codeword v encounters an error v → v + ε, then the condition (2.41) is no
longer satisfied5. The bit string Hε is called the syndrome of the error ε.

5Unless the error pattern ε is itself a codeword, in which case the error remains undetected.
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Let E denote the set of errors we wish to be able to correct. Error recovery is
possible if distinct errors give distinct syndromes. A linear code with distance d = 2t+1
can correct t errors occurring on arbitrary bits. Indeed, if ε1 and ε2 6= ε1 are two errors
of weight at most t, ε1 + ε2 has a weight at most 2t and thus cannot be a codeword of
C. Hence H(ε1 + ε2) 6= 0, that is Hε1 6= Hε2: to different errors correspond different
syndromes. Similarly, one proves that a linear code with distance d = t+1 can correct
t errors on located bits. It is usual to refer to a classical code by a triple [n, k, d] where
n denotes the dimension of the space embedding the code, k the dimension of the code,
and d its distance.

Finally, we note that the condition Hw = s defines ∀s ∈ Fn−k2 a code Cs which
is equivalent to C. We say that Cs is obtained by ’translation’ from the code C:
Cs = {w ∈ Fn2 |Hw = s}.

Example 1: the three-bit code. The simplest code to think of is the 3-bit
”majority voting” code [3, 1, 3]: C = {000, 111} ⊂ F3

2. A parity check matrix of this
code is

H =
(

1 1 0
0 1 1

)
Suppose, for example, that the codeword 000 has encountered the error 000 → 001.
H allows to diagnose that there is no error in the first block of two bits, but one error
in the last block, i.e. the third bit has been affected. We can thus undo the error:
001 → 000.

Example 2: The Hamming code. The Hamming code is defined by the follow-
ing parity check matrix:

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 . (2.42)

The distance of this code is d=3. First note that the vector v = (1110000) passes the
binary check matrix test Hv = 0. No codeword is of weight 1 because all columns of
H are non-zero (if w1 is of weight-1, then Hw1 is a column of H). Neither is there any
weight-2 codeword because because any weight-2 vector w2 can be decomposed as a
sum of two weight-one vectors, w2 = w1 +w′1. Hence, Hw2 = Hw1 +Hw′1 6= 0 because
all columns of H are distinct. Thus the Hamming code is a [7,4,3] code: it encodes
four bits into seven, and it is resistant to any single error (2t+ 1 = 3).

The rows of H pass the parity check. Thus, if G denotes a generator for the
Hamming code, we have H ⊂ G. Since v = (1110000) lies in the code, and cannot be
decomposed as linear combinaison of the rows of H , a possible generator matrix is

G =
(

H
(v)

)
=


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 1 1 0 0 0 0

 . (2.43)

The dual of the Hamming code is the [7, 3, 4] code generated by H. Thus we are in a
situation where C⊥ ⊂ C, where C and C⊥ denote respectively the Hamming code and
its dual. In fact, the Hamming code is the union of two the cosets of C⊥ in C:

C = {C⊥} ∪ {v + C⊥}. (2.44)
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Chapter 3

Quantum cloning of finite
dimensional systems

We first review the no-cloning theorem, whose importance in quantum information
theory is central. We then discuss approximate quantum cloning machines. After-
wards, we study a special class of quantum cloning machines taking orthogonal qubits
as input. We show that they can outperform standard quantum cloning machines, and
discuss their implementation.

3.1 The no-cloning theorem

Let H denote the Hilbert space of some quantum system and let H ⊃ S = {|ψi〉 : i ∈ I}
denote a set of pure states. The set I of indices may be discrete or continuous. A
quantum cloning machine is a device that takes a quantum system in some unknown
state |φ〉 ∈ S and outputs two quantum systems, the clones. Ideally, each output
should be in the state |φ〉 too. Let ρ1(φ) (resp. ρ2(φ)) denote the (possibly mixed)
state of the first (resp. second) clone. If the quality of each clone is measured by the
fidelities

f1 = 〈φ|ρ1(φ)|φ〉,

f2 = 〈φ|ρ2(φ)|φ〉,
that is by the overlap between the clones and the original, a perfect quantum cloning
machine would make f1(φ) = f2(φ) = 1, ∀|φ〉 ∈ S, leading to ρ1(φ) = ρ2(φ) = |φ〉〈φ|.
As the following theorem shows, this is not possible if the set S contains non-orthogonal
states [23, 24].

Theorem 3.1.1 (No-cloning) Let H and S be defined as above. Let also K = H⊗K′

denote the Hilbert space of some auxiliary system, and let |κ〉 ∈ K denote some fiducial
state.

Either the set S is such that

|〈ψi|ψj〉| = δij ∀i, j ∈ I,

or there are no auxiliary Hilbert spaces K,K′ and auxiliary state |κ〉 ∈ K such that the
transformation

QC : H ⊗K → H⊗2 ⊗K′ : |ψi〉 ⊗ |κ〉 → |ψi〉⊗2 ⊗ |κ′i〉 (3.1)

can be performed exactly for all i ∈ I .
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Proof. Since QC should be achieved by a unitary transformation, it would have to
satisfy

|〈ψi|ψj〉| = |〈ψi|ψj〉|2|〈κ′i|κ′j〉|. (3.2)

If |〈ψi|ψj〉| = δij for all pair |ψi〉, |ψj〉 ∈ S, this condition can be satisfied. Now,
suppose that QC can also be performed even if S contains one pair of non-orthogonal
states |ψk〉, |ψl〉. We have for this pair:

0 < |〈ψk|ψl〉| < 1. (3.3)

On the other hand, Eq.(3.2) and the Schwarz inequality (|〈κ′i|κ′j〉|2 ≤ ||κ′i|| ||κ′j || = 1)
imply that

|〈ψk|ψl〉| ≥ 1, (3.4)

leading to a contradiction. �
The no-cloning theorem marks a fundamental difference between classical and

quantum information. However, its content shouldn’t sound too astonishing. After
all, if it were possible to perfectly duplicate the unknown state of a quantum system,
it would be possible to perform measurements on the copy, and acquire information
about the state of the original system without perturbing it, in contradiction with
Quantum Mechanics.

The impossibility to perfectly clone non-orthogonal states puts strong limitations
on the way we can encode quantum information, as is shown by the no-cloning bound
in quantum error correction. In the classical case, we know that [3, 1, 3] linear codes
encoding one bit in three bits, robust against any error on a single bit, exist. The ”ma-
jority vote” encoding ′0′ →′ 000′,′ 1′ →′ 111′ does the job, and three is the minimum
number of encoding bits of a classical code necessary to protect against a single arbi-
trary error. One may ask a similar question for quantum codes: How many encoding
qubits are necessary to protect an encoded qubit against an arbitrary error occurring
on a single encoding qubit? The no-cloning theorem tells us that we need at least five
qubits [21]. Indeed, suppose that four qubits were sufficient: suppose that a [[4, 1, 3]]
quantum code exists. We could use this code to correct two errors at known locations,
because we know that a code correcting t errors at any sites, also works to correct 2t
errors at known sites. But then the following procedure would allow to achieve perfect
quantum cloning: (i) Encode the state |ψ〉 to clone with the [[4, 1, 3]] code:

E : H 3 |ψ〉 → |E(ψ)〉 ∈ H⊗4.

(ii) Split |E(ψ)〉 into two 2-qubit subsystems, say A and B. (iii) To the subsystem
A (resp. B), append another 2-qubit subsystem ZA (resp. ZB) in the state |00〉.
The state of the system AZA (resp. BZB) can now be seen as the state |E(ψ)〉
having undergone damage at two known sites. This damage could thus be reversed
by the [[4, 1, 3]] code: (iv) |ψ〉 → |E(ψ)〉|E(ψ)〉 (v) Decode the states |E(ψ)〉AZA

and
|E(ψ)〉BZB

yielding two perfect clones, which is impossible. Hence no [[4, 1, 3]] code
exists. Note that five is an achievable bound for the number of qubits necessary for
encoding one qubit with a code protecting against an arbitrary single qubit damage
since we have explicit constructions for (perfect) [[5, 1, 3]] quantum codes [25].

Remarkably, the no-cloning theorem can also be turned into a resource, as is beau-
tifully demonstrated by quantum cryptography. Two authorised parties, willing to
communicate privately, can exploit the impossibility to perfectly clone non-orthogonal
states to encode classical information in quantum systems. Any intervention of a po-
tential eavesdropper will cause a disturbance, that is, the eavesdropper will be detected
(see chapters 5 and 6).
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In the case where S is made of mutually orthogonal states, it is easy to achieve
quantum cloning because there exists a measurement that discriminates amongst the
states of S. Any observable of the form

∑
i∈I λi|ψi〉〈ψi| will work (eigenvalues are

irrelevant, we just ask for non-degeneracy: i 6= j ⇒ λi 6= λj). The cloning procedure
is then very simple: estimate the state to clone with an appropriate measurement and
prepare two copies of it.

3.2 The universal duplicator of qubits

After the no-cloning theorem, it might seem useless to further study quantum cloning.
The issue of approximate quantum cloning is however crucial. Approximate quantum
cloning machines informs us on how the information contained in a quantum system
can be distributed into other quantum systems.

Let us consider the case where the state to copy can be any pure qubit state
belonging to H = C2. Let {|0〉, |1〉} denote as usual an orthonormal basis of H. The
simplest cloning transformation or ”machine” one can think of is the Wootters-Zurek
machine (WZ) [23], which acts perfectly on |0〉 and |1〉. This machine is defined by:

|0〉A|Q〉Z → |Φ(0)〉ABX = |0〉A|0〉B |Q0〉X ,

|1〉A|Q〉Z → |Φ(1)〉ABX = |1〉A|1〉B |Q1〉X ,

where A refers to the original state to clone, and Z some auxiliary system including
the copy system, B, and an ancilla X. |Q〉 denotes some normalised fiducial state of
the system Z, and |Q0〉 (resp. |Q1〉) denotes the normalised output state of the ancilla
X when the state |0〉 (resp. |1〉) is copied.

Let |φ〉 = a|0〉+ b|1〉 ∈ H denote an arbitrary input state (a, b ∈ C, |a|2 + |b|2 = 1).
By linearity, the WZ machine acts on |φ〉 as

|φ〉A|Q〉Z → |Φ(φ)〉ABX = a|0〉A|0〉B |Q0〉X + b|1〉A|1〉B |Q1〉X .

Let us quantify the quality of the clones by the average fidelity fWZ =
∫
dφfWZ(φ),

where 0 ≤ fWZ(φ) ≤ 1 quantifies the overlap, or indistinguishability, between each
output of the cloning machine and the state to clone;

fWZ(ψ) = 〈φ|TrA,X [|Φ(φ)〉〈Φ(φ)|]|φ〉 = 〈φ|TrB,X [|Φ(φ)〉〈Φ(φ)|]|φ〉.

One can check that the WZ machine achieves an average fidelity fWZ = 2/3. We also
note that the states are not all copied with the same fidelity.

Can we devise an imperfect cloning machine exhibiting a higher quality? Bužek
and Hillery have brought an affirmative answer to this question [26]. They proposed
the following unitary transformation:

|0〉A|Q〉Z →
1√
2
(|00〉AB |Q00〉X +

1√
2
(|01〉+ |10〉)AB |Q0+〉X), (3.5)

|1〉A|Q〉Z →
1√
2
(|11〉AB |Q11〉X +

1√
2
(|01〉+ |10〉)AB |Q1+〉X). (3.6)

This machine outputs two clones of equal fidelity fBH = 5/6, and this fidelity is
independent of the state to clone. It is instructive to write the cp-map associated with
this transformation. In Schrödinger’s picture, it reads:

CBH : B(H) → B(H⊗2) : ρ→ 2
3
S2(ρ⊗ 1)S2, (3.7)
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where S2 = |00〉〈00| + |11〉〈11| + 1
2 (|01〉 + |10〉)(〈01| + 〈10|) is the projector onto the

symmetric subspace of H⊗2: H⊗2
+ . CBHthen appears to have a very simple form,

which allows for a physical interpretation. Cloning can be achieved by symmetrising
the state of the qubit to be cloned with the completely random state of another qubit.

3.3 More quantum cloning machines

The no-cloning theorem and the BH cloning machine of qubits can be generalised in
a variety of ways. One such generalisation is the case where one wants to produce M
clones from N identical originals (N < M). One can also go beyond the case of qubits
and consider the issue of cloning d-level systems. A lot of work has been devoted to
such generalisations [27, 28, 18], providing a closed expression for the universal optimal
symmetric N →M quantum cloning of d-level systems pure states [18]:

C : B(H⊗N ) → B(H⊗M ) : ρ→ d[N ]
d[M ]

SM (ρ⊗ 1⊗M−N )SM , (3.8)

where d[M ] =
(
d+M−1
M

)
denotes the dimension of the symmetric subspace H⊗M

+ and
SM denotes the projector onto H⊗M

+ . This machine achieves for each clone a fidelity

fopt(d,N,M) =
M −N +N(M + d)

M(N + d)
(3.9)

For d = 2, N = 1,M = 2, this machine reduces to the Bužek-Hillery machine, thus
proving its optimality. The cp-map C is particularly interesting to discuss in three limit
cases: d→∞, N →∞, and M →∞. The case d→∞ will be the object of the next
chapter. Let us only discuss the two other cases here. When N →∞, Eq. (3.8) shows
that the fidelity of the clones tends to unity. According to the no-cloning theorem,
this means that the states to clone tend to become ”more and more orthogonal”, that
is, the system to clone tend to become classical, which is obvious: ∀|ψ〉, |φ〉 ∈ H,

lim
N→∞

|〈ψ|φ〉|N =
{

0 if ψ 6= φ
1 if ψ = φ

In the limit M →∞, a strong link appears between quantum cloning and optimal
state estimation [29]. Let |ψ〉⊗N ∈ H⊗N denote an unknown pure state. The limit
limM→∞ f(d,N,M) is the optimal fidelity that we can achieve when trying to estimate
ψ. Indeed, it is easy to understand that

lim
M→∞

f(d,N,M) ≤ foptest (d,N), (3.10)

where foptest (d,N) denotes the optimal fidelity achievable when trying to estimate from
measurements performed on |ψ〉⊗N . This is so because when M →∞, measurements
can be performed on each clone to perfectly determine their individual state ρ1(ψ),
which is then read as an estimate for |ψ〉〈ψ|. Interestingly, one can prove that the
inequality (3.10) also goes the other way round [29]:

foptest (d,N) ≤ lim
M→∞

f(d,N,M). (3.11)

Thus, in the limit M → ∞, we can identify (the information yielded by) the output
of an optimal N → M quantum cloning machine, and that of an optimal estimator
(taking N replicas of the state to estimate as input).

Many variants of the machine (3.8) exist (see for example [30, 31, 32] and references
therein). In the remainder of this chapter, we discuss one such generalisation.
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3.4 Cloning of orthogonal qubits

As mentioned earlier, quantum cloning machines allow us to study how well quantum
information can be distributed. As we shall see, the formalism of quantum cloning
machines also allows to probe finely how well a quantum state can encode quantum
information. Our starting point is a very interesting observation made by Gisin and
Popescu [33]: the information about a direction in space is better encoded in two
orthogonal qubits than in two identical ones. Consider the following situation. Suppose
that an emitter, A, wants to communicate a direction (θ, φ) to a receiver, B, using
just two qubits. We also suppose that A and B have previously agreed on a common
reference frame. A can achieve this task by sending B two identical replicas of the
state |ψ〉 = cos θ2 |0〉+eiφ sin θ

2 |1〉. Bob then performs some measurement on |ψ〉⊗2 and
gets an estimate (θe, φe). If the quality of this procedure is quantified by averaging
(the square module of) the overlap between |ψ〉 and |ψe〉 = cos θe

2 |0〉 + eiφe sin θe

2 |1〉,
then according to Eq. (3.9), Bob’s fidelity for the guess is bounded by

lim
M→∞

f(2, 2,M) ≡ F|| = 3/4. (3.12)

The observation made by Gisin and Popescu is that A and B can apply a better
strategy. Let |ψ⊥〉 such that 〈ψ|ψ⊥〉 = 0. If A sends the state |ψ〉|ψ⊥〉 instead of
|ψ〉⊗2, then there exists a povm on B’s side which allows to achieve the fidelity

F⊥ =
1
2
(1 +

1√
3
) ≈ 0.789.

Motivated by this result, we have considered the following question: Can M clones
of a qubit |ψ〉 be produced from an orthogonal qubit pair |ψ,ψ⊥〉 with a higher fi-
delity than from an identical pair |ψ,ψ〉? We here present a universal cloning machine
acting on an orthogonal qubit pair that approximately implements the transformation
|ψ〉|ψ⊥〉 → |ψ〉⊗M with the optimal fidelity [34]. For M ≥ 6, this machine outper-
forms the corresponding 2 → M cloning machine of qubits. We will also consider the
possibility to realise this machine experimentally and propose a probabilistic imple-
mentation in quantum optics based on Parametric Down-Conversion. Our proposed
setup is an extension of a scheme achieving ”standard” cloning of qubits [35].

Let us first provide a simple argument on why we can expect the state |ψ,ψ⊥〉 to
be better cloned than |ψ,ψ〉. With an optimal measurement of |ψ,ψ⊥〉, we can prepare
M identical clones of |ψ〉, each with a fidelity F⊥. In contrast, with a 2 →M optimal
universal cloning machine, we get, from Eq. (3.9), F||(M) = (3M + 2)/(4M). Clearly,
F||(M) < F⊥ for M ≥ 12. Hence, this (non-optimal) measurement-based cloning of
|ψ,ψ⊥〉 is better than the standard cloning of |ψ,ψ〉 for sufficiently large values of M .

Optimal cloning of orthogonal qubits

Let us now seek for a unitary transformation which optimally approximates the trans-
formation |ψ〉|ψ⊥〉 → |ψ〉⊗M . Since we look for a transformation such that the final
state of the clones is left invariant by permutations amongst them, we will suppose
that the clones lie in the symmetric M -qubit space. Our motivation, when making this
simplifying hypothesis, is that in the case of standard cloning, an optimal universal
machine can always be chosen to be of this form [36]. Moreover, since the set of all
states of the form |ψ〉|ψ⊥〉 span the whole Hilbert space of two qubits, the most general
transformation is of the form:

|i〉|j〉|R〉 →
M∑
k=0

|M,k〉|Rijk〉, i, j = 0, 1, (3.13)
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where |R〉 and |Rijk〉 respectively denote the initial and final states of the ancilla, while
|M,k〉 (k = 0, . . . ,M) denotes a symmetric M -qubit state with k qubits in state |0〉
and M − k qubits in state |1〉.

The arbitrary state of a qubit |ψ〉 can be conveniently written as |ψ〉 = π(Ω)|0〉 =∑
i πi0(ω)|i〉, where the matrix π(Ω) is given by

π(Ω) =

(
cos θ2 e−iφ − sin θ

2

eiφ sin θ
2 cos θ2

)
, (3.14)

with θ and φ denoting the usual polar and azimuthal angles pointing in direction Ω.
The linearity of (3.13) implies that an arbitrary pair of orthogonal qubits transforms
according to

|ψ〉|ψ⊥〉 → |Ψout(ψ)〉 =
∑
ijk

πi0(ω)πj1(Ω)|M,k〉|Rijk〉. (3.15)

We will measure the quality of the transformation by the average single-clone fidelity
F⊥(M). Denoting by Tr1,anc the partial trace over the ancilla and all the clones but
anyone, a straightforward calculation shows that

F⊥(M) =
∫
dΩ〈ψ|Tr1,anc[|Ψout(ψ)〉〈Ψout(ψ)|] |ψ〉

=
∑
i′j′k′

∑
ijk

〈Ri′j′k′ |Rijk〉Ai
′j′k′

ijk , (3.16)

where

Ai
′j′k′

ijk =
∑
n,n′

〈n′|Tr1[ |M,k〉〈M,k′| ]|n〉
∫
dΩπn0(Ω)π∗n′0(Ω)πi0(ω)πj1(Ω)π∗i′0(Ω)π∗j′1(Ω).

The coefficients Ai
′j′k′

ijk can be considered as matrix elements of an operator A acting
on the space H⊗H⊗M

+ , where H denotes the Hilbert space of the two input qubits and
H⊗M

+ denotes the Hilbert space of symmetric states of M output qubits. Similarly,
Γi

′j′k′

ijk = 〈Rijk|Ri′j′k′〉 define matrix elements of an operator Γ also acting on H⊗H⊗M
+ .

The formula (3.16) for the fidelity thus simplifies to

F⊥(M) = TrH,H⊗M
+

[ΓA].

The operator Γ uniquely represents the completely positive cloning map, which
transforms operators supported on H onto operators supported on H⊗M

+ . By defi-
nition, the operators A and Γ are Hermitian and positive semidefinite, A ≥ 0 and
Γ ≥ 0.

Of course, the transformation (3.13) should be unitary, which reads∑
k

〈Ri′j′k|Rijk〉 = δi′iδj′j .

This is equivalent to

TrH⊗M
+

[Γ] = 1H, (3.17)

where 1H is the identity operator on H. Thus, introducing a set of Lagrange multipliers
λi

′j′

ij for these unitarity constraints, our problem amounts to extremise the quantity
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W = TrH,H⊗M
+

[(A − Λ)Γ] under the constraint Γ ≥ 0, where Λ = λ ⊗ SM and λ is

the matrix of Lagrange multipliers (SM is the identity operator on H⊗M
+ ). Varying

W with respect to (the coefficients of) the eigenstates of the operator Γ (in a proper
basis), we get the extremal equation

(A− Λ)Γ = 0 (3.18)

for the optimal Γ. Following [37], this equation can be further transformed into a form
suitable for numerical solution via repeated applications of

Γ = Λ−1AΓAΛ−1, λ = (TrH⊗M
+

[AΓA])1/2. (3.19)

Note that the matrix λ > 0 is determined from the unitarity constraints.
By numerically solving Eq. (3.19) for M = 2, . . . 15, we have guessed the general

solution of Eq. (3.19). The transformation we obtain is:

|ψ,ψ⊥〉 →
M∑
j=0

αj,M |(M − j)ψ, jψ⊥〉 ⊗ |(M − j)ψ⊥, jψ〉, (3.20)

where

αj,M = (−1)j
[

1√
2(M + 1)

+
√

3(M − 2j)√
2M(M + 1)(M + 2)

]
, (3.21)

with |jψ, (M − j)ψ⊥〉 denoting a totally symmetric state of M qubits where j qubits
are in the state |ψ〉 and M − j qubits are in the state |ψ⊥〉. The first M output
qubits contain the clones of |ψ〉 while the other M qubits contain the clones of |ψ⊥〉
(or anticlones). We shall prove below that the transformation Eq. (3.20) is indeed
optimal.

First, we stress here that the cloning transformation (3.20) is unitary. Since this
is not obvious from (3.20), let us present a proof of this. We can expand any state
|jψ, (M − j)ψ⊥〉 in the basis |M,k〉 as

|jψ, (M − j)ψ⊥〉 =
M∑
k=0

ei(j−k)φDM
kj (θ)|M,k〉. (3.22)

We will not need an explicit expression for the functions DM
kj (θ) here, but we will

only use some of their properties. Since the functions DM
kj (θ) are elements of a (real)

unitary matrix, they satisfy the orthogonality relation,

M∑
j=0

DM
kj (θ)D

M
lj (θ) = δkl. (3.23)

We will also use the following recurrence formula [38],

(2j −M)DM
kj (θ) = (2k −M) cos θ DM

kj (θ)

+ sin θ
√

(k + 1)(M − k)DM
k+1,j(θ)

+ sin θ
√
k(M − k + 1)DM

k−1,j(θ). (3.24)

To prove that the transformation Eq.(3.20) is unitary, it is convenient to apply(
0 1
−1 0

)⊗M
on the last M qubits at the output of the cloner. Thus |(M − j)ψ⊥, jψ〉 →

32



(−1)j |(M − j)ψ̄, jψ̄⊥〉 where |ψ̄〉 =
∑
i π̄i0|i〉. Next we expand |(M − j)ψ, jψ⊥〉 and

|(M − j)ψ̄, jψ̄⊥〉 in the basis |M,k〉 using Eq. (3.22), and then utilise the recurrence
formula (3.24). Finally, we can carry out the sum over j with the help of Eq. (3.23),
resulting in

|Φout(ψ)〉 =
M∑
k=0

[aM + bM (2k −M)] cos2
θ

2
|M,k〉 ⊗ |M,k〉

+
M∑
k=0

[aM − bM (2k −M)] sin2 θ

2
|M,k〉 ⊗ |M,k〉

+eiφ
M∑
k=0

bM
√

(M − k)(k + 1) sin θ|M,k〉 ⊗ |M,k + 1〉

+e−iφ
M∑
k=0

bM
√
k(M − k + 1) sin θ|M,k〉 ⊗ |M,k − 1〉,

(3.25)

where the coefficients aM and bM read

aM =
1√

2(M + 1)
, bM =

√
3√

2M(M + 1)(M + 2)
.

The four terms on the right-hand side of Eq. (3.25) are proportional to the output
states for the four input basis states |01〉, |10〉, |00〉, and |11〉, respectively. It is then
easy to prove that the transformation |ψ,ψ⊥〉 → |Φout(ψ)〉 preserves scalar products,
hence is unitary.

Let us now consider the fidelity of the clones. We can see from Eq. (3.20) that
the cloning machine preserves the symmetry of the input state |ψ,ψ⊥〉, so the clones
of both states |ψ〉 and |ψ⊥〉 have the same fidelity. A little algebra shows this state-
independent single-qubit fidelity can be obtained by summing a series:

F⊥(M) =
M∑
j=0

M − j

M
α2
j,M , (3.26)

so that finally

F⊥(M) =
1
2

(
1 +

√
M + 2
3M

)
. (3.27)

Upon comparing this fidelity to that of the optimal cloner for a pair of identical
qubits F||(M), we see that F||(M) ≥ F⊥(M) for M ≤ 6, while F⊥(M) > F||(M) for
M > 6 and the cloner (3.20) then outperforms the standard cloner. We also note that
for M → ∞, the fidelity F⊥(M) tends to the optimal measurement fidelity F⊥, as
expected.

To prove the optimality of our cloner, we invoke techniques adapted from the theory
of semidefinite programming [39]. We observe that the trace of Lagrange multiplier
λ provides an upper bound on the achievable fidelity F⊥(M) = TrH,H⊗M

+
[ΓA]. If

λ⊗ SM −A ≥ 0 then it holds for any Γ ≥ 0 that

TrH,H⊗M
+

[Γλ⊗ SM ] ≥ TrH,H⊗M
+

[ΓA]. (3.28)
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It follows from the unitarity constraint Eq.(3.17) that TrH,H⊗M
+

[Γλ ⊗ SM ] = TrH[λ]
does not depend on Γ. Thus TrH[λ] ≥ TrH,H⊗M

+
[ΓA]. From the numerical solution of

Eqs. (3.19) we have in basis |00〉, |11〉, |01〉, |10〉,

λ =
F⊥(M)

6


1 0 0 0
0 1 0 0
0 0 2 −1
0 0 −1 2

 . (3.29)

The block-diagonal matrix λ⊗ SM −A is positive semidefinite and has three different

eigenvalues which read µ1 = 1
12

√
M+2
3M , µ2 = 1

3

√
M+2
3M , and µ3 = 0. Since the upper

bound TrH[λ] = F⊥(M) is saturated by our cloning machine, we conclude that our
cloner is optimal.

Implementation

We now propose a probabilistic implementation of the cloning transformation Eq.(3.20)
via PDC. As we shall see, many technical difficulties would arise when achieving this
implementation. Nevertheless, our main concern here is to stress that our cloner is, at
least in principle, achievable. The experimental setup under consideration is shown in
Fig.(3.4). This scheme is a straightforward extension of the setup suggested by Simon
et al. [35] for conventional qubits, where the qubits are represented by the polarisation
state of photons. We can identify |0〉 with vertical polarisation and |1〉 with horizontal
polarisation states.
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Figure 3.1: Setup for the cloning of orthogonal qubits via stimulated parametric down-
conversion. For a detailed description, see text.

In optical PDC, a ‘blue’ photon can split into a pair of ‘red’ photons. (This occurs
with a probability which is typically of order 10−3.) These daughter photons are
referred to as signal and idler, respectively. In our setup, three nonlinear crystals C1,
C2, C3 are pumped by a strong laser beam. In crystals C1 and C2, photons can be
produced by pair, so we can verify the presence of signal photons by detecting the idler
photons emerging from C1 and C2. If a single idler photon is detected in coincidence
on each side, then we have one signal photon in each beam. The states of these two
photons can be manipulated with the help of phase shifters and polarisation rotators
in order to prepare the desired input state |ψ,ψ⊥〉. The two photons then feed the
signal and idler modes of a third nonlinear crystal C3, where M clones are generated
due to PDC.

In the limit of strong coherent pumping, the effective Hamiltonian describing the
interaction in C3 can be written as follows [35],

H = i~g(a∗V 1a
∗
H2 − a∗H1a

∗
V 2) + h.c., (3.30)
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where a∗V 1 and a∗H1 denote bosonic creation operators for photons in the first mode
with vertical (V) or horizontal (H) polarisation, and similarly a∗V 2 and a∗H2 are cre-
ation operators for photons in the second spatial mode. The constant g denotes the
parametric gain. The time evolution is thus governed by the unitary transformation
U = exp(−iHt/~). With the help of the disentangling theorem [40], we can write the
operator U in a factorised form

U = eΓa
∗
V 1a

∗
H2(cosh γ)−(a∗V 1aV 1+a

∗
H2aH2+1)e−ΓaV 1aH2

×e−Γa∗H1a
∗
V 2(cosh γ)−(a∗H1aH1+a

∗
V 2aV 2+1)eΓaH1aV 2 ,

where γ = gt and Γ = tanh γ. The Hamiltonian (3.30) has the important property of
being invariant under general simultaneous SU(2) transformations on the polarisation
vectors (aV , aH) for modes 1 and 2 [35]. It is thus sufficient to consider the evolution
of a basis state |1〉V 1|0〉H1|0〉V 2|1〉H2 (a single vertically polarised photon in mode 1
and a single horizontally polarised photon in mode 2) which represents the input state
|ψ,ψ⊥〉 ≡ |01〉. Making use of the factorised form of U , we obtain the state at the
output of the crystal C3 in the form

∑∞
M=0 ΓM−1(1− Γ2)

M∑
j=0

(−1)j
[
(M − j)(1− Γ2)− Γ2

]
× |M − j〉V 1 |j〉H1 |j〉V 2 |M − j〉H2, (3.31)

where |k〉l with l = V 1,H1, V 2,H2 denote the usual Fock states. For a fixed num-
ber M of photons in each mode 1 and 2, the output state (3.31) closely resem-
bles the output state of our cloning machine (3.20) with the coefficients αj,M (Γ) ≈[
(M − j)(1− Γ2)− Γ2

]
(−1)j . If we measure the number of photons in mode 2 and

detect M photons, then we know that M photons representing M approximate clones
of the input qubit |ψ〉 are present in mode 1. Note that the output of C3 is not prop-
erly an M -qubit state but rather M indistinguishable photons distributed amongst two
polarisation modes. Still, upon using an array of beam-splitters amongst M different
modes, one can probabilistically obtain a proper M -qubit state.

In order to calculate the fidelity of these clones, we insert the properly normalised
αj,M (Γ) into the formula (3.26). We obtain

F (M,y) =
3y2 − 2y(2M + 1) + 3

2M(M + 1)
6y2 − 6My +M(2M + 1)

(3.32)

where we have introduced y ≡ Γ2/(1−Γ2) = sinh2 γ. The cloning fidelity thus depends
on the parametric gain γ, so we must optimize this gain in order to achieve the highest
possible fidelity. Upon solving ∂F (M,y)

∂y = 0 for y, we find that, for a fixed value of M ,

yopt =
M

2
− 1

2

√
M(M + 2)

3
. (3.33)

By inserting yopt into Eq. (3.32), we recover the optimal fidelity (3.27). Furthermore,
the postselected M -photon state at the output of the crystal C3 coincides with the
output of the cloning machine (3.20).

Even for a number of clones as low as 2, the amplification gain corresponding to yopt
is significantly larger than what is achievable with current technology. Moreover, there
is a danger that the parametric approximation yielding the Hamiltonian (3.30) could
fail for such large gains. Fortunately, one can easily verify that the function F (M,y)
is slowly varying with respect to y, that is, nearly optimal cloning devices can be
achieved with realistic gains. For instance, F (2, 0) = 0.9 instead of F (2, yopt) = 0.908.
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This approach of cloning based on PDC can be further extended to the approximate
realization of the general cloning transformation

|ψ〉⊗N |ψ⊥〉⊗N
′
→ |ψ〉⊗M .

For N ′ = 1, we have been able to derive the optimal fidelity for any N and M ≥ N
by a similar calculation,

F⊥(N,M) =
N + 1
N + 3

+
3(N − 1) +

√
P/(N + 2)

2M(N + 3)
(3.34)

with P = (N − 1)(N2 − 15N − 18) + 8M(N + 1)(M + 3 − N). It can be checked
that there is again a value of M above which this cloner outperforms the standard
(N + 1) →M cloner. For large N , however, the advantage becomes marginal.

3.5 Summary

In summary, we have presented and discussed the no-cloning theorem, as well as trans-
formations achieving approximate cloning. The study of such transformations tells us
how information contained in one (or several) quantum system(s) can be distributed.

We have presented optimal quantum cloning machines taking orthogonal qubits
as input, and shown how these machines can outperform standard quantum cloning
machines. We have also shown how to implement them. We think we have thus con-
tributed to bringing a better understanding of cloning. This study brings new evidence
that, given a quantum system to encode some information, not all encoding schemes
are equivalent. Actually, the best encoding to use depends on the information one
wants to be able to extract. For example, a direction is better encoded in two orthog-
onal qubits, as we have seen. But if one wants to determine a direction orthogonal
to the common direction of either two identical or two orthogonal qubits 1, then one
would better use identical pairs [41]. An open question is to characterise (in general)
the relation between the information one wants to optimally encode using a quantum
system and the optimal way to prepare this quantum system.

1Two orthogonal qubits have the same direction on Bloch sphere.
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Chapter 4

Quantum cloning of
continuous variable systems

We address the issue of approximate cloning for continuous variable systems (or quan-
tum oscillators). Gaussian cloning machines are presented, and the issue of phase-
conjugation is investigated. Quantum cloning machines taking conjugate input are
then studied and shown to outperform standard cloning machines in some cases.

4.1 Optimal cloning of Gaussian states

The Hilbert space associated with a quantum oscillator is H ≡ L2(R), and is infinite-
dimensional. Let us first consider what can we get from asking for universality in such
a Hilbert space. Considering the limit for d→∞ of Eq. (3.9), we see that

lim
d→∞

fopt(d,N,M) =
N

M
, (4.1)

where N the number of input replicas, and M > N the number of clones. In some
circumstances such as quantum cryptography, one might want to study cloners which
are optimal only for a subset S ⊂ H. Also, the fidelity is not always the most interesting
figure of merit to consider. Can we then do better than Eq. (4.1)?

We will here concentrate on the situation where we only want to clone the set of
minimum uncertainty coherent states: they satisfy

〈x̂2 − x̂2〉 = 〈p̂2 − p̂2〉 = 1/2, (4.2)

and can be parametrised as

S = {|α〉 : α =
1√
2
(x+ ip), x, p ∈ R}, (4.3)

where 〈α|x̂|α〉 = x and 〈α|p̂|α〉 = p. We will consider N → M symmetric Gaussian
cloners (SGC). These cloners are linear, trace-preserving, completely positive maps C

outputting M clones from N ≤M identical replicas of an unknown coherent state |ψ〉.
To simplify the analysis, we require that the joint state of theM clones C(|ψ⊗N 〉〈ψ⊗N |)
is supported on the symmetric subspace of H⊗M , and such that the partial trace over
all output clones but (any) one is the bi-variate Gaussian mixture:

ρ1(ψ) = TrM−1C(|ψ⊗N 〉〈ψ⊗N |)

=
1

πσ2
N,M

∫
d2β e−|β|

2/σ2
N,M D(β)|ψ〉〈ψ|D∗(β) (4.4)
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where the integral is performed over all values of β = (x+ip)/
√

2 in the complex plane
(~ = 1), and the operator

D(β) = exp(βa∗ − β̄a)

achieves a displacement of x in position and p in momentum, with â = 1√
2
(x̂+ ip̂) and

a∗ = 1√
2
(x̂−ip̂) denoting the annihilation and creation operators, respectively1. Thus,

the copies yielded by a SGC are affected by an equal Gaussian noise σ2
x = σ2

p = σ2
N,M

on the conjugate variables x and p. (It will turn out that the resulting cloning fidelity
fg = 〈ψ|ρ1(ψ)|ψ〉 is invariant for all coherent states of x̂ and p̂.) We will show that a
lower bound on the noise variance σ2

N,M is given by

σ2
N,M =

1
N
− 1
M

(4.5)

implying in turn that the optimal cloning fidelity for Gaussian cloning of coherent
states is bounded by

fN,M =
MN

MN +M −N
(4.6)

Let us first prove (4.5) in the case (N,M) = (1, 2). This case is interesting to single
out because it demonstrates the link between quantum cloning and the problem of
simultaneously measuring a pair of conjugate observables on a single quantum system.
Our starting point is thus the Arthurs and Kelly relation [42] constraining any attempt
to measure x̂ and p̂ simultaneously on a quantum system:

σ2
x(1) σ2

p(1) ≥ 1, (4.7)

where σ2
x(1) and σ2

p(1) denote the variance of the measured values of x̂ and p̂, respec-
tively, when simultaneously measuring x̂ and p̂ on some quantum state ρ.

It is crucial to clearly distinguish between the Arthurs and Kelly relation (4.7), and
the Heisenberg uncertainty relation:

δx̂2δp̂2 ≥ 1/4, (4.8)

where δx̂2 (resp. δp̂2) are intrinsic variance of the observable x̂ (resp. p̂)for any quan-
tum state ρ. The Heisenberg relation is valid independently from any measurement
performed on the state ρ. It precisely answers the question:

”For a quantum system prepared in the state ρ, to what extent can we
simultaneously define (or assign values) to both the observables x̂ and p̂?”

In particular, the Heisenberg relation holds even if we have a perfect knowledge of the
state ρ. In contrast, the Arthurs-Kelly relation quantifies the trade-off between the
information about x̂ and the information about p̂, that one can acquire during a single
measurement on the state ρ.

So, the best possible simultaneous measurement of x̂ and p̂ with a same preci-
sion satisfies σ2

x(1) = σ2
p(1) = 1. Compared with the intrinsic noise of a minimum-

uncertainty wave packet δx̂2 = δp̂2 = 1/2, we see that the joint measurement of x and
p effects an additional noise of minimum variance 1/2. Now, let a coherent state |α〉
be processed by a 1 → 2 SGC, and let x̂ be measured at one output of the cloner while

1N.B. In the remainder of this thesis, we will sometimes omit the hats on operators when the
context is clear.
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p̂ is measured at the other output. As cloning should obey inequality (4.7), we must
have

∆x̂2 ∆p̂2 ≥ 1 (4.9)

where ∆x̂2 (resp. ∆p̂2) refers to the intrinsic variance of the observable x̂ (resp. p̂) for
the state ρ1(α). Using Eq. (4.4), we get

(δx̂2 + σ2
1,2)(δp̂

2 + σ2
1,2) ≥ 1 (4.10)

Now upon using (4.8), and the relation

a2 + b2 ≥ 2
√
a2b2 ∀a, b ∈ R,

we conclude that the noise variance is constrained by

σ2
1,2 ≥ σ2

1,2 = 1/2, (4.11)

thus verifying Eq. (4.5) in the case (N,M) = (1, 2).
A similar argument can be used to characterise the output copies of an asymmetric

quantum cloning machine, where the qualities of the clones are not identical and where
one might desire that the added noise due to cloning is different for both quadratures.
Using, Eq.(4.7), one easily shows that the following relations hold:

σ2
x,1σ

2
p,2 ≥ 1/4 (4.12)

σ2
p,1σ

2
x,2 ≥ 1/4 (4.13)

where σ2
x,1 (resp. σ2

p,1) refers to the added x quadrature (resp. p quadrature) added
noise for the first clone, and where σ2

x,2 and σ2
p,2 are defined likewise. The relations

(4.12) will be useful when discussing quantum cryptography.
Let us now prove Eq. (4.5) in the general case. Our proof is connected to quantum

state estimation theory similarly to what was done for quantum bits in [?]. The
key idea is that cloning should not be a way of circumventing the noise limitation
encountered in any measuring process. More specifically, our bound relies on the fact
that cascading an N → M cloner with an M → L cloner results in a N → L cloner
which cannot be better that the optimal N → L cloner. We make use of the property
that cascading two SGCs results in a single SGC whose variance is simply the sum of
the variances of the two component SGCs (see below). Hence, the variance σ2

N,L of
the optimal N → L SGC must satisfy

σ2
N,L ≤ σ2

N,M + σ2
M,L. (4.14)

In particular, if the M → L cloner is itself optimal and L→∞,

σ2
N,∞ ≤ σ2

N,M + σ2
M,∞ (4.15)

As discussed in Chapter 3, in the limit M → ∞, estimators and quantum cloning
machines tend to become essentially identical devices. Thus Eq. (4.15) means that
cloning the N replicas of a system before measuring the M resulting clones does not
provide a mean to enhance the accuracy of a direct measurement of the N replicas.

Let us now estimate σ2
N,∞, that is, the variance of an optimal joint measurement

of x̂ and p̂ on N replicas of a system. From quantum estimation theory [43], we know
that the variance of the measured values of x̂ and p̂ on a single system, respectively
σ2
x(1) and σ2

p(1), are constrained by

gxσ
2
x(1) + gpσ

2
p(1) ≥ gxδx̂

2 + gpδp̂
2 +

√
gxgp (4.16)
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for all values of the constants gx, gp > 0. Note that, for each value of gx and gp,
a specific povm based on a resolution of identity in terms of squeezed states, whose
squeezing ∆ is a function of gx. and gp, achieves this bound (see [43]). Squeezed
states satisfy 〈x̂2 − x̂2〉 = ∆2 and 〈p̂2 − p̂2〉 = 1/4∆2. Moreover, when a measurement
is performed on N independent and identical systems, the r. h. s. of (4.16) is reduced
by a factor N−1, as in classical statistics [44]. So, applying N times the optimal
single-system povm is the best joint measurement when N replicas are available since
it yields σ2

x(N) = N−1σ2
x(1) and σ2

p(N) = N−1σ2
p(1). Hence, using Eq. (4.16) for a

coherent state (δx̂2 = δp̂2 = 1/2) and requiring σ2
x(N) = σ2

p(N), the tightest bound is
obtained for gx = gp. It yields σ2

N,∞ = 1/N , which, combined with Eq. (4.15), gives
the minimum noise variance induced by cloning, Eq. (4.5).

It now only remains to prove the validity of Eq. (4.15), that is, that the variance
of two cascaded SGCs add. Consider an N → M SGC, followed by a M → L SGC.
Let ρ be an arbitrary density operator supported on H⊗M . Since it is self-adjoint and
compact, ρ has a denumerable spectrum: it can be expanded as ρ =

∑∞
i=1 λi|ξi〉〈ξi|

with 〈ξi|ξj〉 = δij , λi ≥ 0 and
∑∞
i=1 λi = 1. Note that ∀ε > 0, ∃d such that |

∑d
i=1 λi−

1| < ε. Therefore, the output of the first cloner can be decomposed as ρM = ρd+εd Bd
where ρd =

∑d
i=1 λi|ξi〉〈ξi| is supported on a d-dimensional subspace of H⊗M , Bd is a

bounded operator, and limd→∞ εd = 0. Since ρM belongs to the symmetric subspace
of H⊗M , so will ρd. Hence, we know that we can write ρd in the form of a pseudo-
mixture of pure product states ρd =

∑d
i=1 αi|φ

⊗M
i 〉〈φ⊗Mi | where the coefficients αi are

not necessarily positive but satisfy
∑d
i=1 αi = 1 (see [18, 29]). Thus, when cloning a

state |ψ⊗N 〉, we have

CN,M (|ψ⊗N 〉〈ψ⊗N |) =
d∑
i=1

αi|φ⊗Mi 〉〈φ⊗Mi |+ εd Bd (4.17)

Then, since the cloning map CN,M is linear, cascading the two cloners yields

CM,LCN,M (|ψ⊗N 〉〈ψ⊗N |) =
∑
i

αiCM,L(|φ⊗Mi 〉〈φ⊗Mi |) + εdCM,L(Bd).

As this expression is a density operator (thus bounded) and the first term of its r.h.s.
is positive, CML(Bd) must be bounded. Thus, the second term of the r. h. s. of
Eq. (4.17) becomes negligible when d→∞. Now, using Eq.(4.4), we have

TrL−1CM,LCN,M (|ψ⊗N 〉〈ψ⊗N |) =
∫
d2γ d2β e

− |γ|2

2σ2
M,L

e
− |β|2

2σ2
N,M D(γ + β)|ψ〉〈ψ|D∗(γ + β) +O(ηd) (4.18)

with limd→∞ ηd = 0. A little algebra then shows that this last expression is a Gaussian
mixture, centred about the original state, whose variance is σ2

M,L + σ2
N,M .

It is now easy to compute the fidelity of the optimal N →M SGC when a coherent
state |α〉 is copied. Using Eq. (4.4) and the identity |〈α|α′〉|2 = exp(−|α − α′|2), we
obtain

fN,M = 〈α|ρ1|α〉 =
1

1 + σ2
N,M

(4.19)

which results in Eq. (4.6). As expected, all coherent states are copied with a same
fidelity. (Note, however, that this property does not extend to all states of H.) Equa-
tions (4.5) and (4.6) are consistent with the work of Cerf-Ipe-Rottenberg [45], where
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a 1 → 2 cloner of Gaussian states was derived but not proven to be optimal. They
also fulfill the natural requirement that the cloning fidelity increases with the number
of input replicas. For instance, considering a kN → kM SGC with a positive integer

k, we find that ∆σ2
N,M

∆k < 0 (and ∆f
∆k > 0). At the limit N →∞, we have f → 1, ∀M ,

that is, classical copying is allowed. Finally, for M →∞, that is, for an optimal mea-
surement, we get f → N/(N + 1). In particular, it implies that the best simultaneous
measurement of x̂ and p̂ on a single system gives a fidelity 1/2, a well-known result.

It is worth noting that optimally cloning squeezed states requires a variant of
these SGCs. Let us consider for instance a family of quadrature squeezed states with
squeezing parameter r. For such a family, the best symmetric cloner must have the
form of Eq. (4.4), but using the definition β = ( xσ + iσp)/

√
2 with σ = exp(r). These

cloners naturally generalize the SGCs and give the same cloning fidelity, Eq. (4.6), for
those squeezed states.

4.2 Implementation of Gaussian quantum cloning
machines

Now that we have derived upper bounds on optimal cloning, we will show that these
bounds are achievable, and exhibit an explicit optimal cloning transformation. Re-
markably, implementing this transformation only requires a phase-insensitive linear
amplifier and a network of beam splitters. An experimental demonstration of this
continuous cloner should therefore be in the scope of current technology. We will also
discuss the link between the issue of optimal quantum cloning and that of the optimal
amplification of quantum states.

We will first state what we expect from a quantum cloning machine. Again, we will
start by considering the special case of duplication before treating the general case of
N original replicas and M ≥ N output clones.

Let |Ψ〉 = |α〉⊗N ⊗ |0〉⊗M−N ⊗ |0〉z denote the initial joint state of the N input
modes to be cloned (prepared in the coherent state |α〉), the additional M −N blank
modes, and an ancillary mode z. The blank modes and the ancilla are assumed to be
initally in the vacuum state |0〉. Let {xk, pk} denote the pair of quadrature operators
associated with each mode k involved by the cloning transformation, k = 0 . . . N − 1
refers to the N original input modes, and k = N . . .M − 1 refers to the additional
blank modes. Cloning can be thought of as some unitary transformation

U : H⊗M → H⊗M : |Ψ〉 → U |Ψ〉 = |Ψ′′〉

Alternatively, in Heisenberg picture, this transformation can be described by a
canonical transformation of the operators {xk, pk}:

x′′k = U∗ xk U, p
′′
k = U∗ pk U, (4.20)

while leaving the state |Ψ〉 invariant. We will work here in Heisenberg picture because
cloning turns out to be much simpler to study from that point of view. We will
now impose several requirements on the transformation Eq. (4.20) that translate the
expected properties for an optimal cloning transformation.

First, we require that the M output modes quadratures to have the same mean
values as the the input mode:

〈xk′′〉 = 〈ψ|x0|ψ〉, k = 0 . . .M − 1, (4.21)
〈pk′′〉 = 〈ψ|p0|ψ〉, k = 0 . . .M − 1. (4.22)
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This means that the state of the clones is centred on the original coherent state. Our
second requirement is covariance with respect to rotation in phase space. Coherent
states have the property that quadrature variances are left invariant by complex rota-
tions in phase space. So, for any mode k involved in the cloning process and for any
operator vk = cxk + dpk (where c, d are complex numbers satisfying |c|2 + |d|2 = 1),
the error variance σ2

vk
is the same:

σ2
vk

= 〈(vk)2〉 − 〈vk〉2 = ∆x2
vac = 1/2.

We impose this property to be conserved through the cloning process. Taking opti-
mality into account, Eq. (4.5), rotation covariance yields:

σ2
v′′

k
= (1 +

2
N
− 2
M

)∆x2
vac, (4.23)

where v′′k = cx′′k + dp′′k .
Our third requirement is, of course, the unitarity of the transformation. In Heisen-

berg picture, unitarity is equivalent to demanding that the commutation rules are
conserved through the evolution [46]:

[xj ′, xk′] = [pj ′, pk′] = 0, [xj ′, pk′] = iδjk. (4.24)

Let us first focus on duplication (N = 1,M = 2). A simple transformation meeting
the three conditions mentioned above is given by:

x′′0 = x0 +
x1√

2
+
xz√

2
, p′′0 = p0 +

p1√
2
− pz√

2
,

x′′1 = x0 −
x1√

2
+
xz√

2
, p′′1 = p0 −

p1√
2
− pz√

2
,

x′z = x0 +
√

2xz, p′z = −po +
√

2 pz. (4.25)

This transformation clearly conserves the commutation rules, and yields the ex-
pected mean values (〈x0〉, 〈p0〉) for the two clones (modes 0′′ and 1′′). Also, one can
check that the quadrature variances of both clones are equal to 2∆x2

vac, in accordance
with Eq.(4.23). This transformation actually coincides with the Gaussian cloning ma-
chine introduced by Cerf et al. [45]. Interestingly, we note here that the state in which
the ancilla z is left after cloning is centered on (x0,−p0), that is the phase-conjugated
state |ᾱ〉. This means that, in analogy with the universal qubit cloning machine [26],
the continuous-variable cloner generates an “anticlone” (or time-reversed state) to-
gether with the two clones.

Now, let us show how this duplicator can be implemented in practice. Equa-
tion (4.25) can be interpreted as a sequence of two canonical transformations:

a′0 =
√

2a0 + a∗z, a′z = a∗0 +
√

2az,

a′′0 =
1√
2
(a′0 + a1), a′′1 =

1√
2
(a′0 − a1). (4.26)

As shown in Fig. 4.2, the interpretation of this transformation becomes then straight-
forward: the first step (which transforms a0 and az into a′0 and a′z) is a phase-insensitive
amplifier whose (power) gain G is equal to 2, while the second step (which transforms
a′0 and a1 into a′′0 and a′′1) is a phase-free 50:50 beam splitter. Clearly, rotational co-
variance is guaranteed here by the use of a phase-insensitive amplifier. As discussed
in [46], the ancilla z involved in linear amplification can always be chosen such that
〈az〉 = 0, so that we have 〈a′′0〉 = 〈a′′1〉 = 〈a0〉 as required. Finally, the optimality of
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our cloner can be confirmed from known results on linear amplifiers. For an amplifier
of gain G, the quadrature variances of az are bounded by [46]:

σ2
az
≥ (G− 1)/2. (4.27)

Hence, the optimal amplifier of gain G = 2 yields σ2
az

= 1/2, so that our cloning
transformation is optimal.

     LA 
BS

 

Input

Ancilla Vacuum

Clone 1

Clone 2

Figure 4.1: Implementation of a 1 → 2 cloning machine. LA stands for linear amplifier,
and BS represents a balanced beam splitter.

Let us now derive an N → M cloning transformation. To achieve cloning, energy
has to be brought to each of the M −N blank modes in order to drive them from the
vacuum state to a state which has the desired mean value. We will again achieve this
operation with the help of a linear amplifier. From Eq.(4.27), we see that the cloning
induced noise essentially originates from the amplification process, and grows with the
gain of amplifier. So, we will preferably amplify as less as possible. Loosely speaking,
the cloning procedure should then be as follows: (i) symmetrically amplifying the N
input modes by concentrating them into one single mode, which is then amplified; (ii)
symmetrically distributing the output of this amplifier amongst the M output modes.
As we will see, a convenient way to achieve these concentration and distribution pro-
cesses is provided by the Discrete Fourier Transform (DFT). Cloning is then achieved
by the following three-step procedure (see Fig. 4.2). First step: a DFT (acting on N
modes),

a′k =
1√
N

N−1∑
l=0

exp(ikl2π/N) al, (4.28)

with k = 0 . . . N − 1. This operation concentrates the energy of the N input modes
into one single mode (renamed a0) and leaves the remaining N−1 modes (a′1 . . . a

′
N−1)

in the vacuum state. Second step: the mode a0 is amplified with a linear amplifier of
gain G = M/N . This results in

a′0 =

√
M

N
a0 +

√
M

N
− 1 a∗z,

a′z =

√
M

N
− 1 a∗0 +

√
M

N
az. (4.29)

Third step: amplitude distribution by performing a DFT (acting onM modes) between
the mode a′0 and M − 1 modes in the vacuum state:

a′′k =
1√
M

M−1∑
l=0

exp(ikl2π/M) a′l, (4.30)
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Figure 4.2: Implementation of an N →M cloning machine.

with k = 0 . . .M − 1, and a′i = ai for i = N . . .M − 1. The DFT now distributes the
energy contained in the output of the amplifier amongst the M output clones.

It is readily checked that this procedure meets our three requirements, and is
optimal provided that the amplifier is optimal, that is σ2

az
= [(M/N) − 1]/2. The

quadrature variances of the M output modes coincide with Eq. (4.5). As in the case
of duplication, the quality of cloning decreases as σ2

az
increases, that is cloning and

amplifying coherent states are two equivalent problems. For 1 → 2 cloning, we have
seen that the final amplitude distribution amongst the output clones is achieved with
a single beam splitter. In fact, any unitary matrix such as the DFT used here can be
realised with a sequence of beam splitters (and phase shifters) (see [47] and references
therein). This means that the N → M cloning transformation can be implemented
using only passive elements except for a single linear amplifier.

We will now explicitly give the simplest beam splitter combination that enables the
above transformation. For convenience, let us now use the indices k = 1 . . . N for the
N original input modes ak, and k = N + 1 . . .M for the additional blank modes ak.
With an ideal (phase-free) beam splitter operation acting on two modes ck and cl,(

c′k
c′l

)
=
(

sin θ cos θ
cos θ − sin θ

)(
ck
cl

)
, (4.31)

we define a matrix Bkl(θ) which is an M -dimensional identity matrix with the entries
Ikk, Ikl, Ilk, and Ill replaced by the corresponding entries of the above beam splitter
matrix. Now we can define a sequence of beam splitters acting on M modes (“M -
splitter”) as

U(M) ≡ BM−1M

(
sin−1 1√

2

)
BM−2M−1

(
sin−1 1√

3

)
× · · · ×B12

(
sin−1 1√

M

)
. (4.32)

The individual beam splitters in Eq. (4.32) depend only on their reflectivity/transmittance
parameter θ. In order to concentrate theN identical inputs, we send them now through
an inverse N -splitter,(

a′1 a′2 · · · a′N
)T = U∗(N)

(
a1 a2 · · · aN

)T
. (4.33)

Again, we end up with one mode (renamed a1) having non-zero mean value and N −1
modes (a′2 . . . a

′
N ) in the vacuum state. After amplifying mode a1, a′1 =

√
M/N a1 +
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√
M/N − 1 a∗z, etc., a final M -splitter operation yields the output clones:(

a′′1 a′′2 · · · a′′M
)T = U(M)

(
a′1 a′2 · · · a′M

)T
, (4.34)

with a′i = ai for i = N + 1 . . .M .
Since the amplification produces extra noise, our cloning circuits used as little

amplification as possible. However, rather surprisingly, by first amplifying each input
copy k = 1 . . . N individually,

a′k =

√
M

N
ak +

√
M

N
− 1 a∗z,k,

a′z,k =

√
M

N
− 1 a∗k +

√
M

N
az,k, (4.35)

a circuit can also be constructed that yields optimum fidelities. In the next step, the
amplified modes are each sent together with M − 1 vacuum modes bk,1, bk,2,...,bk,M−1

through an M -splitter(
a′k,1 a′k,2 · · · a′k,M

)T
=

U(M)
(
a′k bk,1 · · · bk,M−1

)T
. (4.36)

The NM output modes after this operation can be written as

a′k,l =
1√
N
ak +

√
M −N

MN
a∗z,k + dk,l , (4.37)

where l = 1 . . .M . The noise in each M -splitter output coming from the M−1 vacuum
inputs is represented by mode dk,l having zero mean value and quadrature variances
of (M − 1)/2M . The final step now consists of M inverse N -splitters acting on all
modes with the same index l, i.e., the N modes a′k,1, and the N modes a′k,2, etc. The
output modes at each N -splitter,(

a′′l e1,l · · · eN−1,l

)T =

U∗(N)
(
a′1,l a′2,l · · · a′N,l

)T
, (4.38)

contain only noise except for one mode,

a′′l =
N∑
k=1

(
1
N
ak +

√
M −N

MN2
a∗z,k +

1√
N
dk,l

)
. (4.39)

Again, all M clones are optimal, although additional noise has been introduced at the
intermediate steps which results in M(N − 1) “waste” output modes. However, this
particular circuit points out that N → M cloning of coherent states is effectively a
“classical plumbing” procedure distributing classical amplitudes.

Finally, we note that for squeezed-state inputs rather than coherent states, the
transformations and circuits presented require all auxiliary vacuum modes (the blank
modes and the ancillary mode z) be correspondingly squeezed in order to maintain
optimum cloning fidelities. This means, in particular, that the amplifier mode z needs
to be controlled which requires a device different from a simple phase-insensitive am-
plifier, namely a two-mode parametric amplifier. One can say that the cloning machine
capable of optimum cloning of all squeezed states with fixed and known squeezing then
operates in a non-universal fashion with respect to all possible squeezed states at the
input [13].
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4.3 Phase-Conjugation

Before studying phase-conjugate input quantum cloning machines, we want to have a
look at phase-conjugation and at the information content of a pair of phase-conjugate
quantum coherent states. This work was stimulated by a paper of Gisin and Popescu
[33], where similar questions were considered for qubits. Interestingly, our results
are qualitatively similar to theirs, showing once more the relative analogy between
quantum information processing with quantum bits and with continuous variables
[48].

The phase conjugation operation consists in flipping the sign of the quadrature p̂
while keeping the quadrature x̂ unchanged, that is, replacing â by its Hermitian conju-
gate â∗. Clearly, this operation is impossible as it does not conserve the commutation
relation: if b̂ = â∗ is the resulting mode, we have [b̂, b̂∗] = −[â, â∗] = −1 instead of 1
(~ = 1).

A heuristic argument can be used to show that this operation cannot be performed
with an added noise that is lower than a minimum equal to twice the vacuum noise.
Let us consider two modes (mode 0 and 1) that are initially prepared in the Einstein-
Podolsky-Rosen (EPR) state [49], that is, the common eigenstate of X̂ = x̂0 − x̂1 and
P̂ = p̂0 + p̂1 with zero eigenvalue for both operators X̂ and P̂ . Since [X̂, P̂ ] = 0,
these operators can be diagonalised simultaneously, so that the EPR state can be
understood as representing two particles with a relative position x0 − x1 and a total
momentum p0 +p1 both arbitrarily close to zero. Assume now that we apply a perfect
phase conjugation on mode 1, that is, x̂′1 = x̂1 and p̂′1 = −p̂1, while mode 0 is left
unchanged. The EPR state is then transformed into the common eigenstate with zero
eigenvalue of the operators

X̂ ′ = x̂′0 − x̂′1,

P̂ ′ = p̂′0 − p̂′1. (4.40)

We thus expect that [X̂ ′, P̂ ′] = 0 since X̂ ′ = X̂ and P̂ ′ = P̂ . However, X̂ ′ and P̂ ′

can actually not commute any more here if the transformed modes 0’ and 1’ are to
obey the standard commutation relations. In other words, the impossibility of perfect
phase conjugation is reflected here by the impossibility to obtain a common eigenstate
of x̂′0− x̂′1 and p̂′0− p̂′1. Instead, since [X̂ ′, P̂ ′] = [x̂′0, p̂

′
0] + [x̂′1, p̂

′
1] = 2i, the Heisenberg

uncertainty relation implies that

∆X̂ ′ ∆P̂ ′ ≥ 1
2
|〈[X̂ ′, P̂ ′]〉| = 1. (4.41)

If we now assume that the phase conjugation process introduces some noise, then it
is easy to determine the minimum amount of such noise for the Heisenberg uncertainty
relation to be satisfied. Let us suppose that mode 1 suffers, after phase conjugation,
from a random noise nx and np on quadrature x̂′1 and p̂′1, respectively. Thus,

x̂′1 = x̂1 + nx,

and,

p̂′1 = −p̂1 + np.

Naturally, we assume that this noise is unbiased, that is, 〈nx〉 = 〈np〉 = 0. We also
assume that the phase conjugation operation is covariant for rotations in phase-space,
i. e., phase insensitive. Hence, we require the variances of nx and np to be the same
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(〈n2
x〉 = 〈n2

p〉 = σ2). The resulting variance of operators X̂ ′ = X̂−nx and P̂ ′ = P̂ −np
is

∆X̂ ′2 = ∆P̂ ′2 = σ2, (4.42)

since X̂ and P̂ both have a vanishing variance in the EPR state. Equation (4.41) then
implies that

σ2 ≥ 1, (4.43)

so that the noise induced by the phase conjugation process is lower bounded by 1, i.e.,
twice the variance of a quadrature in the vacuum state (∆x2

vac = 1/2).
Let us now construct an actual approximate phase-conjugating transformation that

attains this bound. The input mode, assumed to be prepared in a coherent state |α〉, is
coupled to an ancilla mode by some unitary transformation. Subsequently, the ancilla
is traced over, so the processed mode is left in a mixed state that is required to be as
close as possible to the complex conjugate state |ᾱ〉. Let us denote the input mode
by â1 and the ancilla mode by â2. The canonical transformation can be generally
described as

b̂i = Mij âj + Lij â
∗
j , (4.44)

where i, j = 1, 2. The output modes b̂1 and b̂2 refer to the phase-conjugator output
and the processed ancilla, respectively. This transformation is determined, in general,
by 8 complex coefficients, but we will now impose the constraints for it to characterise
an (imperfect) phase conjugator. First, we note that it is always possible to perform
a phase transformation âi → eiφi âi and b̂i → eiψi b̂i such that the coefficients M1j and
L1j are real and positive. Then, by definition, we require that the phase conjugator
obeys 〈b̂1〉 = 〈â∗1〉. Also, without loss of generality, we can assume that the ancilla
is initially in the vacuum state 〈â2〉 = 〈(â2)2〉 = 0 (see [46]). Thus, we must have
M11 = 0 and L11 = 1. We now impose the covariance with respect to rotations, or
“universality”, of the transformation, that is, the constraint that the added noise is
phase-insensitive (each quadrature suffers from the same noise). If the input mode
has phase-insensitive noise, i.e., if 〈(â1)2〉 = 〈â1〉2 (for example, if it is a coherent
state), then we require that the output mode also has phase-insensitive noise, i.e.,
〈(b̂1)2〉 = 〈b̂1〉2. Using

〈(b̂1)2〉 − 〈b̂1〉2 = 〈(â∗1)2〉 − 〈â∗1〉2 +M12L12, (4.45)

we conclude that the universality condition (4.45) is simply M12L12 = 0. Three
more conditions come from imposing the commutation rules to be conserved by the
transformation (4.44):

[b1, b∗1] = M2
12 − L2

12 − 1 = 1, (4.46)
[b2, b∗2] = |M21|2 + |M22|2 − |L21|2 − |L22|2 = 1, (4.47)
[b1, b2] = M1jL2j − L1jM2j = 0. (4.48)

Equation (4.46), together with the universality condition, implies that L12 = 0 and
M12 =

√
2. Equations (4.47) and (4.48) then impose two last conditions on the four

coefficients M2j and L2j , so we are left with two free parameters. If we further impose
that mode 2 transforms just as mode 1 (M22 = 0 and L22 = 1), then we get

b̂1 = â∗1 +
√

2 â2, (4.49)

b̂2 =
√

2 â1 + â∗2. (4.50)
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As we could expect, this transformation exactly describes a phase-insensitive phase-
conjugating linear amplifier (see [46]). One can easily check that the noise variance of
the output of this phase conjugator is

(∆x2)b1 = (∆p2)b1 = ∆x2
vac + 2∆x2

vac = 3/2 (4.51)

so that the phase-conjugation induced noise is twice the vacuum noise, i.e., 2∆x2
vac = 1.

Hence, this transformation is optimal as it saturates the bound (4.43). In particular,
if the input is a coherent state |α〉, the output will be a Gaussian mixture of coherent
state ρ with variance one centred on |ᾱ〉. Consequently, the phase conjugating fidelity
is

F = 〈ᾱ|ρ|ᾱ〉 = 1/2, (4.52)

just as for an optimal measurement [42, 13]. Interestingly, this implies that phase
conjugation is intrinsically a classical process: it could be achieved as well by simul-
taneously measuring the two quadratures of |α〉, and then preparing a coherent state
whose quadrature p has a flipped sign. Incidentally, we note that any number of phase-
conjugated outputs can actually be prepared together at no cost (with F = 1/2 for
each).

It is interesting, at this point, to extend the parallel with the universal quantum
spin-flip machine for qubits, and make a connection with a state estimation question.
In Chapter 3, we have discussed the fact that encoding a direction n into two an-
tiparallel spins |n,−n〉 yields slightly more information on n than encoding it into two
parallel spins |n,n〉. Here, we investigate the counterpart of this situation for informa-
tion that is carried by a continuous quantum variable instead of a qubit. Consider the
situation where a sender, Alice, wants to communicate to a receiver, Bob, a complex
number α = (x+ip)/

√
2. Assume Alice is allowed to use a quantum channel only twice

so as to send Bob two coherent states of a given amplitude |α|2 each. She can choose,
for example, to send Bob the product state |α〉⊗2. In this case, the best strategy to
infer both x and p with a same precision is to perform a product measurement [50] .
As we have seen in Sect.(4.1), a simultaneous measurement of the two quadratures of
each coherent state |α〉 yields (x, p) with a variance 2∆x2

vac = 1 [42]. The resulting
error variance on x and p estimated from these two measurements is then equal to half
of this variance, that is

∆x2
vac = 1/2.

Another possibility to encode α is that Alice sends Bob the product state |α〉⊗|ᾱ〉.
In this case, a possible (but not necessarily optimal) strategy for Bob is again to carry
out a product measurement, taking into account that the measured value of p of the
second state should be read as −p. This obviously results in the same error variance
1/2. However, the fact that the phase-conjugation transformation has a non-unity
fidelity leaves open the possibility that there exists a measurement of |α〉 ⊗ |ᾱ〉 that is
not of a product form, and yields a variance strictly lower than 1/2. Indeed, if there
were a perfect universal phase conjugator, then it could be used to convert |ᾱ〉 into
|α〉 before applying the optimal product measurement on |α〉⊗2, thereby resulting in
the same minimum variance in both cases.

Let us now explicitly describe an measurement of the product state |α〉⊗|ᾱ〉, which
yields indeed a lower variance. Expressing the two input modes as |α〉 = exp(ipx̂1 −
ixp̂1)|0〉 and |ᾱ〉 = exp(−ipx̂2 − ixp̂2)|0〉, we can write the input product state as
|α〉⊗|ᾱ〉 = exp(ipX̂− ixP̂ )|0〉, where X̂ = x̂1− x̂2 and P̂ = p̂1 + p̂2 are two commuting
operators. Assume now that the two input states |α〉 and |ᾱ〉 are sent each into
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one of the input ports of a balanced beam splitter, characterised by the canonical
transformation

x̂′1 = (x̂1 + x̂2)/
√

2, p̂′1 = (p̂1 + p̂2)/
√

2, (4.53)

x̂′2 = (x̂1 − x̂2)/
√

2, p̂′2 = (p̂1 − p̂2)/
√

2. (4.54)

The input product state can be re-expressed as

|α〉 ⊗ |ᾱ〉 = exp(i
√

2 p x̂′2 − i
√

2 x p̂′1)|0〉 (4.55)

implying that x and p can be measured separately here by applying homodyne detection
on modes 1’ and 2’. Indeed, a measurement of the first quadrature of mode 1’ yields√

2x, on average, while a measurement of the second quadrature of mode 2’ yields√
2 p. These two measurements suffer each from an error of variance ∆x2

vac = 1/2.
Hence, the resulting error variance on x and p is reduced to

∆x2
vac/2 = 1/4.

In contrast, if we had the input product state |α〉⊗2 and were sending each coher-
ent state |α〉 into the input ports of a balanced beam splitter, we would obtain a
single coherent state |

√
2 α〉 on the output mode 1’. One should then necessarily per-

form a simultaneous measurement of the two quadratures of the latter mode, yielding
(
√

2 x,
√

2 p) with an error variance 2∆x2
vac = 1, or, equivalently x and p with a

variance ∆x2
vac = 1/2. As a consequence, we have proven here that a better strat-

egy for sending x and p to Bob is to encode them into two conjugate coherent states
|(x+ ip)/

√
2〉 ⊗ |(x− ip)/

√
2〉 rather than sending two replicas of |(x+ ip)/

√
2〉. The

error variance on x and p is indeed reduced by a factor of two via the use of phase
conjugation.

4.4 Phase-Conjugated Input Quantum cloning Ma-
chine

We now present the continuous variable analogue of the quantum cloning machine of
orthogonal qubits presented in the previous chapter. We will seek for a cloning trans-
formation that, taking as input N replicas of a coherent state |ψ〉 and N ′ replicas of
its complex conjugate |ψ̄〉, produces M optimal clones of |ψ〉. The resulting concept of
phase-conjugated inputs (PCI) cloning machines will turn out to be closely connected
to that of the amplification of light, just as what we found for standard cloning. As
a matter of fact, a PCI cloner can be decomposed as a sequence of beam-splitters, a
single non-linear medium, and another sequence of beam-splitters. We will start by
deriving the optimal canonical transformation that acts on two modes in a coherent
state with respective mean values αψ and βψ̄ (where α, β are real while ψ is a complex
number), and generates a mode whose mean value is γψ, where γ is real. Remarkably,
this transformation will be shown to have a structure similar to that of a conventional
phase-insensitive phase-preserving amplifier as defined in [46], where both the signal
and idler modes are used as input. After having derived this transformation, we will
apply it to the case of integer α2, β2, and γ2, and see how it can be supplemented
with beam-splitters to provide a PCI cloning machine for continuous variables. This
machine will be shown to produce M ′ = M + N ′ − N additional phase-conjugated
clones (or anticlones). The quality of the clones and anticlones will be discussed in
the case of a balanced cloner (N = N ′), as well as for arbitrary phase-conjugate input
fractions N ′/(N + N ′). The related question of the optimal measurement (M = ∞)
will also be treated.
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Let {ai} and {bi} (i = 1 . . . 3) denote respectively the input and output modes
annihilation operators of the cloning transformation. The indices i = 1, 2 respectively
refer to the input and phase-conjugated input modes, while i = 3 refers to an auxiliary
mode. In full generality, we are seeking for a linear canonical transformation

bi =
∑
j

Mijaj +
∑
j

Lija
∗
j (i, j = 1 . . . 3), (4.56)

that meets the three following requirements. First, starting with modes a1 and a2 with
mean values 〈a1〉 = αψ and 〈a2〉 = βψ̄, we require 〈b1〉 = γψ. We will only consider
the case |γ| ≥ |α|, since, otherwise, the problem becomes trivial: one would just have
to attenuate the input coherent state |αψ〉 with an unbalanced beam-splitter, yielding
a coherent state of amplitude γψ. To simplify the problem, we may assume that β = 1,
which amounts to substitute ψ for βψ. Then, we have:

αM11 + L12 = γ,

M12 + αL11 = 0. (4.57)

Second, this transformation must obey the commutation rules [bi, bk] = 0 and [bi, b∗k] =
δik (~ = 1), that is

MijLkj − LijMkj = 0,
MijM

∗
kj − LijL

∗
kj = δik. (4.58)

Third, the noise of the output mode b1 of this transformation should be minimum.
Before sketching our calculation, let us note that a further simplification comes

from the fact the the annihilation operators are defined up to an arbitrary phase, so
that a transformation ai → eiµiai and b1 → eiνb1 allows us to take M1j and L1j real
and positive. Since we focus on phase-insensitive transformation, minimising the noise
amounts to minimising the sole quantity (∆b1)2 = 1

2 〈b1b
∗
1 +b∗1b1〉−〈b1〉〈b∗1〉 [46]. Thus,

using the fact that (∆ai)2 = 1/2 for a mode ai in a coherent state, we need to minimise

(∆b1)2 =
1
2

∑
j

(M2
1j + L2

1j), (4.59)

under the constraints Eqs. (4.57) and (4.58). Rather than solving this full problem,
we use here a common trick in constrained extremisation problems that consists in
solving a simpler problem with weaker constraints (bearing in mind that taking weaker
constraints can only yield better solutions) and then checking that the solution of this
simpler problem is one of the full problem. Specifically, we minimise (∆b1)2 taking into
account the only condition M1jM1j −L1jL1j = 1. Taking Eq. (4.57) into account and
introducing a Lagrange multiplier λ, we minimise the quantity M2

11 + (γ − αM11)2 +
(1 +α2)L2

11 +M2
13 +L2

13 +λ
(
M2

11− (γ−αM11)2− (1−α2)L2
11 +M2

13−L2
13− 1

)
, with

respect to M11, L11,M13 and L13. Some algebra shows that this problem admits only
one solution M13 = L13 = L11 = M12 = 0, that is, the auxiliary mode is unnecessary.
The optimal transformation has then the same structure as that of a phase-insensitive
amplifier of gain G. Restoring β, we get

b1 =
√
Ga1 +

√
G− 1a∗2,

b2 =
√
G− 1a∗1 +

√
Ga2, (4.60)

with

√
G =

−αγ + β
√
γ2 − α2 + β2

β2 − α2
, (4.61)
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It can be easily checked that, for β = 0 (or α = 0), Eq. (4.60) reduces to a phase-
insensitive phase-preserving (or phase-conjugating) amplifier as defined in [46], and
can be used to carry out the N → M cloning (or phase-conjugating) transformation
described in the previous section.

Let us now turn to the special case where α2, β2 and γ2 are integers (which we
will denote respectively as N,N ′,M). The transformation Eq. (4.60) can be used as
the central element of a PCI cloning machine, which is covariant for translations and
rotations in phase space (see Fig. 4.4). Indeed, the following procedure can be used to
produce M optimal clones of a coherent state |ψ〉 from |ψ〉⊗N |ψ̄〉⊗N ′

:
(i) Concentrate the N replicas of |ψ〉 stored in the N modes {cl} (l = 0 . . . N − 1)

into a single mode a1, this results in a coherent state of amplitude
√
N ψ. This

operation can be performed with a network of beam-splitters achieving a N -mode
Discrete Fourier Transform (DFT), which yields the mode

a1 =
1√
N

N−1∑
l=0

cl, (4.62)

and N − 1 vacuum modes. Similarly, concentrate the N ′ replicas of |ψ̄〉 stored in the
N ′ modes {dl} (l = 0 . . . N ′−1), into a single mode a2 in a coherent state of amplitude√
N ′ ψ̄, with the help of an N ′-mode DFT:

a2 =
1√
N

N ′−1∑
l=0

dl. (4.63)

(ii) Process the modes a1 and a2 into a “phase-conjugated inputs” amplifier (PCIA),
resulting in modes b1 and b2 as defined in Eqs. (4.60) and (4.61).

(iii) Distribute the output b1 into M clones {c′l} (l = 0 . . .M − 1) with a M -mode
DFT:

c′l =
1√
M

(b1 +
∑
k

eiπkl/Mvk), (4.64)

where {vk} (k = 1 . . .M − 1) denote M − 1 vacuum modes. It is readily verified that
this procedure yields M clones of |ψ〉.

|ψ>
|ψ>

|ψ>

|ψ∗>
|ψ∗>

|ψ∗>

PCIA

Clones

Anticlones

DFT

DFT

DFT

DFT

Figure 4.3: PCI cloner that produces M clones and M ′ anticlones from N replicas of
|ψ〉 and N ′ replicas of |ψ̄〉. The modes are concentrated and distributed by a Discrete
Fourier Transform (DFT) and amplified in a phase-conjugate input modes amplifier
(PCIA).

Interestingly, the amplitude b2 of the other output of the PCIA has a mean value√
M ′ψ̄, with

N −N ′ = M −M ′. (4.65)
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Therefore, it can be used to produce M ′ phase-conjugated clones (or anticlones) of
|ψ〉, {d′l} (l = 0 . . .M ′ − 1), using a M ′-mode DFT:

d′l =
1√
M ′

(b2 +
∑
k

eiπkl/Mwk) (4.66)

where {wk} (k = 1 . . .M ′−1) denote M ′−1 vacuum modes. Clearly, this procedure is
optimal to produce M clones since its central element, the PCIA, is optimal, and the
beam-splitters are passive elements. In addition, the M ′ anticlones that are produced
at no cost are also optimal. Indeed, our transformation produces M optimal clones and
M ≥ N , and is symmetric with respect to the interchange of labels 1 and 2. So, if our
initial problem was to produce M ′ optimal anticlones with M ′ ≥ N ′, we would find the
same solution. Since M ≥ N ⇐⇒ M ′ ≥ N ′, it is clear that our transformation yields
both optimal clones and optimal anticlones. Furthermore, since the PCIA is linear and
phase-insensitive, the resulting PCI cloner is covariant with respect to translations and
rotations of the state to be copied: all coherent states are copied equally well, and the
cloning-induced noise is the same for all quadrature components.

Using Eqs. (4.60)-(4.64) and (4.66), the noise of the clones and anticlones can be
written as

(∆c′l)
2 =

1
2

+
G− 1
M

, (∆d′l)
2 =

1
2

+
G− 1
M ′ , (4.67)

where the gain can be re-expressed as a function of the number of inputs and outputs,

√
G =

√
N ′M ′ −

√
NM

N ′ −N
(4.68)

As expected, the variance of the output clones exceeds 1/2, implying that the clones
are not exactly in the coherent state |ψ〉. Instead, their state is given by

1
πσ2

c

∫
d2βe−|β|

2/σ2
cD(β)|ψ〉〈ψ|D(β)∗, (4.69)

where σ2
c = (G− 1)/M .

Consider now the balanced case (N = N ′, M = M ′), for which simple analytical
expressions of the noise variances can be obtained. Taking the limit α→ β in Eq. (4.61)
and replacing α2 by N and γ2 by M yields G = (M + N)2/4MN , so that the error
variances of the clones and anticlones are

(∆c′l)
2 = (∆d′l)

2 =
1
2

+
(M −N)2

4M2N
. (4.70)

Note that this balanced cloner is optimal amongst all PCI cloners in the sense that it
minimises σ2

c for fixed N+N ′ and M+M ′. It is convenient to characterise the quality
of cloning in terms of the fidelity f(N

N)→M = 〈ψ|ρc|ψ〉/|〈ψ|ψ〉|2 where ρc denotes the
state of the clones. Using Eq. (4.69), we get

f(N
N)→M =

1
1 + σ2

c

=
4M2N

4M2N + (M −N)2
. (4.71)

Let us now compare the production of M clones from N replicas and N antireplicas
to the production of M clones from 2N identical replicas. The variance and fidelity of
the clones ki obtained by standard cloning are given by

(∆k′i)
2 =

1
2

+
(

1
2N

− 1
M

)
, (4.72)
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and

f2N→M =
2MN

2MN +M − 2N
. (4.73)

Of course, in the trivial case where M = 2N , standard cloning can be achieved per-
fectly, while the balanced PCI cloner yields an additional variance σ2

c = 1/(16N).
However, whenever M ≥ 2N + 1, the (NN ) →M balanced cloner always yields a lower
variance (hence a higher fidelity) than the 2N → M cloning machine. The balanced
PCI cloner is also better for the anticlones: more anticlones are produced at no cost,
and they have a better fidelity. Indeed, a standard 2N →M cloning machine produces
M −2N anticlones of fidelity 2N/(2N +1), which actually is the fidelity of an optimal
measurement of 2N replicas of |ψ〉. In contrast, a PCI cloner produces M anticlones
with a higher fidelity, as given by Eq. (4.71). In particular, for M →∞, we see from
Eqs. (4.70) and (4.72) that the additional noise induced by a PCI cloner is 1/4N ,
that is, half the noise induced by a standard 2N → ∞ cloner (1/2N). Note that in
this case, the output of the PCIA can be considered as classical and the underlying
process appears to be equivalent to a measurement. This reflects that more classical
information can be encoded in N pairs of phase-conjugated replicas of a coherent state
than in 2N identical replicas, as discussed in the previous section. More generally, in
the unbalanced case (N 6= N ′), it can be shown that the optimal measurement results
in a noise that is equal to that obtained by measuring (

√
N +

√
N ′)2 identical replicas

of the input, in the absence of phase-conjugated inputs.
We have shown that the balanced PCI cloner can result in better cloning quality

than a standard cloner. More generally, we may ask the following question: If we
want to produce M clones of a coherent state |ψ〉 from a fixed total number n of input
modes, N of which being in the coherent state |ψ〉 and N ′ of which being in the phase-
conjugated state |ψ̄〉, what is the phase-conjugate fraction a = N ′/n that minimises
the error variances of the clones?

From Eq. (4.60), we see that σ2
c then depends only on a, and varies as

G(a) =

√a
√

M
n + (2a− 1)−

√
M
n

√
1− a

2a− 1

2

(4.74)
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Figure 4.4: Cloning-induced noise standard deviation
√
σ2
c as a function of the phase-

conjugate fraction a = N ′/n, for n = 8 and several values of M/n.

In Fig. (4.4), we have plotted
√
σ2
c as a function of a for n = 8 and different values

of M ≥ n. In the trivial case where M = n = 8, the minimum additional variance is
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of course zero, and is obtained for a = 0. The cloning transformation is then just the
identity. However, when M ≥ n+1 , using phase-conjugated input modes yields lower
variances than standard cloning if a is correctly chosen (the lowest variance is attained
for a 6= 0). Remarkably, the value of a achieving the minimum variance is not equal
to 1/2 for finite M , that is the optimal input partition contains more replicas than
antireplicas. In the limit of large M , however, the number of antireplicas achieving
the lowest variances tends to n/2, and the curve G(a) tends to a symmetric curve
around a = 1/2. This symmetry is not surprising, since M = ∞ corresponds to a
measurement and we expect that measuring the value of ψ from N replicas of |ψ〉 and
N ′ replicas of |ψ̄〉 is equivalent to starting from N ′ replicas of |ψ〉 and N replicas of
|ψ̄〉. Finally, in the case where a = 1, the transformation consists in producing M
clones of |ψ〉 from n replicas of |ψ̄〉. This is just phase-conjugation. The additional
variance is therefore given by 1/n, which does not depend on M . This explains why
the curves converge all to the same point at a = 1.

4.5 Summary

We have studied the issue of quantum cloning for continuous variables. We have
considered the case where one wants to clone all coherent states equally well. Our
figure of merit for cloning was the added noise in x quadrature variance and the added
noise in p quadrature variance. We have seen that optimal quantum cloning can then
be achieved with Gaussian operations such as amplification and mixing of modes with
beam splitters. We have essentially considered symmetric cloners. This is the first
step in understanding how information contained in quantum systems distributes. An
interesting extension of our work would be the study of asymmetric machines for which
the fidelities of the clones are not equal. Such a study should allow to understand
further how information contained in one (or several) quantum system(s) distributes
in more quantum systems.

Interestingly, the cloners we have derived are not optimal for all figures of merit.
While writing up this thesis, Patrick Navez and Nicolas Cerf have discovered that if
one considers the fidelity as a figure of merit instead of the added noise, there exists a
non-Gaussian cloner outperforming the transformations presented here. Considering
the case of duplication, there is a cloner achieving a fidelity of 0.6825 instead of 2/3
in our case.

A cloning transformation using phase conjugate input modes has also been consid-
ered. Again, this transformation has been shown to be decomposable in a sequence of
beam splitters, a central amplification stage, and another sequence of beam-splitters.
A possible way to implement this central stage would be to use four-wave mixing. Two
weak fields entering the χ(3) medium would then play the role of the phase-conjugated
inputs, and energy would be brought to the system by two external modes in a large
coherent state [51]. We have shown evidence that PCI cloning transformations out-
perform standard cloning transformations (taking only identical inputs) if the goal is
to produce clones and anticlones of a state or to get knowledge about a state through
measurement. A possible extension of our work would be to study the case where the
number of anticlones is a free parameter (in the PCI cloner derived here, it is con-
strained by N , N ′, and M). An interesting generalisation would be asymmetric PCI
cloning transformations. We could then determine whether there is still an advantage
in having conjugate input modes rather than identical ones.
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Chapter 5

Quantum cryptography I:
Protocols

We review the main principles of Quantum Key Distribution. We start by describing
some of the motivations of quantum cryptography and the BB84 protocol. Then we
describe the squeezed-state protocol and the coherent-state protocol to which the next
chapter is devoted.

5.1 Cryptography

Cryptography aims at providing two parties, an emitter and a sender, with secure
means of confidential communication. Cryptographic techniques are numerous, but
the general scheme is always the same. The message to be transmitted is first encoded
with a key by the emitter. The message is sent through some channel at the end of
which lies the authorised receiver. Finally, the receiver decodes the message with a
key, which may be either identical or different from the one used for encoding. Cryp-
tographic protocols divide into two classes: the public key protocols and the secret key
protocols [9]. Being very practical, public key protocols are the most often encountered
in everyday life. They are for example widely used on the Internet. Unfortunately,
they suffer from a major weakness: they rely on computability assumptions. These
assumptions are highly plausible but unproven. RSA [5], for example, the most widely
used public key protocol, would be seriously endangered if an algorithm existed to
decompose efficiently an integer into its prime factors. Although, the best known al-
gorithms run on classical computers for factorisation require computation times which
are (sub-)exponential in the size of the number to factorise, as indicated by Eq. (1.1),
there is no guarantee that no efficient classical algorithm exists for factorisation.

Vernam Encryption

Most secret key protocols suffer from the same flaws. The only protocol we are perfectly
sure of is the Vernam encryption, or ”one-time pad”, which works as follows. Suppose
the (clear) message to be communicated from Alice to Bob1 is a finite sequence of bits
M. Vernam Encryption is operated with a key K, that is another sequence of bits,
which is as long as M.

1Traditionally in cryptography, the authorised emitter and sender are respectively called ”Alice”
and ”Bob”, and a potential eavesdropper is referred to as ”Eve”.
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• Alice encrypts the message by adding it to the key (modulo 2):

E = M⊕K.

• E is sent to Bob through a classical channel.

• Bob decrypts the message:

M = E⊕K.

This protocol is very simple indeed. Its security is guaranteed by the fact that
if the key K is fully random, then the encrypted message E is fully random too,
whatever the message M is. Thus, E brings no information about M to a potential
eavesdropper, Eve, if K is private. It only remains to find efficient ways to distribute
the key. Quantum Cryptography or Quantum Key Distribution addresses precisely
this issue.

5.2 The BB84 protocol

Quantum cryptography fundamentally relies on a beautiful idea. The use of non-
orthogonal quantum states to carry the key bits makes it possible to detect any po-
tential eavesdropping. The resources needed for QKD always comprise a source of
non-orthogonal quantum states on Alice’s side, a quantum channel conveying these
states to Bob, a measuring apparatus on Bob’s side, and a (public) authenticated clas-
sical channel between Alice and Bob, see Fig.5.2. QKD protocols generally consists
in two (intertwined) parts. The first part consists of probing the quantum channel to
determine whether it is possible to securely transmit the key over it. The second part
consists of the explicit distillation of the secret key.

Alice’s

Laboratory

Bob’s

Laboratory

Classical Authenticated Channel

Quantum channel

Figure 5.1: Overall cryptographic scheme.

The first QKD protocol, BB84, was invented by Bennett and Brassard in 1984 [52].
This protocol is at the root of all the remainder of this chapter and the next chapter.

The protocol

Let H denote the Hilbert space of a qubit. The BB84 protocol makes use of two
orthonormal bases of H, b0 and b1, to transmit a key. b0 ≡ {|e00〉, |e01〉} and b1 ≡
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{|e10〉, |e11〉} are defined such that

|〈ebs|eb′s′〉| = (1− δbb′)/
√

2 + δbb′δss
′. (5.1)

This condition expresses the fact that the bases b0 and b1 are mutually unbiased.
That is, if a state of one basis is measured in the other basis, the outcome will be fully
random. Stated otherwise, a measurement in the basis b1 of a state |e0k〉 of b0 doesn’t
bring any information about |e0k〉 and vice versa.

If, for example, the qubit is encoded in the polarisation state of a single photon,
b0 could represent a set of two orthogonal directions of polarisation, which we decide
to call ”horizontal” and ”vertical”. And b1 would then represent another set of two
orthogonal polarisation states, mutually unbiased with the states of the first set, say
”circular” and ”anticircular”.

The BB84 protocol is run as follows:

• 1. Alice sends (about) 4N qubits to Bob through the quantum channel. The ith
qubit, i = 1 . . . 4N , is prepared in the state |eb(i)s(i)〉, where the values b(i) and
s(i) are drawn randomly and independently from a uniform distribution.

• 2. ∀i = 1 . . . 4N , Bob draws a random bit b′(i), and measures the ith qubit
sent by Alice in the basis bb′(i). Let {s′(i)} denote the sequence of outcomes he
obtains.

• 3. Through the classical authenticated (public) channel, Alice reveals in which
basis each qubit has been prepared; {b(i)}i=1...4N .

• 4. Alice and Bob discard the qubits for which Bob’s choice of basis for measure-
ment doesn’t match Alice’s choice of basis for preparation (b(i) 6= b′(i)). The
number of such qubits should be (about) 2N .

• 5. On a subset T of the remaining qubits (|T | ≈ N), Alice and Bob probe the
quantum channel. If the quantum channel is noiseless, Alice’s preparation and
Bob’s outcome will agree for all qubits in T . If the quantum channel is noisy,
possibly due to the intervention of an eavesdropper, Alice and Bob will find a
non-zero error-rate δb.

• 6. Classical post-processing. If δb is small enough, (i) Alice and Bob apply some
classical communication protocol to correct errors and obtain a sifted key Ksif ,
and (ii) Alice and Bob apply some classical communication protocol to extract
a private key from Ksif .

The figure (5.2) illustrates (a part of) the BB84 protocol.

Eavesdropping

We have deliberately defined the last step of the protocol loosely. Actually, the se-
curity of the BB84 protocol crucially depends on the classical post-processing. This
dependence is quite complicated and we here only want to describe QKD protocols.
Classical post-processing will be addressed in greater detail in the next chapter, at the
same time as general security to which it is intimately related.

Nonetheless, the essential features of the BB84 protocol that make it robust can
already be illustrated in the case of a simple eavesdropping strategy. First note that it
is only after Bob has received all the qubits that (i) Alice reveals in which basis each
qubit has been prepared (ii) Alice and Bob agree on which qubits will serve to probe
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State prepared ↔ ↔ l 	 ↔ � l 	
by Alice

Alice’s raw key 0 0 1 0 0 0 1 0
Basis chosen + © + © + + + +

by Bob
Bob’s outcome ↔ × l 	 ↔ × l ×
Bob’s sifted key 0 - 1 0 0 - 1 -

Figure 5.2: Illustration of the BB84 protocol. Qubits are encoded by polarisation
states of single photons, and sent via a noiseless quantum channel. + means that
the photon is measured in the horizontal-vertical basis. © means that the photon is
measured in the circular-anticircular basis. {↔,	} → ”0”, {l,�} → ”1”, ”4N” = 8.

the quantum channel. Whatever strategy the eavesdropper, Eve, uses, it never brings
her any advantage not treating all qubits equally.

Let us assume now that Eve, adopts the ”intercept and resend strategy” to get
information about the raw key. She intercepts each qubit. She decides randomly to
measure it either in the b0 basis or in the b1 basis. She prepares a new qubit, according
to her result, and sends it to Bob. This strategy brings her as much information as
Bob about the raw key, but it doesn’t leave her undetected.

Note that only the qubits for which Alice’s and Bob’s choice of basis agree should
be examined. The other qubits are discarded anyway. For each remaining qubit, two
scenarios are possible. First scenario: Alice’s, Bob’s and Eve’s choices of bases agree.
Eve knows the bit and is left undetected. Second scenario: Alice’s and Bob’s choices of
bases agree, but disagree with Eve’s. Let us illustrate this situation with an example.
Let us assume that Alice prepares a qubit in the state |e00〉 and that Eve measures it
in the basis b1. With a probability equal to 1/2, she will get the result ′0′ and so send
Bob the state |e10〉. When measuring this state in the basis b0, Bob will get the result
’1’ with a probability equal to 1/2, and infer that the state prepared by Alice was
|e01〉 6= |e00〉. A similar situation occurs if Alice sends the state |e01〉 (resp. |e10〉 or
|e11〉), with Bob measuring in the b0 basis (resp. b1) and Eve measuring in the b1 basis
(resp. b0). So, the protocol is robust against the intercept and resend strategy since
Eve will tag (about) a quarter of the eavesdropped qubits. An error rate δ exceeding
(about) 25% informs Alice and Bob that the quantum channel is noisy and might be
tapped by an eavesdropper. They can then abort the protocol. Fig.5.2 illustrates the
situation.

State prepared ↔ ↔ l 	 ↔ � l 	
by Alice

Alice’s raw key 0 0 1 0 0 1 1 0
Basis chosen by Eve © + + + © © + ©

Basis chosen + © + © + + + +
by Bob

Bob’s outcome l 	 l � ↔ l l ↔
Bob’s sifted key !1! - 1 !1! 0 - 1 -

Figure 5.3: Illustration of the BB84 protocol in the case where an eavesdropper adopts
an intercept and resend strategy. About a quarter of the qubits are tagged.

Let us now assume that Eve runs a weaker attack. Let us assume that she only
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taps the quantum channel and runs her intercept-and-resend strategy with a non-unit
probability p. In such a case, δ will be about 0.25p but she will only know (about)
p|Kraw| bits of the raw key though Bob’s knowledge of the raw key will be |Kraw|
bits. This advantage of (1 − p)|Kraw| bits could then be exploited by Alice and Bob
to extract a secret private key.

Can we conclude that an error rate below 25% means that the quantum channel is
safe? No. Eve can actually adopt strategies more efficient than intercept and resend.
A first better strategy for Eve is to use (an asymmetric variant of) the quantum cloning
machine presented in Chapter 3 to try copying instead of measuring the states sent
by Alice. This brings the security threshold down to 15%. Is there yet any better
strategy? In fact, we don’t know. However, as we shall see in the next chapter, if
the error rate is below 11%, the protocol can be made secure by suitable classical
post-processing.

5.3 Quantum Key Distribution with Continuous Va-
riables

Squeezed-state protocols

The BB84 protocol has been originally proposed for qubits, but it is easy to generalise
it to higher-dimensional systems. We could for example let the key elements be carried
by harmonic oscillators, H = L2(R). These harmonic oscillators could be physically
represented by a single mode of a quantised electromagnetic field. In principle, we could
modify the BB84 protocol to a Quantum Key Distribution (QKD) protocol where,
instead of bits, the key elements are real values drawn from a ”uniform distribution”
over R, and where the pair of bases are x̂ quadrature eigenstates |x〉 and p̂ quadrature
eigenstates |p〉. This modified protocol would retain all the ingredients of the BB84
protocol, and hence work as well.

However, x̂ eigenstates and p̂ eigenstates are unphysical nonnormalisable states.
Neither is it possible to draw the key elements from a uniform probability distribution
over R. A regular version of the BB84 protocol with oscillators was proposed by Cerf
et al. [53, 54] and reads as follows.

• Alice sends Bob (about) 4N quantum oscillators, each prepared in a squeezed
state. To prepare the ith squeezed state, i = 1 . . . 4N , Alice draws a random
bit b(i) to determine whether the state is squeezed in x̂ (or in p̂), as well as a
Gaussian-distributed random variable XA of variance Σ2

x (or PA of variance Σ2
p)

to determine the centre of the squeezed state. According to her result, x (or p),
she sends an x-squeezed state centred on (x, 0) (or a p-squeezed state centred on
(0, p)).

• Bob receives the 4N squeezed states. For each of them, he draws a random bit
to determine whether he measures the x̂ or the p̂ quadrature, and performs the
measurement. Let his result be denoted by a random variable XB .

• Alice and Bob discard the oscillators for which Bob’s measurement doesn’t match
Alice’s preparation. The number of such oscillators should be (about) 2N .

• On a subset T of the remaining oscillators (|T | ≈ N), Alice and Bob probe the
quantum channel relating them. If the quantum channel is too noisy, they abort
the protocol.
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• Classical post-processing. Alice and Bob apply some classical communication
protocol to extract (i) a sifted key Ksif from their correlated real values (ii) a
private key from Ksif .

Like in BB84, half the measurements give results that are uncorrelated to Alice’s
values, so half of the samples must be discarded when Alice discloses the encoding
variable. Unlike BB84, however, measuring the correct variable does not yield the exact
value of the key element, r, even with a perfect apparatus, because of the intrinsic noise
of the squeezed state. The value r follows a Gaussian distribution N(0,Σx,p), to which
some Gaussian noise is added N(0, σx,p), thus resulting in a Gaussian distribution
with variance Σ2

x,p + σ2
x,p. We can therefore model the transmission of r as a classical

Gaussian channel with a signal-to-noise ratio (SNR) equal to Σ2
x/σ

2
x or Σ2

p/σ
2
p.

An important requirement of the protocol is to make it impossible for Eve to be
able to infer which encoding variable Alice used. For this, measuring the correct
or incorrect variable (x or p) must yield statistically indistinguishable results. If,
in contrast, Eve was able to detect (even not perfectly) whether she measured the
wrong variable, then she could get and exploit this information to improve her attack.
This indistinguishability requirement can be expressed as the equality of the density
matrices resulting from the two encoding rules. This requirement reads

σ2
x + Σ2

x =
1

4σ2
p

,

σ2
p + Σ2

p =
1

4σ2
x

. (5.2)

(5.3)

This also means that the SNR is the same for both variables x and p, and that the
maximal information rate is given by Shannon’s formula for the classical capacity of a
Gaussian channel with constrained input power Σ2/σ2 [55]:

I =
1
2

log2(1 + Σ2
x/σ

2
x) = − log2(2σxσp). (5.4)

This information is non-zero provided that the x− or p−states (or both) are
squeezed below the shot noise limit (σ2

x,p < 1/2).
Eavesdropping by cloning. Let us now discuss an individual eavesdropping of

this protocol2 with cloning machines such as those defined by Eq.(4.12). Eve makes
two clones of the state sent by Alice, one of which is transmitted to Bob, and the other
is measured in the correct variable when Alice reveals the encoding rule. In fact, this
happens to be the optimal individual eavesdropping strategy as shown in [53] and [56].

We use a 1 → 2 cloning machine, and we keep the freedom to make a better clone
for Bob or Eve (parameter χ) and to get more accuracy in x or p (parameter λ). The
subscripts 1 and 2 for the two copies are replaced respectively by B and E for the two
recipients. According to Eq. (4.12), the added variances on the clones will be:

σ2
B,x =

1
2
χλ, σ2

B,p =
1
2
χλ−1,

σ2
E,x =

1
2
χ−1λ, σ2

E,p =
1
2
χ−1λ−1. (5.5)

Let us calculate the resulting information rates. When Bob measures x, the result is
affected both by the intrinsic fluctuations of x and by the noise induced by the cloning

2Individual eavesdropping means that Eve probes the key elements one by one. More general
strategies can be considered.
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operation, thus resulting in a total variance σ2
x + 1

2χλ. This is the noise variance in
the Gaussian channel representing the communication between Alice and Bob through
Eve’s cloning machine. Therefore, the information rate is now

IB,x =
1
2

log2(1 +
Σ2
x

σ2
x + 1

2χλ
). (5.6)

Similarly, one can calculate the new variance of p measured by Eve on her clone,
namely σ2

p + 1
2χ

−1λ−1. This gives an information rate

IE,p =
1
2

log2(1 +
Σ2
p

σ2
p + 1

2χ
−1λ−1

). (5.7)

Adding the last two information rates indicates the balance between Bob’s and
Eve’s information. Remarkably, the information that Eve gains by using this attack
on p is exactly equal to the information that Bob loses on x [53],

IB,x + IE,p =
1
2

log2(1 +
Σ2
x

σ2
x

) = I. (5.8)

Of course, this balance also works when swapping x and p, namely IB,p + IE,x = I.
This (fairly intuitive) result is interesting because it allows Bob to upper bound the

information gained by a possible eavesdropper. Assuming symmetry of the protocol in
x and p, Bob can estimate I − IB and is then guaranteed that IE ≤ I − IB . One can
prove [57] that with reconciliation and privacy amplification carried out over a public
authenticated channel, one is guaranteed to generate secret key bits whenever

IB − IE > 0. (5.9)

This last condition is in turn guaranteed provided that IB > I/2, so that up to a
50% information loss on Bob’s side is acceptable in order to generate key bits. In
particular, an eavesdropping with χ ≥ 1 generates at least 50% of information loss so
that it makes the scheme insecure.

Coherent-state protocols

As we have shown, the construction of squeezed states protocols follow, in a sense,
from the requirement of having a continuous variable protocol mimicking the original
BB84 protocol [53, 58]. Though these protocols are physically sensible, they rely on the
preparation of squeezed states, which is experimentally quite a demanding task. It is
thus desirable to extend the squeezed-state protocol to a protocol using only coherent
states. To meet this requirement, Grosshans and Grangier proposed a protocol [59],
the security of which we will study in the next chapter. The trick with this protocol,
which makes it secure, is that now Alice modulates both the x̂ and the p̂ mean values
of the state she sends. The protocol runs as follows:

• Alice sends Bob (about) 2N quantum oscillators, each prepared in a coherent
state. To prepare the ith coherent state, i = 1 . . . 2N , Alice draws two random
real numbers xA and pA from a Gaussian distributed law with variance Σ2. The
values xA and pA determine the centre of the ith coherent state sent by Alice.

• Bob receives the 2N coherent states. For each of them, he randomly decides to
measure either x̂ or p̂, and performs the measurement.

• Bob declares publicly which quadrature he measured for each oscillator.
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• On a subset T of the sent oscillators, Alice and Bob probe the quantum channel
relating them.

• Classical post-processing. If the channel relating Alice and Bob is judged safe,
they can extract (i) a sifted key Ksif from their correlated real values (ii) a
private key from Ksif .

Eavesdropping. A first security analysis can be carried using the same cloning
machines, as for the squeezed-state protocol.In contrast to Eq.(5.4), no squeezing is
necessary now. Because of the modulation of both quadratures for each key element,
we are no longer constrained by Eq.(5.2).

The information sent by Alice is still given by Shannon formula. So,

I =
1
2

log(1 +
Σ2

1/2
). (5.10)

Assuming that Eve treats both quadratures equally, a calculation similar to that we
have just carried for squeezed states shows that [59]:

IB − IE =
1
4

log
(Σ2 + 1/2 + χ)

χ
− 1

4
log

(Σ2 + 1/2 + 1/χ)
1/χ

, (5.11)

which, just as for the squeezed state protocol, is nonzero as long as χ < 1.

5.4 Summary

Quantum cryptography allows two parties to get a secret key. Ideally, it should rely on
no assumption about the resources of a potential eavesdropper. Focusing on squeezed
state protocols and coherent state protocols, we have seen that these protocols are
robust against individual attacks.

From an experimental point of view, qubit based QKD protocols such as BB84
have proven their reliability over quite long distances, typically of order of 10 km,
when implemented using (approximations of) single photons source3. But the bit rates
achieved by such protocols are deceptively low. Typically, a secret key generation rate
of 1000 bit/sec is possible over a distance of 70km (optical fibre implementation, 1550
nm, loss ≈ 0.5dB/km) [9]. The essential reasons for such low rates are the necessity
to simulate single photon sources at Alice’s side, and the imperfection of detectors
at Bob’s side [9]. However, a recent experiment, using genuine single photon sources,
gives hope for more efficient implementations of BB84 [60].

On the other hand, continuous variable protocols, and in particular coherent state
protocols, such as those presented here seem to be a promising alternative to qubit
based protocols. They seem to allow for facilitated implementations, over larger dis-
tances and higher key-generation rates (see [10] and references therein). It is therefore
crucial to study their security. This is the aim of the next chapter.

3To build a single photon source is experimentally quite a challenging task.
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Chapter 6

Quantum Cryptography II:
Security analysis

The security proof of the BB84 quantum key distribution protocol against collective
attacks is reviewed, as well as shift-resistant quantum codes, and the construction that
connects the latter with the former to devise secure squeezed-state protocols. We then
analyse the security of coherent-state protocols.

6.1 Collective Attacks

In the preceding chapter, we have given a hint of why quantum cryptography is secure.
For example, we have shown the robustness of the coherent-state protocol against a
specific class of attacks. However, a quantum cryptographic scheme should ideally be
founded only on physical assumptions and, unlike classical cryptography, should rely
on no assumption about the resources of a potential eavesdropper. But is it possible?

Let us look at the global scheme of a quantum cryptographic setup, see Fig.5.2 .
This setup is made of four parts: Alice’s laboratory, Bob’s laboratory, the quantum
channel and the classical channel. Our first observation is that if the classical channel
relating Alice and Bob is not indeed authenticated, no quantum key distribution is
possible. Nothing then stops Eve from pretending to be Bob with respect to Alice and
Alice with respect to Bob. Therefore, we do make the first assumption:

Assumption 6.1.1 The classical channel between Alice and Bob is authenticated, i.e.
the classical messages sent from Alice to Bob arrive unaffected and vice versa.

Second, we further limit Eve’s power as follows:

Assumption 6.1.2 Eve has no control over Alice’s laboratory and Bob’s laboratory.

We make this assumption because we find it physically sensible and because again
nothing is anymore possible if Alice’s and Bob’s laboratories are under Eve’s control.
We note nevertheless that it is sometimes useful to partially relax Assumption (6.1.2).
For example, one can then prove that the BB84 protocol is still robust when Alice and
Bob don’t have perfect experimental apparati (see [61] and references therein).

Assumptions 6.1.1 and 6.1.2 were implicitly made when we presented cryptographic
protocols in the previous chapter. What distinguishes the analysis that shall be pre-
sented here from that of the previous chapter is that we now want to make as few
hypotheses as possible about the way Eve controls the quantum channel. In particu-
lar, we want our security analysis to still hold if Eve runs a collective attack, i.e. an
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attack where she might eavesdrop several key elements at a time. It is tempting to
conjecture that Alice drawing the key elements values and encoding choice indepen-
dently from identical probability distributions should imply that no collective attack is
more informative to Eve than an individual attack. However, such a conjecture has, to
date, never been proven for any QKD scheme. Another distinction from the previous
chapter, is that we would like our analysis to apply (or at least to be extendible) to the
case of non-Gaussian attacks (Gaussian attacks are those mapping a Gaussian state
to a Gaussian state). Finally, another interest of the security analysis carried out here
is that it will lead us to be more precise about the classical post processing part of a
QKD protocol, on which the security crucially relies, as we shall see.

The analysis of security under individual attacks has been made possible by an
explicit construction of optimal eavesdropping strategy. Such a construction is highly
likely to be untractable for collective attacks. The approach that we will adopt now
is different. The key idea underlying the security analysis that we will carry now is
the following trivial fact, which is a direct consequence of Schmidt decomposition (see
chapter 2):

Let |Ψ〉ABE denote a tripartite pure quantum state. If the subsystem
ρAB = TrE |Ψ〉ABE〈Ψ| is pure, then |Ψ〉ABE is of the form |φ〉AB ⊗ |µ〉E .
That is, E is factored out and can thus get no information about the shared
randomness that A and B will extract from |φ〉AB .

6.2 The Shor-Preskill proof for BB84

The Shor-Preskill (SP) proof of security of the BB84 protocol will be our starting
point. This proof contains two ingredients:

• Establishing the security of an entanglement purification based protocol (this
term will be explained below).

• Establishing the equivalence between this entanglement purification based pro-
tocol and the BB84 protocol.

Thus, one concludes that the BB84 protocol augmented with suitable classical post-
processing is secure.

CSS codes

The entanglement purification protocols of interest for us are based on the use of
a particular class of quantum codes: the CSS codes, after Calderbank-Shor-Steane
[62, 63]. As we will see, these codes have the nice feature of decoupling the correction
of bit-errors and the correction of phase-errors. This feature will turn particularly
useful when turning an entanglement-purification protocol into the BB84 protocol.

Let H⊗l denote the Hilbert space of l qubits (H = C2). A CSS code Q is defined
from two embedded classical linear codes C1 and C2:

{0} ⊂ C2 ⊂ C1 ⊂ Fl2, (6.1)

{0} ⊂ C⊥
1 ⊂ C⊥

2 ⊂ Fl2. (6.2)

Let l1 (resp. l2) denote the dimension of C1 (resp. C2). Q is the linear span of vectors

|v + C2〉 ≡
1

|C2|1/2
∑
w∈C2

|v + w〉, v ∈ C1. (6.3)
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The encoded information is ”which coset of C2 in C1”, so that the dimension of the
protected subspace is dimQ = 2dimC1−dimC2 . Let us introduce the tensor product
operators

Xs
a = Xs1

a ⊗ . . .⊗Xsl
a , (6.4)

and

Zsa = Zs1a ⊗ . . .⊗ Zsl
a , (6.5)

where s = (s1, . . . , sl) ∈ Fl2. Let H1 denote the parity check matrix of C1 and H⊥
2

denote the parity check matrix of C⊥
2 .

Let us first consider bit-flip errors and states of the form |v〉 = |v1〉 . . . |vl〉, with
v ∈ C1. Bit-flips can be represented as

Ebε : |v〉 → |v + ε〉, (6.6)

where Ebε is of the form Xs
a. To recover from bit-flips, we apply a joint operation on

the affected state and an ancilla:

|v + ε〉 ⊗ |0〉anc → |v + ε〉 ⊗ |H1(v + ε)〉anc = |v + ε〉 ⊗ |H1ε〉anc. (6.7)

Measuring the ancilla then gives the bit-error syndrome. This measurement corre-
sponds to a measurement of operators of the form Xsi , where {si} are the rows of H1.
We can then proceed as for classical linear codes: we recover by applying an X oper-
ator on the qubits the syndrome has identified as affected. Thus, if the code C1 has
distance d ≥ 2tb+1, the code corrects up to tb bit-flip errors. Finally, since codewords
(6.3) are linear combinations of such states |v〉, applying the transformation (6.7) on
a codeword of Q will indeed allow to diagnose the bit-flip error (and later correct it)
without damaging quantum information.

To describe the correction of phase-flip errors, it is useful to describe how a code-
word transforms under the application of the l-tensor Hadamard transformation H⊗l,
where

H =
1√
2

(
1 1
1 −1

)
. (6.8)

Direct computation shows that a state |w〉 = |w1〉 . . . |wl〉, w ∈ Fl2 , transforms under
H⊗n as |w〉 →

∑
u∈Fl

2
(−)u·w|u〉. Hence, a codeword |w+C2〉 transforms according to

|w + C2〉 →
1√

2n−l2

∑
u∈C⊥2

(−)u·w|u〉, (6.9)

where we have used the identity

∑
v∈C2

(−)u·v =
{

0 if u ∈ C⊥
2 ,

2l2 if u /∈ C⊥
2 .

(6.10)

Phase-flip errors can be represented as

Epε : |v〉 → (−)v·ε|v〉, (6.11)
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where Epε is of the form Zsa. For recovery, we first apply H⊗l, which transforms an
affected codeword Epε |w + C2〉 as

Epε |w + C2〉 → H⊗lEpε |w + C2〉 =
∑
u∈C⊥2

(−)u·w|u+ ε〉, (6.12)

where we have used Eqs (6.9)(6.10). Phase errors are corrected exactly as bit errors
but syndromes are now diagnosed with respect to the code C⊥

2 . The diagnostic reads

|u+ ε〉 ⊗ |0〉anc → |u+ ε〉 ⊗ |H⊥
2 ε〉anc. (6.13)

Measuring the ancilla then gives the phase-error syndrome. This measurement
corresponds to a measurement of operators of the form Zsi , where {si} are the rows
of H⊥

2 . Once the affected qubits have been identified by the syndrome, two equivalent
procedures are possible for recovery: (i) Apply X on the affected qubits and apply the
(inverse) Hadamard transformation to get the recovered state. (ii) First apply H, and
then apply Z on the affected qubits. If the code C⊥

2 has distance d⊥2 ≥ 2tp + 1, we
can recover up to tp phase errors. Finally, Y errors are just combinations of X and Z
errors. So the distance of a CSS code satisfies

d ≥ min(d1, d
⊥
2 ). (6.14)

Let us now explain why we said that CSS codes decouple bit error correction and
phase error correction. The relations (6.1)(6.2) imply that H⊥

2 H
t
1 = 0. Thus, for all

operator Xs1 , s1 ∈ H1, and for all Zs2 , s2 ∈ H⊥
2 , measured to diagnose bit flip errors

(resp. phase flip errors), we have:

[Xs1 , Zs2 ] = 0, (6.15)

i.e. correcting bit errors doesn’t disturb phases and vice versa.
What is the rate of such codes? If eb = tb/l and ep = tp/l respectively denote the

bit-error rate and the phase-error rate of the quantum channel, one can prove that
there exist CSS codes that will be (asymptotically) successful in reliably transmitting
quantum information if:

R ≡ 1− h(eb)− h(ep) > 0, (6.16)

where h(x) = − log2 x
x(1 − x)(1−x) denotes the binary Shannon entropy [21]. When

eb = ep, this rate hits zero for eb = 11%.
Finally, we can, in analogy to what has been done in the classical case, define a

”translated” code Qx,z of a CSS code Q. Qx,z is the linear span of vectors of the form:

|v + C2〉x,z ≡
1

|C2|1/2
∑
w∈C2

(−)z·w|x+ v + w〉, v ∈ C1. (6.17)

Example. A simple example of a CSS code can be constructed from the 7-bit
Hamming code presented in chapter 2. It is the 7-qubit code introduced by Steane
[63]. Let us remind that the Hamming 7-bit code C is a linear code whose parity check
matrix is given by

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 , (6.18)
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and a generator matrix for this code is

G =
(

H
(v)

)
=


1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 1 1 0 0 0 0

 . (6.19)

We have C⊥ ⊂ C and C decomposes into the two cosets of C⊥ in C: C = {C⊥} ∪
{v+C⊥}. We can thus construct a CSS quantum code from the Hamming code if we
set C1 = C and C⊥

2 = C1, implying C⊥
2 = C. Therefore, the Hamming parity check

matrix H can be used to diagnose both bit flips (when working in the computational
basis) and phase flips (when working in the Hadamard basis). A basis of this code is
given by

|0̄〉F =
1√
8

∑
w∈C⊥

|w〉, (6.20)

|1̄〉F =
1√
8

∑
w∈v+C⊥

|w〉. (6.21)

Since both |0〉F and |1〉F are superpositions of codewords of C, bit flips can be diag-
nosed with an H parity check. Also, since

|0̄〉P = H⊗7|0̄〉F =
1√
2
(|0̄〉F + |1̄〉F ) =

1
4

∑
v∈C

(−)0·v|v〉 (6.22)

|1̄〉P = H⊗7|0̄〉F =
1√
2
(|0̄〉F − |1̄〉F ) =

1
4

∑
v∈C

(−)1
7·v|v〉, (6.23)

and since the relation (6.12) holds, we see that a phase flip can be diagnosed as a
bit flip in the dual basis with the parity check matrix H (Note that Eq.(6.23) holds
because (1111111) ∈ v + C⊥).

The seven qubit code is robust against any single bit and phase error on anyone
of the seven qubits. But error recovery will fail if two different qubits both undergo
a bit flip error or a phase flip error. Consider for example the case where two qubits
undergo a bit flip error. Let e1, e2 denote two different weight-one strings. He1 +He2
is the sum of two columns of H, and therefore another column of H. Therefore, there
exists a third weight-1 vector e3 such thatH(e1 + e2 + e3) = 0. e1 + e2 + e3 is weight-3
(because at most weight-3 as a sum of three weight-1 vectors, and at least weight-3 as
a codeword of H). A corrector might diagnose e3 as the actual error, and effect e3,
resulting in an overall weight-3 error e1 + e2 + e3, thus inducing a bit flip.

Entanglement Purification

An entanglement purification protocol is a procedure by which two remote parties
(Alice and Bob) want to extract k′ pure EPR pairs:

|φ0〉⊗l
′
≡ (

1√
2
(|00〉+ |11〉))⊗l

′

from a state close to l perfect EPR pairs (l ≥ l′), using only local operations and
classical communication.

67



It is natural that quantum error-correcting codes yield entanglement purification
procedures. After all, a state close to l noisy EPR pairs can be seen as l perfect
EPR pairs whose halves have undergone some noise. Let us make this statement more
precise and construct entanglement purification protocols using CSS codes.

First suppose that Alice and Bob start with l perfect EPR pairs, all in the state |φ0〉.
Let them both measure Zr, for each row r ∈ H1. From Alice and Bob’s point of view,
the measured syndromes (resp. sAz and sBz ) are completely random but the relative
syndrome sAz − sBz always equals zero. Similarly, when they measure Xr, for each row
r ∈ H2, Alice and Bob get random but correlated results sAx = sBx . Now if x and z
denote any l-bit string vectors such that H1x = sAz = sBz and H⊥

2 z = sAx = sBx , we see
that what Alice and Bob have done when measuring all the syndromes is projecting
their state |φ0〉⊗l onto the state |φ0〉⊗l

′
encoded by Qx,z (l′ ≤ l). Now what if Alice

and Bob do not start with l perfect EPR pairs? Let us define

|φ1〉 = (1⊗X)|φ0〉, (6.24)
|φ2〉 = (1⊗ Z)|φ0〉, (6.25)
|φ3〉 = (1⊗XZ)|φ0〉. (6.26)

Let tb and tp denote respectively the number of bit errors and the number of phase
errors that the codes Qx,z can correct. Suppose that Alice and Bob share a state with
tb or fewer bit flips (|φ2〉 or |φ3〉) and tp or fewer phase flips (|φ1〉 or |φ3〉). Then
Alice and Bob can purify their noisy entangled pairs by measuring their bit (phase)
error syndrome, computing their relative bit (phase) error syndrome and correcting
the corresponding bit (phase) errors to get the state |φ0〉⊗l

′
encoded by Qx,z.

QKD with EPR pairs

Let us now show how this entanglement purification (EP) protocol can be extended
to a secure QKD protocol. Let us describe the (EP+QKD) protocol as a whole.

Protocol 1: QKD based on entanglement purification #1 Alice creates
the state |φ0〉⊗2l #2 Alice selects a random 2l-bit string b and performs a Hadamard
transformation on the second half of each EPR pair for which b = 1. #3 Alice sends
Bob the second half of each of the 2l pairs. #4 Bob acknowledges receipt of his 2l
halves. #5 Alice selects randomly l check pairs to test Eve’s interference. #6 Alice
reveals b and which pairs are check pairs. #7 Bob performs a Hadamard transformation
on the qubits for which b = 1. #8 Alice and Bob measure their halves of the check
pairs in the Z basis, and compare their results. If too many outcomes mismatch,
they abort the protocol. #9 Alice and Bob apply the above-described entanglement
purification protocol to the remaining code qubits and get l′ (nearly) perfect pairs
|φ0〉⊗l

′
. #10 Alice and Bob measure these perfect EPR pairs in the Z basis and get

an l′-bit secret key.
To prove that this protocol is secure, we will need the following theorem.

Theorem 6.2.1 (Lo and Chau) [64] If Alice and Bob share a state ρ ∈ B(H) such
that the fidelity of ρ with m pure EPR pairs |φ0〉⊗m satisfy

tr(ρ(|φ0〉〈φ0|)⊗m) ≥ 1− 2−s, (6.27)

then Eve’s mutual information with the key is at most 2−c + 20(−2s), where c = s −
log2(2m+ s+ 1/ ln 2).

Qualitatively, the more the state shared by Alice and Bob is pure, the smaller the
information Eve gets about the key.
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In Protocol 1, Alice and Bob estimate eb and ep from the check qubits. If eb and
ep satisfy Eq.(6.16), they judge that the EP protocol is likely to work, and operate
further. How reliable is it to proceed this way? Let us calculate the probability that
the test on the check qubits succeeds while the EP on the code qubits fails. First of all,
since we have assumed that Eve doesn’t control Alice’s laboratory, she has no means
to know which qubits are check qubits and which are code qubits before Bob receives
them. It is therefore legitimate to assume that she treats all qubits equally. According
to Eq.(2.18), this means that Eve’s intervention on each pair can be modelled as

|φ0〉AB |0〉E → |φ0〉|e1〉+ |φ1〉|eX〉+ |φ2〉|eZ〉+ |φ3〉|eY 〉, (6.28)

whatever the precise nature of this intervention is, that is whatever the states

|e1〉, |eX〉, |eZ〉, |eY 〉

are. Let ρind
AB denote the individual state of each pair Alice and Bob share. One could

thus conclude that Alice and Bob should perform Bell measurements1 on each check
pairs to estimate

eb = tr(ρind
AB(|φ1〉〈φ1|+ |φ3〉〈φ3|)) (6.29)

ep = tr(ρind
AB(|φ2〉〈φ2|+ |φ3〉〈φ3|)). (6.30)

But fortunately, the identities

|φ1〉〈φ1|+ |φ3〉〈φ3| = |01〉〈01|+ |10〉〈10|, (6.31)
|φ2〉〈φ2|+ |φ3〉〈φ3| = |+−〉〈+− |+ | −+〉〈−+ |, (6.32)

where |±〉 ≡ 1√
2
(|0〉 ± |1〉), show that the estimations of eb and ep will be exactly the

same if Alice and Bob perform only local measurements in the X and Z basis.
We now show that the EP protocol applied to the l pairs produces a state that is

close to l′ encoded EPR pairs |φ⊗l′0 〉. Let us decompose H⊗l, the Hilbert space of l
qubits into

H⊗l = Hg ⊕H⊥
g ,

where Hg is the linear span of vectors of the form ⊗li=1(1⊗Xai)⊗li=1 (1⊗Zbi)|φ0〉⊗l,
with ai, bj = 0, 1 and

∑
i ai ≤ tb,

∑
j bj ≤ tp. Hg is the linear span of EPR pairs

having undergone at most tb bit-flips, and at most tp phase-flips. Let Π denote the
projector onto Hg and Π⊥ denote the projector onto H⊥

g , and let ρ ∈ B(H⊗l) denote
the state shared by Alice and Bob. tr ρΠ (resp. tr ρΠ⊥) is the probability that ρ has
support on Hg (resp. H⊥

g ). Let ρ′ denote the state obtained after error correction. If ρ

were projected onto Hg, then the fidelity of ρ′ with |φ⊗l′0 〉 is 1, and if ρ were projected
onto H⊥

g , this fidelity would be some number rate fπ , 0 ≤ fπ ≤ 1. Thus on average,

the fidelity of ρ′ with |φ⊗l′0 〉 will be

〈φ⊗l′0 |ρ′|φ⊗l′0 〉 = tr ρΠ + fπ tr ρΠ⊥ ≥ tr ρΠ. (6.33)

As we have said, Eve has no means to treat check qubits differently than code
qubits. The check qubits are therefore a faithful sample of code qubits. We can thus
invoke classical probability theory which tells us that the probability to have δl bit
(phase) errors on the code qubits and fewer than (δ − ε)l errors on the check bits is
asymptotically less than exp

(
−ε2l/4(δ − δ2)

)
. Let us pause and summarise.

1A Bell measurement is a measurement on the Hilbert space of two qubits whose resolution of
unity reads |φ0〉〈φ0| + |φ1〉〈φ1| + |φ2〉〈φ2| + |φ3〉〈φ3|.
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(i) The probability that Alice and Bob pass the verification test, and that
the state they get after error-correction is not exponentially close to |φ0〉l

′

is exponentially small. (ii) If the fidelity of the state Alice and Bob share
at the end of the EP protocol is exponentially close to |φ0〉l

′
, then Eve’s

mutual information with the key is exponentially small. (i) & (ii) If Alice
and Bob pass the verification test, then Eve’s mutual information with the
key is exponentially small: the EP based QKD protocol is secure.

Equivalence with the BB84 protocol

We now see how Protocol 1 can be converted to the BB84 protocol without loss of
security. This conversion proceeds in two steps. Protocol 1 is first converted to a
protocol where we still use CSS codes but where we don’t need entangled pairs anymore
(Protocol 2). Then we give the arguments turning this protocol into the BB84 protocol.

EP-based protocol to CSS-based protocol. In protocol 1, Alice and Bob use
two types of pairs: check pairs and code pairs. For both types, it doesn’t matter
whether Alice performs her measurement on her half before or after transmitting his
half to Bob. If she measures the check qubits before transmission, this is the same
as preparing the state |0〉 or |1〉 and sending it to Bob. Also, if she measures the
syndromes on the code qubits before transmission, this is the same as choosing two
random vectors x, z ∈ Fl2, a random key k ∈ Fl2, and to send the state |k〉 encoded
by the (translated) CSS code Qx,z. The EP-based protocol is thus equivalent to the
following protocol.

Protocol 2: CSS-based protocol. #1 Alice creates l random check qubits,
a random l′-bit key k, and a random string b ∈ F2l

2 . #2 Alice draws two vectors
x, z ∈ Fl2 randomly, according to a uniform distribution. #3 Alice encodes the key
k with the CSS code Qx,z. #4 Alice chooses l positions (out of 2l) where she puts
the check bits. She puts the code bits in the remaining positions. #5 Alice applies
a Hadamard transformation on each qubit i for which bi = 1. #6 Alice sends the
resulting state to Bob, who acknowledges receipt of the qubits. #7 Alice reveals b, the
positions of the check bits, and the vectors x and z. #8 Bob undoes the Hadamard
transformation in each qubit i for which bi = 1. #9 Bob checks whether too many of
the check bits have been damaged, and aborts the protocol if so. #10 Bob can decode
the qubits and use them for the key.

CSS-based protocol to BB84. The structure of CSS codes will now be advan-
tageously exploited to turn Protocol 2 into BB84. After Alice and Bob are confident
that eb and ep satisfy Eq. (6.16), Bob will apply H on the code qubits for which b = 1
and obtain a state from which he will extract the key. But to do so, he doesn’t need
to correct the phase errors of this state. Let k′ ∈ C1 denote some vector such that
k′ + C2 = k. The encoded state sent by Alice to Bob reads:

|k′ + C2〉x,z ≡
1

|C2|1/2
∑
α∈C2

(−)z·α|k′ + α+ x〉, v ∈ C1. (6.34)

Now, if Bob doesn’t need to correct phase errors, we can assume that Alice doesn’t
send z to Bob. The (mixed) state that Bob then actually sees is the state (6.34)
averaged over z, that is

Ξ(k′ + C2) =
1

2n|C2|
∑
z

 ∑
α,β∈C2

(−)(α+β)·z|k′ + α+ x〉〈k′ + β + x|

 rate
=

1
|C2|

∑
α∈C2

|k′ + α+ x〉〈k′ + α+ x|, (6.35)
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where we have used again Eq.(6.10).
To summarise, Alice sends Bob |k′+α+x〉 over the quantum channel, with k′+α ∈

C1 and x ∈ Fl2. Bob performs a measurement on the state he receives and gets the
result k′ + α + x + ε. Alice reveals the correction information x. Bob calculates
k′ + α + x+ ε+ x = k′ + α + ε and corrects the result to a codeword of C1, which is
k′+α with high probability (error correction or sifting). The key is k′+α+C2 = k′+C2

(privacy amplification).
To get the BB84 protocol, let us make a further remark. In protocol 2, Bob stores

his qubits in a quantum memory and waits until Alice reveals b to perform a Hadamard
transformation on each qubit i for which bi = 1, and make a measurement in the Z
basis. Alternatively, he could measure these qubits in the X basis. But thanks to
Eq.(6.35), the state Bob sees before Alice reveals b now reads

⊗li=1H
biΞ(k′ + C2)⊗li=1 H

bi . (6.36)

This state is a tensor product of pure qubit states, each either eigenstate ofX, or eigen-
state of Z. Consequently, Bob doesn’t need any quantum memory and the protocol
works as well if Alice sends Bob twice more qubits, Bob decides randomly to measure
each either in the X basis, or in the Z basis and Alice and Bob discard each qubit
for which Bob’s choice of measurement doesn’t match Alice’s choice of preparation.
Now setting k′ + α + x = v, v is random word of Fl2, and x = u + v is another word
of Fl2 such that u ∈ C1, we get the BB84 protocol augmented with suitable classical
post-processing.

Protocol 3: BB84. #1 Alice creates a random 4(l+δ)-bit string. #2 She chooses
a random 4(l + δ)-bit string b. For each bit, she creates a random Z-eigenstate if b
indicates 0, and a random X-eigenstate if b indicates 1. #3 Alice sends the resulting
qubits to Bob. #4 Bob receives the 4(l+δ) qubits and measures each in the Z basis or
in the X basis at random. #5 Alice reveals b. #6 Bob discards the qubits for which his
choice of basis doesn’t match that of Alice. With high probability, they are left with
(about) 2l qubits. Alice decides at random on l check bits for verification. #7 Alice
and Bob announce the values of their check bits and estimate eb and ep. If these two
quantities don’t satisfy Eq. (6.16), they abort the protocol. #8 Alice announces u+ v
where v is the vector formed by the remaining code bits, and u is a random codeword
of C1. #9 From his code bits vector, v + ε, Bob calculates v + ε+ u+ v = u+ ε and
corrects to the nearest codeword of C1 (error correction). #10 The key is the coset
u+ C2 (privacy amplification).

6.3 Shift-resistant codes

We now introduce shift-resistant codes [65]. We will later need these codes to present
the construction of squeezed-state protocols secure against collective attacks [58].

Shift-resistant codes aim at reliably encode qubits using continuous variable sys-
tems. As hinted by their names, these codes are typically robust against translations in
phase-space. Even if the Hilbert space embedding the code is no more a tensor product
of qubits Hilbert spaces, we can invoke the formalism of stabiliser codes to describe
shift-resistant codes. A shift resistant code R(0, 0) is the simultaneous eigenspace of
the two (commuting) operators

Sx = ei2
√
πx, Sp = e−i2

√
πp, (6.37)

with eigenvalue(s) Sx = Sp = 1. Thus, the allowed values of x and p in the code
R(0, 0) are integer multiples of

√
π, and the codewords are invariant under shifts in x
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or p by integer multiples of 2
√
π. An orthogonal basis for the logical qubits is

|0̄〉 =
∞∑

s=−∞
|x = (2s)

√
π〉 =

∞∑
s=−∞

|p = s
√
π〉,

|1̄〉 =
∞∑

s=−∞
|x = (2s+ 1)

√
π〉 =

∞∑
s=−∞

(−)s|p = s
√
π〉. (6.38)

The logical operators

Z̄ = ei
√
πx, X̄ = e−i

√
πp (6.39)

commute with the stabiliser generators and act on the codewords as

Z̄|0̄〉 = |0̄〉 ; Z̄|1̄〉 = −|1̄〉, (6.40)
X̄|0̄〉 = |1̄〉 ; X̄|1̄〉 = |0̄〉. (6.41)

R(0, 0) is robust against x-shifts ∆x and p-shifts ∆p that satisfy

|∆x| <
√
π/2, |∆p| <

√
π/2. (6.42)

Errors are diagnosed by measuring the stabiliser generators (6.37). When the values
of x and p are determined modulo

√
π, a displacement is applied in phase space to

adjust x and (resp. p) to the nearest integer multiple of
√
π. The condition 6.42 can be

simply interpreted: the error zones around the peaks of |0̄〉 and |1̄〉 should not overlap.
As usual, we can define (equivalent) translated codes. We will denote them R(φx, φp).

They are associated with the eigenvalues of the stabiliser generators Sx = e2πiφx and
Sp = e−2πiφp . In this code, logical operators read

Z̄(φx) = ei
√
π(x−φx

√
π), X̄(φp) = e−i

√
π(p−φp

√
π). (6.43)

A basis of R(φx, φp) : {|0̄(φx, φp)〉, |1̄(φx, φp)〉} can be obtained by applying the trans-
lation operator ei

√
πx̂φpe−i

√
πp̂φx to the basis {|0̄〉, |1̄〉} of the code R. We have

|0̄(φx, φp)〉 =
∑
s

eiπ(2s+φx)φp |x = (2s+ φx)
√
π〉 (6.44)

|1̄(φx, φp)〉 =
∑
s

eiπ(2s+1+φx)φp |x = (2s+ 1 + φx)
√
π〉 (6.45)

Finally, we can define asymmetric shift resistant codes by stabiliser generators

Sx = ei2
√
πx/α, Sp = e−i2

√
πpα. (6.46)

Such codes are robust against errors

|∆x| < α
√
π/2, |∆p| <

√
π/2α. (6.47)

The codewords (6.38) are nonnormalisable states. One way to regularise them is to
replace them by the Gaussian approximations

|0̃〉 ≈ (
4
π

)1/4
∫
dx|x〉e−1/2∆2

px
2 ∑

s

e−(x−2s
√
π)2/2∆2

x (6.48)

≈ (
1
π

)1/4
∫
dp|p〉e−1/2∆2

xp
2 ∑

s

e−(p−s
√
π)2/2∆2

p , (6.49)

|1̃〉 ≈ X̄|0̃〉. (6.50)
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If ∆x and ∆p are small, then |0̃〉 and |1̃〉 will be close to the ideal codewords |0̄〉 and |1̄〉.
The states |0̃〉 and |1̃〉 can be seen as ideal codewords having been processed through
a quantum channel G∆x,∆p

effecting

G∆x,∆p
: |0̄〉〈0̄| → |0̃〉〈0̃|,

|1̄〉|1̄〉 → |1̃〉〈1̃|. (6.51)

Taking ∆x = ∆p = ∆ for example, the probability Pe that G∆,∆ effects an uncor-
rectable error, that is, the probability that G∆,∆ has shifted |0̄〉〈0̄| into the error zones
of |1̄〉〈1̄|, is bounded by the probability that G∆,∆ has effected a shift in x exceeding√
π/2, i.e.

Pe ≤
2√
π∆2

∫ ∞

√
π/2

dx e−x
2/∆2

≤ 2∆
π
e−π/4∆

2
. (6.52)

For an asymmetric code, taking ∆q = ∆α and ∆p = ∆/α, the probability of uncor-
rectable q-errors is bounded by

P xe ≤
2∆α
π

e−π/4(∆α)2 , (6.53)

and the probability of uncorrectable p-errors is bounded by

P pe ≤
2∆
απ

e−πα
2/4∆2

. (6.54)

6.4 A secure squeezed-state protocol

The BB84 protocol makes use of qubits, but doesn’t depend on the manner these
qubits are represented. In particular, Alice and Bob could encode qubits in continuous
variable systems using the shift-resistant codes we have just described. Thus the
following protocol is a secure implementation of BB84.

Protocol 4: BB84 with shift-resistant codes. #1 Alice creates a 4(l+ δ)-bit
string. #2 She chooses a random 4(l+δ)-bit string b. For each bit, she draws randomly
two numbers φx, φp ∈ [−1/2; 1/2[ from a uniform distribution , and creates a random
Z eigenstate of the code R(φx, φp) if b indicates 0, and a random X eigenstate of the
code R(φx, φp) if b indicates 1. #3 Alice sends the resulting qubits to Bob. #4 Bob
acknowledges receipt. #5 Alice reveals which code R(φx, φp) she used for each qubit.
#6 Bob measures each qubit either in the Z basis, either in the X basis. #7 Alice
reveals b. Next steps are identical to Protocol 3.

Protocol 4 requires sophisticated manipulations from Alice and Bob: Alice should
prepare complicated encoded states, Bob should store each state sent by Alice in a
quantum memory until she reveals the values φx, φp, and Bob should make measure-
ments of x̂mod

√
π and p̂mod

√
π. We now show that this protocol can be simplified

without loss of security. Suppose Bob chooses to measure in the Z basis, say. First,
he doesn’t need any quantum memory, neither does he need to measure the operators
(6.43). He can as well measure the observable x̂ on the state he receives, store the
classical outcome x in a classical memory, subtract φx

√
π from x when Alice reveals

φx, and adjust x−φx
√
π to the nearest integer multiple of

√
π. The key bit will be 0 if

this integer is even, and 1 if this integer is odd. Second, Bob doesn’t need to know the
value of φp, so we can suppose that Alice doesn’t reveal it. The protocol is certainly
no less secure if the eavesdropper receives less classical information. The states Alice
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sends are then seen by Bob as averaged over φp. We have

ρ(φx, Z̄ = 1) =
∑
s

|x = (2s+ φx)
√
π〉〈x = (2s+ φx)

√
π| (6.55)

ρ(φx, Z̄ = −1) =
∑
s

|x = (2s+ 1 + φx)
√
π〉〈x = (2s+ 1 + φx)

√
π|. (6.56)

Averaging over φx too and using Eq. (6.44), we see that Alice is sending a random
position eigenstate. Likewise, when working with X eigenstates, Alice is sending a
random momentum eigenstate. Therefore, a protocol in which Alice prepares encoded
qubits and Bob measures encoded qubit operators can be replaced, without loss of
security, by a simpler protocol where Alice prepares x̂ eigenstates and p̂ eigenstates, and
where Bob performs x̂ homodyne measurements and p̂ homodyne measurements. Also,
as discussed below, the protocol is no less secure if nonnormalisable x̂ (p̂) eigenstates,
drawn from nonnormalisable uniform distribution, are replaced with finitely squeezed
states, drawn from a broad but normalisable distribution. The conditions imposed on
the necessary amount of squeezing and on these distributions for the protocol to still
work will be specified below. We thus get the following protocol:

Protocol 5: BB84 with finitely squeezed states (Gottesman-Preskill)
[58]. #1 Alice creates a 4(l + δ)-bit string b to decide for each of 4(l + δ) quantum
oscillator, whether it will be prepared in an x-squeezed state or in a p-squeezed state.
#2 For each oscillator, she draws the value of x (or p) from a probability distribution
Ppos(x) (or Pmom(p)) #3 She sends Bob an x-squeezed state (or p-squeezed) centred
on the value (x, 0) (or (0, p)). #4 Bob receives the states and decides at random to
measure them either in the x-basis or in the p-basis. #5 Alice reveals b. #6 Alice and
Bob discard the oscillators for which Alice’s choice of preparation and Bob’s choice of
measurement don’t match. #7 Alice reveals φx ≡ x mod

√
π (or φp ≡ p mod

√
π).

#8 Bob subtract φx (or φp) from what he measured and adjusts the result to the
nearest integer multiple of

√
π. The key bit will be 0 if this integer is even and 1

otherwise. Next steps are identical to Protocol 3.
Regular probability distributions and finite squeezing. Ideally, Protocol 5

would involve infinitely-squeezed states drawn from nonnormalisable uniform proba-
bility distributions as in Protocol 4. In fact, one can prove [58], that Protocol 5 is
no less secure if we instead use squeezed states drawn from normalisable probability
distributions Ppos(x) and Pmom(p), as long as Alice’s source is exactly simulatable by
measuring half of an entangled state of two oscillators. The simplest such state to
think of is a two-mode squeezed state:

|Ψ(∆)〉AB =
1√
π

∫
dxAdxBe

− 1
2∆2(

xA+xB
2 )2e−

1
2 (

xA−xB
2 )2/∆2

|xA, xB〉

=
1√
π

∫
dpAdpBe

− 1
2∆2(

pA−pB
2 )2e−

1
2 (

pA+pB
2 )2/∆2

|pA, pB〉 (6.57)

If Alice measures x̂ for her half of this state, she prepares for Bob the state

|ψ(xA)〉 =
1

(π∆̃2)1/4

∫
dxBe

− 1
2 (xB−xB0 )2/∆̃2

|xB〉, (6.58)

where

xB0 =
1− 1

4∆4

1 + 1
4∆4

xA,

and

∆̃2 =
∆2

1 + 1
4∆4

.
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The probability distribution for the outcome of Alice’s measurement reads

P (xA) =
∆̃√
π
e−∆̃2x2

A . (6.59)

Also, it is obvious from Eq. (6.57) that the probability distribution for the difference
xA − xB is governed by

P (xA − xB) =
1√
π∆2

e−(xA−xB)2/∆2
. (6.60)

So a protocol where Alice’s source behaves as half of the state (6.57) is equivalent to
a protocol where Alice is effectively sending Bob squeezed states with variance ∆̃2,
according to the Gaussian probability law:

Ppos(xB) =
1
2

∫
dxAP (xA)P (xA − xB), (6.61)

and a similar expression for the probability distribution Pmom(pB) associated to the
sending of p-squeezed states. Now, we have seen that the bit-error rate eB is no worse
than the probability that Alice’s value xA and Bob’s value xB differ by more than√
π/2. Let T : B(H) → B(H) denote the cp-map representing the quantum channel

between Alice and Bob. We have

eb < 2
∫
dxAP (xA)

∫ ∞

√
π/2

dε〈xA + ε|T (|ψ)(xA)〉〈ψ)(xA)|)|xA + ε〉, (6.62)

and similarly for the phase-error rate,

ep < 2
∫
dpAP (pA)

∫ ∞

√
π/2

dε 〈pA + ε|T (|ψ(pA)〉〈ψ(pA)|) |pA + ε〉. (6.63)

The minimum amount of squeezing required in this protocol is determined by imposing
that eb and ep should satisfy Eq.(6.16) when T is an ideal channel. Thus we have the
upper bound

eb, ep <
2√
π∆2

∫ ∞

√
π/2

dxe−x
2/∆2

≤ 2∆
π
e−π/4∆

2
. (6.64)

In the symmetric case, eb = ep, Eq.(6.16) expresses the protocol is secure only if
∆ < 0.784, which corresponds to a squeezing of

∆̃ < 0.749. (6.65)

Even though this amount of squeezing is relatively modest, we can wonder whether we
cannot completely get rid of squeezing? Isn’t it possible to bring a further modification
transforming Protocol 5 to a secure coherent-state protocol (∆̃ = 1)?

6.5 A secure coherent-state protocol

Let us first remark that Protocol 5 was derived from an implementation of BB84 involv-
ing symmetric shift-resistant codes (Protocol 4). But the whole reasoning presented
in Sect.6.4 remains valid if we start from an asymmetric code resistant to x-shifts and
p-shifts satisfying Eq.(6.47). We then have

∆x = ∆α, ∆p = ∆/α. (6.66)
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As far as security is concerned, all that matters is that Eq.(6.16) should be satisfied.
In particular, Alice could send coherent states when she chooses to use, say, the x-
quadrature for encoding, at the condition of sending states having a compensating
amount of squeezing when she is using the p-quadrature for encoding:

∆x = ∆α = 1 (6.67)

1− h(eb)− h(ep) ≥ 1− h(
2∆α
π

e−π/4(∆α)2)− h(
2∆
απ

e−πα
2/4∆2

) ≥ 0. (6.68)

Second, in Protocol 5, when Alice chooses to prepare an x-squeezed state, she
draws the value of x from Ppos and prepares a state centred on (x, 0). Similarly, when
encoding with the conjugate quadrature, she prepares states centred on (0, p). The
decision to prepare states centred on (x, 0) or (0, p) relies on a convention between
Alice and Bob for the axis for the x quadrature and the axis for the p quadrature.
But this convention is arbitrary. For example instead of sending a state centred on
(x, 0), Alice could as well send a state centred on (x, p), where the key information
is encoded in x, and where p is irrelevant to Bob. Thus the following protocol is as
secure as Protocol 5.

Protocol 5’: Modified squeezed-state encoding. #1 Alice creates a 4(l+δ)-
bit string b to decide for each of 4(l+δ) quantum oscillator, whether it will be prepared
in an coherent state or in a p-squeezed state. #2 For each oscillator, she draws the value
of x and p from probability distributions Ppos(x), Qpos(p) (or Qmom(x), Pmom(p)).
#3 She sends Bob a coherent state (or a squeezed state) centred on (x, p): |coh(x, p)〉
(or |sq(x, p)〉). #4 Bob receives the states and decides at random to measure them
either in the x-basis or in the p-basis. #5 Alice reveals b. #6 Alice and Bob discard
the oscillators for which Alice’s choice of preparation and Bob’s choice of measurement
don’t match. #7 Alice reveals φx ≡ x mod

√
πα (or φp ≡ p mod

√
π/α). Next steps

are identical to Protocol 5.
The error rates for Protocol 5’ are given by:

eb =
∫

dx dp Ppos(x)Qpos(p)∫ ∞

√
πα/2

de〈x+ e|T (|coh(x, p)〉〈coh(x, p)|)|x+ e〉, (6.69)

ep =
∫

dx dp Qmom(x)Pmom(p)∫ ∞

√
π/2α

de〈p+ e|T (|sq(x, p)〉〈sq(x, p)|)|p+ e〉, (6.70)

where x̂|x + e〉 = (x + e)|x + e〉 and p̂|p + e〉 = (p + e)|p + e〉, and where α satisfies
Eqs.(6.67)(6.68).

Now let us remark that the protocol is no less secure if Alice and Bob decide that
the key is only encoded in the coherent states and never in the squeezed states. They
can decide that about half of the time, Alice will send coherent states to transmit the
key and to estimate eb, while about half of the time, Alice will send squeezed states to
estimate ep. We can make a similar remark for BB84: one can decide that the key is
only encoded in Z eigenstates, and that X eigenstates are only sent to determine the
phase error rate. As long as eb and ep satisfy Eq.(6.16), the protocol will work safely.
But do Alice and Bob really need to send squeezed states to estimate ep? It seems
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they don’t. Since squeezed states admit a diagonal expansion in terms of coherent
states [40]:

|sq(x, p)〉〈sq(x, p)| =
∫
d2γ P(γ, x, p)|γ〉〈γ|, (6.71)

we have

〈p+ e|T (|sq(x, p)〉〈sq(x, p)|)|p+ e〉 =
∫
d2γ P(γ, x, p)〈p+ e|T (|γ〉〈γ|)|p+ e〉, (6.72)

i.e., ep can be calculated from matrix elements which can be -at least in theory 2- esti-
mated from Alice sending only coherent states and Bob measuring only the p quadra-
ture: coherent states allow Alice and Bob to estimate what the error rates would have
been if Alice had sent squeezed states. This will work without, in any manner, weak-
ening the security because if Ppos, Qpos, Qmom, Pmom are correctly chosen, the two
ensembles∫

dxdpPpos(x)Qpos(p)|coh(x, p)〉〈coh(x, p)| (6.73)

and ∫
dxdpPmom(x)Qmom(p)|sq(x, p)〉〈sq(x, p)| (6.74)

are identical. This condition can be easily achieved if all distributions are chosen to
be Gaussian. So the following protocol is equivalent to Protocol 5’.

Protocol 6: Coherent state protocol (Grosshans-Grangier)[59]. #1 Alice
sends 2l coherent states to Bob. To determine the centre of each coherent state,
she draws randomly two numbers (x, p) from a (Gaussian) probability distribution
Ppos(x)Qpos(p). #2 Bob receives each state and decides randomly to measure it either
in x quadrature or in p quadrature. #3 On a subset of size (about) l/2 of the oscillators
for which Bob opted for an x-measurement, Alice and Bob estimate eb as in Protocol
5’. On the subset of size (about) l for which Bob opted for a p-measurement, Alice
and Bob estimate ep using Eqs.(6.69)(6.72). #4 If eb and ep are low enough, Alice and
Bob proceed with the l remaining oscillators to classical post-processing as in Protocol
5’.

6.6 More coherent state protocols

Although the discussion of the previous section shows that it is, in principle, possible to
extend the Gottesman-Preskill protocol to a coherent state protocol, one could expect
that such extensions will not be very efficient. According to Eqs(6.67)(6.68), the price
to pay for using coherent states for x encoding in Protocol 5’ implies a correspondingly
low tolerance for p errors. Another reason why Protocol 6 is probably not very efficient
is that the key bit assigned to a real value follows a periodic subdivision of R (into
intervals of length

√
πα or

√
π/α). On another hand, the centre of each sent coherent

state is determined by drawing a Gaussian probability distribution. Hence one could
expect that the assignment of bit values to real numbers should take this fact into
account. Also, Protocols 4,5,5’ and 6 are derived from a quantum code where one
qubit is encoded in per oscillator. One can wonder whether it is possible to efficiently
encode more qubits per oscillator, leading to more secret key bits distributed per

2This problem will be re-discussed in the next section.
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oscillator. Finally, we would like to get free from Eq.(6.59), which seems to strongly
limits the throughput information from Alice to Bob.

In the remainder of this chapter, we will derive a coherent state protocol from an
entanglement purification protocol. We will first describe a protocol, where Alice and
Bob extract pure EPR pairs from a tri-partite entangled state. It is precisely the use of
such a state which allows to go beyond the constraint (6.59). Our purification method
combines the Shor-Preskill method and a technique, called sliced error correction,
allowing Alice and Bob to extract common bits from correlated real values. The
principal virtue of sliced error correction is that it takes advantage of the fact that the
real values sent by Alice follow a Gaussian law to encode efficiently more than one key
bit per oscillator.

A secure QKD protocol with tripartite entangled states

We now describe a QKD protocol based on the use of tri-partite entangled states,
which enables Alice and Bob to distill pure EPR pairs. This protocol will later be
shown to be equivalent to a coherent-state protocol. Consider the following state 3:

|Ψ〉 =
∫
dxdp G(x, p) |x〉a1 ⊗ |p〉a2 ⊗ |x+ ip〉b (6.75)

where G(x, p) denotes a bi-variate Gaussian distribution whose variances we need not
precise now. The kets |x〉, |p〉, |x + ip〉 are shorthand notations for respectively an
x̂-quadrature eigenstate with eigenvalue x, a p̂-quadrature eigenstate with eigenvalue
p and a coherent state whose x̂ mean value equals x and whose p̂ mean value equals
p. Note that we will from now on, and for the remainder of this chapter adopt the
convention [x̂, p̂] = i/2. The subscripts a1, a2 (resp. b) denote that the system is
lying on Alice’s side (resp. Bob’s side). (N.B. In the following, an l-component vector
(v1, . . . , vl) will sometimes be denoted v1...l or v.)

Let us first analyse a situation without eavesdropping and see how Alice and Bob
can proceed to extract entangled qubits in the state |φ0〉 from the state |Ψ〉.

Protocol 7: QKD with tripartite entangled states
#1 Alice creates l+ t replicas of the state |Ψ〉 and, for each replica, she sends Bob

the b part of the state. Bob confirms receipt.
#2 Alice chooses randomly t replicas that will be used for verification. She informs

Bob of her choice. Using these t systems, they evaluate eib and eip, i = 1 . . .m (see
below).

#3 For each replica, Bob chooses randomly to work either with the x̂ quadrature,
either with the p̂ quadrature and informs Alice of his choice. Let us assume, for
simplicity, that Bob always chooses the x̂-quadrature, the description of the other
choice following by symmetry.

#4 Alice measures the p̂ quadrature of the subsystem a2, and communicates the
result, say p, to Bob.

#5 Bob applies the displacement D(0,−p) on the subsystem b.
#6 Alice extracts qubits from the a1 subsystem, in applying the following linear

transformation on each of the l replicas. QS : L2(R) → L2([0; 1])⊗H⊗m :

|x〉 → σ(x)|S̄(x)〉] ⊗ |S1(x)〉s1 ⊗ . . .⊗ |Sm(x)〉sm . (6.76)

The functions {Si} and S̄ are defined by sliced error correction (see Appendix), the
states |s̄〉], 0 ≤ s̄ ≤ 1 form an orthogonal basis of L2([0; 1]), σ(x) is a normalisation

3This state has been used by Grosshans et al. independently to study the link between coherent-
state QKD protocols and QKD protocols with entanglement (article in preparation).
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function, and |si〉si
denotes an eigenstate of Z with eigenvalue (−)si . By analogy with

classical sliced error correction, the system si will be called ’slice i’.
#7 For each slice i = 1 . . .m, Alice and Bob agree on a CSS code that can correct

leib bit flips and leip phase flips (if not possible due to Eq. (6.16), slice i is skipped).
Alice prepares the bit-error syndrome |ξbi 〉 ∈ H⊗lbi and the phase-error syndrome |ξpi 〉 ∈
H⊗lp

i , with lbi (resp. lpi ) the number of rows of H1 (resp. H⊥
2 ) of the i-th CSS code.

#8 Alice transmits the 2m syndromes {|ξbi 〉, |ξ
p
i 〉} to Bob as well as the ] system.

We suppose that Alice and Bob have a noiseless quantum channel for that task.
This assumption will later turn to be equivalent to the assumption of having a classical
authenticated public channel available.

Now Bob extracts from the b subsystem qubits entangled with those of Alice in
the state |φ0〉. To explain how it works, let us first rewrite, in the x̂-basis for Bob, the
state Alice and Bob share after the step #4:

|ψ′〉 =
∫
dxdx′ G(x, 0)γ(x′, x) |x〉a1 ⊗ |x′〉b, where γ(x′, x) = 〈x′|x+ i0〉.

#9 Bob applies the following linear mapping:

QE : L2([0; 1])⊗l⊗H⊗(lb1+...l
b
m)⊗L2(R)⊗l → L2([0; 1])⊗2l⊗H⊗(lb1+...+l

b
m)⊗H⊗ml

|S̄(x)〉]|ξb1...m〉|x′〉 → ε(x′, S̄(x), E1...m, ξ
b
1...m)|S̄(x)〉] ⊗ |ξb1...m〉

⊗mi=1 |Ei(x′, S̄(x), E1...i−1, ξ
b
1...i−1)〉ei

⊗ |Ēm+1(x′, S̄(x), E1...m, ξ
b
1...m)〉. (6.77)

where ε(x′, S̄(x), E1...m, ξ
b
1...m) is a normalisation function. This mapping is ex-

plained below.
#10 By applying CSS-based EPR purification on the systems ρsiei

for i = 1 . . .m,
Alice and Bob get

∑
i l − lbi − lpi pure EPR pairs in the state |φ0〉.

Construction of S̄ and Ē

First assume, for simplicity, that we have only one slice, implying the following map-
pings in the protocol

QE ◦ QS : |x〉 |x′〉 → σ(x) |S(x)〉
∣∣S̄(x)

〉
ε(x′, S̄(x), S(x))

∣∣E(x′, S̄(x))
〉 ∣∣Ē(x′, S̄(x), S(x))

〉
,

(6.78)

where σ(x) = (dxS̄(x))−1/2 and ε(x′, s̄, s) = (∂x′Ē(x′, s̄, s))−1/2, so that S̄ and Ē
range between 0 and 1. Thus, by linearity, a pure state |ψ〉 =

∫
dxdx′f(x, x′) |x〉 |x′〉,

becomes

(QE ◦ QS) |ψ〉 =
∑

s,e∈{0,1}

∫
ds̄dēσ(x)ε(x′, s̄, s)f(x, x′) |s〉s |s̄〉s̄ |e〉e |ē〉ē , (6.79)

where x and x′ are calculated from (s, s̄) and (e, ē, s̄) respectively.
Our goal is to be able to extract entangled pairs in the subsystem ρse out of |ψ〉. If

S̄(X) contains information about S(X), or if Ē(X ′, S̄(X), S(X)) contains information
about E(X ′, S̄(X)), the subsystem ρse will not be pure. As an extreme example, if
S(X) and E(X ′, S̄(X)) are perfectly correlated and if S(X) can be found directly as
a function of S̄(X), then ρse will be of the form ρse = p0 |00〉 〈00|+ p1 |11〉 〈11|, which
does not allow to extract any EPR pairs.
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With f real and non-negative, we can factor
∑
a,b∈{0,1} αab |ab〉se out of |ψ〉 by

setting:

σ(x(s, s̄)) = σ0(s) (fx(x(s, s̄)))
−1
, (6.80)

ε(s̄, x′(e, ē, s̄), s) = ε0(e, s) (fx′(x(s, s̄), x′(e, ē, s̄)))
−1
, (6.81)

with

σ2
0(s) =

∫
x:S(x)=s

|fx(x)|2 dx, (6.82)

ε20(e, s) =
∫
x,x′:S(x)=s,E(x′,S̄(x))=e

|fx′(x, x′)|
2
dxdx′, (6.83)

and with fx and fx′ verifying f(x, x′) = fx(x)fx′(x, x′), so that αab = σ0(a)ε0(b, a).
Note that fx(x) can be chosen such that |fx(x)|2 is the distribution of probability
that Alice uses for modulation, and fx′(x, x′) such that |fx′(x, x′)|2 is the probability
distribution of Bob’s measured value x′ conditionally to Alice sending x.

Then, we have

dxS̄(x) = |fx(x)|2 /σ2
0(S(x)),

which means that S̄(x) indicates the cumulative probability

S̄(x) = Pr [X ≤ x|S(X) = S(x)] .

Similarly,

Ē(x′, s̄, s) = Pr
[
X ′ ≤ x′|S̄(X) = s̄, S(X) = s,E(X ′, s̄) = E(x′, s̄)

]
.

Each complementary function (S̄ and Ē) is thus chosen to have its range uniformly
distributed between 0 and 1, independently of the other variables available to the party
calculating it (Alice for S̄ and Bob for Ē).

When more than one slice is involved, this translates to:

S̄(x) = Pr[X ≤ x|S1...m(X) = S1...m(x)], (6.84)

Ēm+1(x′, s̄, s1...m) = Pr[X ′ ≤ x′|S̄(X) = s̄

∧ S1...m(X) = s1...m

∧ E1(X ′, s̄) = E1(x′, s̄) ∧ . . .
∧ Em(X ′, s̄, s1...m−1) = Em(x′, s̄, s1...m−1)].

(6.85)

From Protocol 7 to a coherent state protocol

It is easy to understand that Protocol 7 is equivalent to a coherent-state protocol.
First, we note that Protocol 7 is unaffected if Alice applies the mapping QS prior
to sending Bob the b part of the state (6.75). In addition, if Alice and Bob are
confident that they can perform entanglement purification with the pairs siei, they do
not need to correct phase errors. They will anyway extract only (classical) bits from Z
measurements performed on these qubits. Hence, there is no need for Alice to measure
phase-error syndromes for each slice. Then, instead of measuring the syndromes |ξbi 〉,
transmitting them to Bob and measuring the encoded qubits, Alice can measure Z on
each qubit |Si(xj)〉, i = 1 . . .m, j = 1 . . . l, and send Bob the classical syndromes ξbi .
To further simplify the protocol, Alice can as well measure x̂a1 at step #2, compute
the syndromes ξbi and send them to Bob. If both the x̂a1 quadrature and the p̂a2
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quadrature are measured at step #1, there is no need for Alice to bother preparing
such a complicated state as Eq. (6.75). The protocol is no less secure if Alice sends
Bob a coherent state whose x̂ mean value and p̂ mean value are drawn randomly from
the distribution |G(x, p)|2. A similar argument shows that there is no need for Bob to
perform the sequence of complicated operations QEi, perform both bit and phase error
correction, and measure the encoded qubits. He can as well measure the x̂ quadrature
on the b subsystem, apply classical sliced error correction and privacy amplification
for each slice. It also becomes useless for Alice to send the mean value of p̂a2 .

We have thus reduced the protocol described above to a much simpler protocol.
However, it is still essential for Alice and Bob to have an estimation of the error rate eib
and eip, for each slice. This problem is examined below. Let us summarise the reduced
protocol.

Protocol 8: Alternative coherent state protocol #1 Alice draws randomly
two real numbers x and p according to the Gaussian distribution |G(x, p)|2, prepares
a coherent state |x + ip〉, and sends it to Bob over the quantum channel. #2 Bob
receives the coherent state, and decides randomly to measure either x̂, or p̂. Let us
assume he measures x̂. #3 Alice and Bob repeat these two first steps (l + t) times,
except that with t randomly chosen samples, Bob makes a homodyne detection in a
randomly chosen direction θ. This will allow Alice and Bob to estimate eib and eip (see
below). #4 Alice and Bob apply (classical) sliced error correction. The binary error
correction protocol used consists of sending the syndromes of the error correcting code
Ci1 used in Protocol 7, where Ci1 refers to the CSS code used for slice i. #5 Let ki
denote the sifted key obtained for each slice. Each slice i provides a private key ki+Ci2
(privacy amplification), where Ci2 ⊂ Ci1 refers to the CSS code used for slice i.

Bit error rates and phase error rates

If the joint state of Alice and Bob ρab is known, the bit error rate and phase error rate
can be easily computed. Let ρsiei = TrAll\siei

(ρab). Then, the bit error rate is eib =
Tr(ρsiei

(|φ2〉〈φ2|+|φ3〉〈φ3|)) and the phase error rate eip = Tr(ρsiei
(|φ1〉〈φ1|+|φ3〉〈φ3|)).

The bit error rate eib is easy to estimate. We have:

eib = Pr[Si(X) 6= Ei(X ′, S̄(X), S1...i−1(X))],

and these quantities can be estimated with high statistical confidence by Alice sending
coherent states, and Bob performing x quadrature measurements. The phase error
rate, however, is more difficult to estimate. Still, it is possible – at least in theory –
to evaluate it.

One way is to fully characterise the quantum channel T between Alice and Bob.
This can be achieved if we know T (|x′〉〈x′′|), for all x′, x′′ ∈ R. By sending a coherent
state |x+ ip〉b,coh to Bob, he can estimate T (|x′〉〈x′′|), using homodyne measurements
in all quadratures.

T (|x+ ip〉〈x+ ip|) ∝
∫
dx′dx′′e−(x′−x)2/4N0−(x′′−x)2/4N0ei(x

′−x′′)p/2N0T (|x′〉〈x′′|).

(6.86)

By setting D = x′ − x′′ and S = x′ + x′′ − 2x, we get

T (|x+ip〉〈x+ip|) ∝
∫
dDdSe−S

2/8N0−D2/8N0+iDp/2N0T (|x+S+D〉〈x+S−D|), (6.87)

which shows that we can get the knowledge of T (|x + ip〉〈x + ip|) yields T (|x′〉〈x′′|)
integrated with an invertible kernel (Gaussian convolution in S, multiplication by
e−D

2/8N0 and Fourier-transform in D).

81



With Alice sending many coherent states, and Bob performing quadrature mea-
surements in all directions, it is in principle possible to determine the operators
T (|x + ip〉〈x + ip|) (quantum tomography), and thus to deduce T (|x′〉〈x′′|). In prac-
tice, however, this can be a difficult task. First, the complete re-construction of the
density matrices T (|x + ip〉〈x + ip|) for many x and p may require an unacceptably
large number of samples. Second, the inversion of the integration to find T (|x′〉〈x′′|)
is unlikely to be accurate.

To address these problems, we propose the following two ideas. First, Alice and Bob
can agree on a modelled channel, parametrised by only a few variables p1, . . . , pn (e.g.,
losses, added noise and possibly some non-Gaussian effect), which best suits the reality
of their apparati. Instead of performing a complete non-parametric re-construction,
they only need to estimate p1, . . . , pn. To ensure that the channel actually follows the
estimated model, a statistical hypothesis test is done after the estimation. If this test
fails, Alice and Bob shall either abort the protocol or agree on a better channel model.

Second, the multiplication by e−D
2/8N0 shows that the terms involving |x′〉b〈x′′|

for distant x′ and x′′ (i.e., |x′ − x′′| � 1) are difficult to estimate with high accuracy.
Therefore, it is difficult to estimate the phase coherence of the slices that involve distant
values (e.g., the most significant bit in the numerical example below). To avoid such
problems, one can simply make such a slice public by integrating it into the definition
of S̄(x) since its secrecy is difficult to quantify.

The Attenuation Channel

The attenuation channel can be modelled as if Eve installs a beam-splitter in between
two sections of a lossless line, sending vacuum at the second input.

We assume that Alice sends coherent states with a modulation variance of 31×
vacuum noise, which gives Alice and Bob up to I(A;B) = 2.5 common bits in absence
of losses or noise. This matches the order of magnitude implemented in [10].

First, let us investigate a simple case with only one slice and with a slice estimator
that does not depend on S̄(x). The mapping is the following:

|x〉a1
|x′〉b → σ(x)ε(x′) |S(x)〉s

∣∣S̄(x)
〉
s̄
|E(x′)〉e

∣∣Ē(x′)
〉
ē
, (6.88)

with S(x) = 0 when x ≤ 0 and S(x) = 1 otherwise, E(x′) = 0 when x ≤ 0 and E(x′) =
1 otherwise, S̄(x) = Pr[X ≤ x|S(X) = S(x)] and Ē(x′) = Pr[X ′ ≤ x′|E(X ′) = E(x′)].

When the entangled state |Ψ〉 is pure, that is without any eavesdropping, the
substate ρse, obtained by tracing out everything but s and e, is numerically calculated.
This state has a bit error rate eb = 5.65% and a phase error rate ep = 8.73%, which
makes it possible to extract R = 1 − h(eb) − h(ep) ≈ 0.259 secret bits per sample.
Adding a small attenuation of 0.05 dB to the channel, we get eb = 5.68%, ep = 12.9%
and R ≈ 0.131. The rate R drops to 0.037 for a 0.1 dB attenuation, and it is not
possible to go much further.

Using the full construction with two slices, we were able to get the EPR rates
described in Fig. 6.1. The slices S1 and S2 are defined by dividing the real axis into
four equiprobable intervals labelled by two bits. S1 represents the least significant bit,
and S2 the most significant. For the case with low losses, it is thus possible to distill
more than one EPR pair per sample. Also, note that the phase error rate increases
faster with the attenuation for ρ2 than for ρ1, with ρi = ρsiei

. This intuitively follows
from the fact that the information Eve can gain from her output of the beam splitter
affects first the most significant bit contained in S2(x).

Due to the higher bit error rate in ρ1, it was not possible to distill EPR pairs in
slice 1 with losses beyond 0.7 dB. It was however still possible to distill EPR pairs in
slice 2, up to 1.4 dB losses (about 10km with fiber optics with losses of 0.15db/km).
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ρ1 ρ2

Losses eb ep R eb ep R
0.0dB 3.11% 5.33% 0.752 0.0000401 0.710% 0.938
0.4dB 3.77% 13.7% 0.193 0.0000782 28.6% 0.135
0.7dB 4.32% 20.0% 0.0204 0.000125 37.5% 0.0434
1.0dB - 0.000194 42.3% 0.0147
1.4dB - 0.000335 45.6% 0.00114

Figure 6.1: Error rates and secret key rates with two slices in an attenuation channel.

This result does not pose any fundamental limit, as it can vary with the modulation
variance and with the choice of the functions S1 and S2.

Finally, note that although this example involves a Gaussian channel, this partic-
ularity is not exploited here and such a calculation can be as easily done for a non-
Gaussian and/or collective attack (modulo the possible difficulty to calculate phase
errors).

6.7 Summary and discussion

We have reviewed the Shor-Preskill proof of security of the BB84 protocol, the con-
struction of shift resistant codes, and how the two can be combined to devise a secure
squeezed protocol: the Gottesman-Preskill protocol [58]. This construction leads to
protocols robust against any eavesdropping strategy, including collective attacks. In
contrast, the Cerf-Lévy-Van Assche [53, 54] construction addresses only Gaussian in-
dividual attacks. Nevertheless, both constructions lead to a protocol where squeezed
states are modulated according to a Gaussian law, and where the indistinguishability
of two different mixtures of squeezed states plays a crucial role. It is tempting to
conjecture that Gaussian individual attacks should be ultimately optimal for eaves-
dropping.

We have then showed how the Gottesman-Preskill protocol can be extended into a
coherent state protocol, whose physical part is identical to the protocol of Grosshans
and Grangier [66]. From a fundamental point of view, this extension is very important,
because it shows that, in principle, no non-classical feature of light, such as squeezing,
is required for secure quantum key distribution.

Then, we have studied the possibility to combine entanglement purification pro-
tocols with sliced error correction. Our aim was to establish secure coherent state
protocols where the assignment of bits to a real value doesn’t follow a periodic subdi-
vision of R as in the Gottesman-Preskill protocol. We have shown that key distribution
was possible up to 1.4 dB (for a modulation on Alice’s side of 31× vacuum noise). This
value should be compared to the limit imposed by the symmetric cloning attack, which
has been shown to be equivalent to a 3 dB loss in [59]. Although, we have considered
a Gaussian individual attack (equivalent to a cloning machine) as in Chapter 5, the
approach developed here is different. In Chapter 5, one explicitly constructs an eaves-
dropping strategy and derives a noise level above which the protocol is unsecure: 3 dB.
Here, we don’t make any hypothesis a priori, we establish general security conditions,
and then, considering a specific attack, we establish a noise level below which the pro-
tocol can be made secure: 1.4 dB (for a modulation on Alice’s side of 31× vacuum
noise). This 1.4 dB threshold relies on the design of our code, i.e., our design of slice
and estimator functions, for which we have no proof of optimality. This leaves open
the possibility of finding better codes robust at higher noise levels.
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6.8 Appendix: Sliced error correction

We here recall the main principles of sliced error correction (SEC) in a form that is
slightly different from the presentation in [67]. To suit our needs, we here describe
SEC in terms of invertible functions giving the slices and the estimators, and error
correction is operated by sending syndromes of classical linear error-correcting codes
(ECC) as binary correction protocols. Furthermore, we explicitly restrict ourselves to
the case of scalar values.

Suppose Alice and Bob have l couples of correlated random real variables:

(x1, x
′
1), . . . , (xl, x

′
l).

Sliced error correction aims at providing Alice and Bob with a means to extract m
common bits: S1(x), . . . Sm(x).

First, let us describe how Alice the m bits: S1(x), . . . Sm(x) from a real number
x. To make the mapping invertible, she also needs the function S̄(x) such that the
set {S̄(x), S1...m(x)} allows to recover x, for all x ∈ R . Formally, we define S : R →
[0; 1]× Fm2 : x→ (S̄(x), S1...m(x)).

To make things more concrete, the functions Si(x) cut the real line into intervals
(see [67] for more details), whereas S̄(x) indicates some value that allows one to find
x within a given interval.

Then, for each bit vector (”slice”) Si(x1...l) = (Si(x1), . . . Si(xl)), Alice sends
S̄(x1...l) together with the syndrome ξi = HiSi(x1...l) to Bob, where Hi is the l′i × l
parity check matrix of an ECC.

Bob also converts his variables x′ into bits and wishes to estimate the best he
can the bits Si(x1...l). In addition to that, he waits to have enough information
for correcting the bit vector i before converting x′ into a bit vector that estimates
Sj(x), j > i. To estimate the first slice S1(x1...l), he uses a function E1(x′, S̄(x))
that gives him the best estimate of S1(x) using the knowledge of x′ and S̄(x). From
E1(x′1...l, S̄(x1...l)) and ξ1, we assume he has enough information to recover S1(x1...l)
with high probability. Then, for i > 1, Bob estimates Si(x1...l) using the estimator
Ei(x′1...l, S̄(x1...l), E1...i−1(x′1...l, . . . ), ξ1...i−1).

Note that we can also write an estimator Ei as Ei(x′, S̄(x), S1...i−1(x)). Even
though it is an improper notation, since Bob does not have access to x nor to S1...i−1(x),
this simplified notation is sensible since Bob has enough information to recover S1...i−1(x).

We add an extra function Ēm+1(x′, S̄(x), S1...m(x)), which is required to make the
mapping E defined below invertible. Bob’s mapping thus formally writes:

E : [0; 1]l × Fl
′
1+···+l

′
m

2 ×Rl → [0; 1]2l × Fl
′
1+···+l

′
m

2 × Flm2 :
(s̄, ξ1...m,x′) → (s̄, ξ1...m, E1(x′, s̄), . . . ,
Em(x′, s̄, E1...m−1(x′, . . . ), ξ1...m−1), Ēm+1(x′, s̄, E1...m(x′, . . . ), ξ1...m)). (6.89)

At the end, Bob has enough information to recover the m× l bits S1...m(x1...l), out
of which

∑
i l
′
i parity bits were revealed.
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Chapter 7

Conclusions and Perspectives

Quantum information cannot be cloned. In this thesis, we have contributed to give
a quantitative meaning to this fundamental principle. Focusing mainly on continu-
ous variable systems, we have studied approximate quantum cloning machines and
quantum key distribution protocols.

We have studied how the quantum information contained in one or more quantum
system distributes amongst the clones. We have seen that the information that can
be extracted from the clones depends on the manner it is encoded in the input.

In quantum key distribution, classical information sent by an emitter is distributed
between an authorised receiver and a potential eavesdropper. We have analysed the
security of protocols where the emitter only sends coherent states of light, and the
receiver only performs homodyne measurements. Such protocols have emerged recently
as a promising alternative to other quantum key distribution protocols based on the
use of non-classical states of light, difficult to prepare, such as squeezed states or Fock
states. Our study takes root at a beautiful interplay between quantum key distribution
and quantum error correcting codes.

Future work will be mainly concerned with the secrecy capacity and the quantum
capacity of a quantum channel. The quantum capacity of a quantum channel is a
quantity defined similarly to the classical capacity: it is the (asymptotically) maximal
number of qubits that one can transmit over this channel per use of the channel. To
date, we don’t know the quantum capacity of any single channel. Concentrating on
Gaussian channels, we plan to develop explicit quantum error correcting codes and
provide achievable rates over such channels.

The secrecy capacity of a quantum channel is the (asymptotically) maximal number
of secret bits that one can transmit per use of this channel. The quantum capacity
trivially yields a tight lower bound on the secrecy capacity, for a quantum code allows
to purify noisy EPR pairs, and one secret key bit can be extracted (locally) by two
parties sharing an EPR pair. However, it is not known whether there are channels
for which the secrecy capacity is strictly higher than the quantum capacity. Again
focusing on Gaussian channels, we would like to further develop coding theory, and
provide achievable secrecy rates.

In conclusion, we have tackled the issue of distributing the information contained in
a quantum state by studying two classes of problems: quantum cloning and quantum
cryptography.

Let us start with quantum cloning. We have studied the cloning of orthogonal
qubits and identified a class of situations where orthogonal pairs of qubits contain more
information than a non-orthogonal one. It is tempting to conclude that orthogonal
pair of qubits always contain more information than non-orthogonal ones. But it is not
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quite so. In fact, the optimal kind of quantum information carriers is strongly related
to the kind of information one wants to extract from it [41]. At the time being, we
don’t know much about such relations. To solve this problem in general is probably
too big a problem. However, a future line of research might be to provide the basis of
a systematic study of such relations.

We have also provided a detailed analysis of optimal quantum cloning transforma-
tion. If the cloner is required to be covariant with respect to translation and rotation
in phase-space, and if optimality is measured by the noise introduced by cloning, then
we have seen that Gaussian cloners are optimal. However, similarly to the situation
of qubits, such a cloner is no more optimal for another figure of merit.

Finally, we have studied the security of coherent-state quantum key distribution
protocols. We have provided a means to assess the security of such a protocol under
assumptions which are more general than the Gaussian attack. We have seen how
this issue is connected to that of determining the quantum capacity and the secrecy
capacity of a continuous quantum channel, which shows once again the importance of
these problems. An important result is to have designed quantum codes exhibiting
features of classical sliced error correction. We plan to develop further such codes and
hope to find achievable rates for quantum codes over continuous channels in general,
and over Gaussian channels in particular.

86



Bibliography

[1] C. E. Shannon, Bell Syst. Tech. J. 27, 623 (1948).

[2] Information Theory, 50 years of discovery, edited by S. Verdú and S. W. M.
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