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The information carrier of today’s communications, a weak pulse
of light, is an intrinsically quantum object. As a consequence,
complete information about the pulse cannot be perfectly
recorded in a classical memory, even in principle. In the field
of quantum information, this has led to the long-standing
challenge of how to achieve a high-fidelity transfer of an inde-
pendently prepared quantum state of light onto an atomic
quantum state1–4. Here we propose and experimentally demon-
strate a protocol for such a quantum memory based on atomic
ensembles. Recording of an externally provided quantum state of
light onto the atomic quantum memory is achieved with 70 per
cent fidelity, significantly higher than the limit for classical
recording. Quantum storage of light is achieved in three steps:
first, interaction of the input pulse and an entangling field with
spin-polarized caesium atoms; second, subsequent measurement
of the transmitted light; and third, feedback onto the atoms using
a radio-frequency magnetic pulse conditioned on the measure-

ment result. The density of recorded states is 33 per cent higher
than the best classical recording of light onto atoms, with a
quantum memory lifetime of up to 4 milliseconds.

Light is a natural carrier of information in both classical and
quantum communications. In classical communications, bits are
encoded in large average amplitudes of light pulses, which are
detected, converted into electric signals and subsequently stored
as charges or magnetization of memory cells. In quantum infor-
mation processing, information is encoded in quantum states that
cannot be accurately recorded by such classical means. Consider a
state of light defined by its amplitude and phase, or equivalently
by two quadrature phase operators, X̂L and P̂L, with the canonical
commutation relation [X̂L,P̂L] ¼ i. These variables play the same
role in quantum mechanics as the classical quadratures X, P do in
the decomposition of the electric field of light with the frequency q
as E / X cosqt þ P sinqt. Other quantum properties of light, such
as the photon number n̂ ¼ 1 X̂2

L þ P̂2
L 2 1

� �
; and so on, can be

expressed in terms of X̂L and P̂L.
The best classical approach to recording a state of light onto

atoms would involve homodyne measurements of both observables
X̂L and P̂L by using, for example, a beam splitter. The non-
commutativity of X̂L and P̂L leads to additional quantum noise
being added during this procedure. The target atomic state has its
intrinsic quantum noise (coming from the Heisenberg uncertainty
relations). All this extra noise leads to a limited fidelity for the
classical recording: for example, to a maximum fidelity of 50% for
coherent states5–7. Thus the challenge of implementing a quantum
memory can be formulated as a faithful storing of the simul-
taneously immeasurable values of X̂L and P̂L.

A number of quantum information protocols, such as eaves-
dropping in quantum cryptography, quantum repeaters8, and linear
optics quantum computing9, would benefit from a memory meet-
ing the following criteria: (1) the light pulse to be stored is sent by a
third party in a state unknown to the memory party; (2) the state of
light is converted into a quantum state of the memory with a fidelity
higher than that of the classical recording. Several recent experi-
ments10–13 have demonstrated entanglement of light and atoms.
However, none of these experiments demonstrated memory obey-
ing the two above criteria. In ref. 14, where squeezed light was
mapped onto atoms, the atomic state existed only while the light
was on, so it was not a memory device. The electromagnetically
induced transparency (EIT) approach has led to the demonstration
of a classical memory for light15,16. A theoretical proposal for EIT-
based quantummemory for light has been published in ref. 3. Other
proposals for quantum memory for light with better-than-classical
quality of recording have also been published recently1–4.

Quantum state transfer from one species to another is most
simply presented if both systems are described by canonical
quantum variables X̂,P̂. All canonical variables have the same
commutation relations and the same quantum noise for a given
state, thus providing a common frame for the analysis of the state
transfer.

In the present work, the state of light is stored in the super-
position of magnetic sublevels of the ground state of an atomic
ensemble. As in ref. 12, we introduce the operator Ĵ of the collective
magnetic moment (orientation) of a ground state F. All atomic
states utilized here are not too far in phase space from the coherent
spin state (CSS), for which only one projection has a non-zeromean
value, for example, kĴxl ¼ J x, whereas the other two projections have
minimal quantum uncertainties, kdJ2yl¼ kdJ2z l¼

1
2 Jx: For all such

states, the commutator Ĵy; Ĵz

� �
¼ iJx can be reduced to the canonical

commutator [X̂A,P̂A] ¼ i with X̂A ¼ Ĵy=
ffiffiffiffi
Jx

p
; P̂A ¼ Ĵz=

ffiffiffiffi
Jx

p
: Hence

the y,z-components of the collective atomic angular momentum
play the role of canonical variables. Although the memory protocol,
in principle, can work with a single atomic ensemble, experimental
technical noise is substantially reduced if two oppositely polarized
ensembles placed in a bias magnetic field H are used (see Methods
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and Supplementary Methods for details). Combined canonical
variables for two ensembles X̂A ¼ ðĴy1 2 Ĵy2Þ=

ffiffiffiffiffiffiffi
2Jx

p
; P̂A ¼

ðĴz1 þ Ĵz2Þ=
ffiffiffiffiffiffiffi
2Jx

p
are then introduced, where Ĵx1 ¼2Ĵx2 ¼ Jx ¼

FNatoms: In the presence of H, the memory couples to the Q-
sidebands of light: X̂L ¼

1ffiffiffi
T

p
Ð T

0 ðâ
þðtÞ þ âðtÞÞcosðQtÞdt; P̂L ¼

iffiffiffi
T

p
Ð T
0 ðâ

þðtÞ2 âðtÞÞcosðQtÞdt; where Q is the Larmor frequency of
spin precession.

Quantum storage of light is achieved in three steps: (1) an
interaction of light with atoms; (2) a subsequent measurement of
the transmitted light; and (3) feedback onto the atoms conditioned
on the measurement result (Fig. 1). The off-resonant interaction of
light with spin polarized atomic ensembles has been described
elsewhere4,17–19, and is summarized in the Methods section. The
interaction leads to the equations:

X̂
out

L ¼ X̂
in

L þ kP̂
in

A ; P̂
out

L ¼ P̂
in

L

X̂
out

A ¼ X̂
in

A þ kP̂
in

L ; P̂
out

A ¼ P̂
in

A

ð1Þ

These equations imply that light and atoms get entangled. The
remarkable simplicity of equations (1) provides a direct link
between an input light state, an atomic state, and an output light.
Suppose the input light is in a vacuum (or in a coherent) state, and
atoms are in a CSS with mean values kX̂Ll¼ kX̂Al¼ kP̂Ll¼ kP̂Al¼ 0
and variances dX2

L ¼ dX2
A ¼ dP2

L ¼ dP2
A ¼ 1=2: The interaction par-

ameter k, whose value is crucial for the storage protocol, is then
readily found as k2 ¼ 2 dXout

L

� �2
21:

For a perfect fidelity of mapping, the initial atomic state must be
an entangled spin state such as in ref. 12, with dX2

A ! 0: The pulse to
be recorded, combined with the entangling pulse (see Methods
section), is sent through, and its variable X̂out

L is measured.
The measurement outcome, x ¼ X̂in

L þ kP̂in
A ; is fed back into the

atomic variable P̂A with a feedback gain g. The result is P̂mem
A ¼

P̂in
A 2 gx ¼ P̂

in

A ð12 kgÞ2 gX̂in
L (see Supplementary Notes for a jus-

tification of this equation). With g ¼ k ¼ 1, the mapping of X̂in
L

onto 2P̂mem
A is perfect.

The second operator of light is already mapped onto atoms
via X̂mem

A ¼ X̂in
A þ P̂in

L , see equation (1). For the entangled initial
state the mapping is perfect for this component too, P̂in

L ! X̂mem
A ;

leading to the fidelity of the light-to-atoms state transfer F ! 100%.
If the initial atomic state is a CSS, the mapping is not perfect owing
to the noisy operator X̂in

A :However, fidelity F ¼ 82%, still markedly
higher than the classical limit, can be achieved. Note that the above
discussion holds for an arbitrary single mode input quantum state
of light.

In our experiment, the atomic storage unit consists of two
samples of caesium vapour placed in paraffin-coated glass cells
placed inside magnetic shields (Fig. 1). H is applied along the x-
direction with Q ¼ 322 kHz. Optical pumping along H initializes
the atoms in the first/second sample in the F ¼ 4, m F ¼ ^4 ground
state with the orientation above 99%. Hence Ĵx1 ¼2Ĵx2 ¼ Jx ¼
4Natoms < 1:2£ 1012: We thoroughly check and regularly verify
that the initial spin state is close to CSS (Supplementary Methods).
The coupling parameter k is varied by adjusting the density of
caesium vapour.
The input state â(t) is encoded in a 1-ms y-polarized pulse. The

state is chosen from the set {âinput} of coherent states with the
photon number in the range {knl ¼ 0, nmax} and an arbitrary phase.
â(t) is generated as Q sidebands by an electro-optical modulator
(EOM), and has the same spatial and temporal profile as the strong
entangling field (more information can be found in the Methods
section). Thus the EOM plays the third party, providing the field
to be stored. The pulses are detuned by 700MHz to the blue
from the 6S1/2, F ¼ 4 ! 6P3/2, F ¼ 5 transition (l ¼ 852 nm).
The polarization measurement of the light is followed by the
feedback onto atoms achieved by a 0.2ms radio-frequencymagnetic
pulse conditioned on the measurement result.
The experimental verification of the quantum storage is then

carried out. A read-out x-polarized pulse is sent through the
samples with a delay of 0.7–10ms after the feedback is applied.
Atomic memory generates a y-polarized pulse, which is analysed as
follows. As both X̂mem

A and P̂mem
A cannot be measured at the same

time, we carry out two series of measurements for each input state.
Each series consists of 104 quantum storage sequences. To verify the
X̂in
L !2P̂mem

A step of the storage, we measure the component
X̂read–out
L ¼ X̂read–in

L þ kP̂mem
A of the read-out pulse (XL is a Stokes

parameter measured in units of shot noise, as discussed in the
Methods section). An example of such a measurement carried out
after 0.7ms of storage is presented in Fig. 2a as a histogram of
1
k X̂read–out

L (right histogram), with k measured as described in the
Methods section and in Supplementary Methods. For this series
kP̂in

L l¼24 and kX̂in
L l¼ 0; corresponding to kn̂l ¼ 8 photons

in the pulse. From this measurement, we find the mean
kP̂mem

A l¼ 1
k kX

read–out
L l and the variance j2p ¼ k dP̂mem

A

� �
2l¼

1
k2 dXread–out

L

� �
22 1

2

� �
(see equations (1)) for the quantum state of

the memory. We note that only the knowledge of k and the shot
noise level of light is necessary for the determination of the mean
values and variances of the atomic canonical variables from the
experimental data.

Figure 1 Experimental set-up. a, Atomic memory unit consisting of two caesium cells

inside magnetic shields 1 and 2. The path of the recorded and read-out light pulses is

shown with arrows. b, The simplified layout of the experiment. The input state of light with

the desired displacements X L, P L is generated with the electro-optic modulator (EOM).

The inset shows the pulse sequence for the quantum memory recording and read-out.

Pulse (1) is the optical pumping (4 ms), pulse (2) is the input light pulse â(t ) overlapped

with the strong entangling pulse in orthogonal polarization with amplitude
ffiffiffiffiffiffiffiffi
nðt Þ

p
: Pulse (3)

is the magnetic feedback pulse. Pulse (4) is the magnetic p/2 pulse used for the read out

of one of the atomic operators. Pulse (5) is the read-out optical pulse.
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Next, we run another series of storage with the same input state
for the verification of the step P̂in

L ! X̂mem
A : The X̂mem

A operator does
not couple to the read-out pulse in our geometry; therefore, we
first apply a p/2-pulse (Fig. 1) to atoms converting X̂mem

A ! P̂
p
A

and then measure P̂
p
A with the verifying pulse. We then find kX̂mem

A l
and j2x ¼ kðdX̂mem

A Þ2l of the memory state (left histogram).
The above sequence is repeated for different input states. From

kP̂mem
A l=kX̂in

L l and kX̂mem
A l=kP̂in

L l; the mapping gains for the two
quadratures are determined. For the experimental data presented
in Figs 2 and 3a, these gains are 0.80 and 0.84 respectively, which is
close to the optimal gain for the chosen input set of states. This step
would complete the proof of the classical memory performance,
because we have shown that the y-polarized pulse recovered from
the memory has the same mean amplitude and mean phase as the
input pulse (up to a chosen constant factor).
To prove a quantum memory performance, we need in addition

to consider the quantum noise of the stored state. Towards this end,
we plot the atomic variances j2p;j

2
x for the storage time 0.7ms in

Fig. 3a. The experimentally obtained variances of the stored state are
on average 33% below the best possible variance of the classical
recording. Hence a density of stored states 33% higher than that for
the best classical recording can be obtained. Thus the goal of

quantum storage with less noise than for the classical recording is
achieved.

Next, the overlap between the input state of light and the state
of the atomic memory is determined (Methods section). An
example is shown in Fig. 2b. The fidelity F of the quantum recording
is then calculated for a given set {âinput}. For example, F ¼
ð66:7^ 1:7Þ% for {âinput} ¼ {n ¼ 0 ! 8} and F ¼ (70.0 ^ 2.0)%
for {âinput} ¼ {n ¼ 0 ! 4}, respectively, for the storage time of
0.7ms. Note that the fidelity of the classical recording can exceed
50% for a limited set {âinput}. The maximum classical fidelity for
{âinput} ¼ {n ¼ 0 ! 8} is 55.4%, and for {âinput} ¼ {n ¼ 0 ! 4} it
is 59.6%—still significantly lower than that for the quantum
recording.

The main sources of imperfection of our quantum memory are
decoherence of the atomic state and reflection off the cell walls. We
have performed extensive studies of the atomic decoherence caused
by the light-assisted collisional relaxation20 to optimize the fidelity.
Figure 3b presents the fidelity of the stored state as a function of the
storage time. A simple model provides a good description for the
observed fidelity reduction.

The single observable read-out described above can be useful in,
for example, quantum cryptography eavesdropping, where the
memory is read after the basis has been publicly announced by

Figure 2 An example of the atomic memory performance. a, The input state of light in the

coherent state with kX̂Ll¼ 0; kP̂Ll¼24: The results of the read out of this state stored in

the atomic memory are shown as histograms of experimental realizations. The left/right

histogram shows the results for the X̂ A/P̂A quadrature read out with/without the p/2-

pulse. Dotted gaussians represent the distributions for the best possible quantummemory

performance (fidelity 100%). b, The input coherent state of light (upper graph) and the

reconstructed state stored in the atomic memory (lower graph) for the input state as in a.

The reconstructed state is obtained from the results presented in a after subtracting the

noise of the read-out pulse.

Figure 3 Quantum noise of the stored state and the fidelity of quantum memory as a

function of time. a, Experimental and theoretical (quantum and classical) stored state

variances in atomic projection noise (PN) units. Triangles and filled circles are the

experimental variances for the atomic memory operators, denoted 2j2
x and 2j2

p ;

respectively, in the text. Dash-dotted line, the fundamental boundary of three units of

noise between quantum and classical mapping for an arbitrary coherent input state5,6.

Dashed line, best classical variance for the experimental set of input states with photon

numbers between 0 and 8. Double-dot-dashed line, unity variance corresponding to

perfect mapping. b, Fidelity as a function of storage time for the set of states from 0 to 10

photons. Fidelity higher than the classical limit is maintained for up to 4 ms of storage.

Error bars are standard deviations.
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Alice and Bob. The present experiment also paves the way towards
the proposed quantum cloning of light onto atomic memory21.
However, other applications require complete state recovery via
reverse mapping of the memory state onto light. Proposals for
performing this task within our approach have been published4,19,22.
Probably the most intuitively clear protocol for the memory read-
out is just to run the storage protocol presented here with reversed
roles of light and atoms. Indeed, the equations of interaction (1) are
completely symmetric. The read-out, as the storage, would involve
three steps: sending a read-out light pulse through atoms, measur-
ing the spin projection X̂

out

A with an auxiliary light pulse, and
applying the feedback conditioned on this measurement to the
read-out pulse.

In the present experiment, we have demonstrated thememory for
a subset of linearly independent coherent states. Owing to the
linearity of quantum mechanics, this demonstration signifies that
our method provides faithful mapping for an arbitrary coherent
state. As any arbitrary quantum state can be written as a super-
position of coherent states, our approach should in principle work
for an arbitrary quantum state, including entangled and single
photon (qubit) states. A

Methods
Quantum coupling of light to two atomic ensembles in the presence of magnetic
field
Here we discuss the physics behind the equations of interaction (1). The off-resonant
atom/light interaction is described in terms of Stokes operators for the polarization state
of light and the collective spin of atoms4,17,18. The Stokes operators are defined as one half
of the photon number difference between orthogonal polarization modes: Ŝ1, between
vertical x- and horizontal y-polarizations; Ŝ2, between the modes polarized at^458 to the
vertical axis; and Ŝ3, between the left- and right-hand circular polarizations. In the
experiment, a strong entangling x-polarized pulse with photon flux n(t) is mixed on a
polarizing beamsplitter with the y-polarized quantum field â(t) prior to interaction
with atoms. Hence the Stokes operators of the total optical field are Ŝ1ðtÞ ¼ S1ðtÞ ¼

1
2nðtÞ;

Ŝ2 ¼
1
2

ffiffiffiffiffiffiffiffi
nðtÞ

p
ðâþðtÞþ âðtÞÞ; Ŝ3 ¼

i
2

ffiffiffiffiffiffiffiffi
nðtÞ

p
ðâþðtÞ2 âðtÞÞ: Note that Ŝ2(t) and Ŝ3(t) are

proportional to the canonical variables for the quantum light mode, X̂ ¼ 1ffiffi
2

p ðâþðtÞþ âðtÞÞ;
P̂ ¼ iffiffi

2
p ðâþðtÞ2 âðtÞÞ: Light is transmitted through the atomic samples placed in the

bias magnetic field oriented along the x-axis. The magnetic field allows for encoding of the
memory at the Larmor frequency Q, thus dramatically reducing technical noise present at
low frequencies. However, in the presence of the Larmor precession, there is an undesired
coupling of the single-cell variables Ĵy and Ĵz to each other. The introduction of the second
cell with the opposite Larmor precession allows us to introduce new two-cell variables
ðĴy1 2 Ĵy2Þ; ðĴz1 þ Ĵz2Þ that do not couple to each other. As in ref. 12, where a similar trick
was used, the Stokes parameters of light transmitted through the two cells along the z
direction become:

Ŝ
out

2 ðtÞ ¼ Ŝ
in

2 ðtÞ þ aS1ðcosðQtÞ½Ĵz1 þ Ĵz2�þ sinðQtÞ½Ĵy1 þ Ĵy2�Þ; Ŝ
out

3 ðtÞ ¼ Ŝ
in

3 ðtÞ ð2Þ

where Ĵz,y are the projections in the frame rotating at Q, and a ¼ gl2

8pDA ; with g and l the
natural linewidth and the wavelength of the transition, respectively, D the detuning, and A
the beam cross-section. At the same time, the transverse spin components of the two cells
evolve as follows:

d
dt ½Ĵz1 þ Ĵz2� ¼

d
dt ½Ĵy1 þ Ĵy2� ¼ 0;

d
dt ½Ĵy1 2 Ĵy2� ¼ 2aJxŜ

in

3 cosðQtÞ; d
dt ½Ĵz1 2 Ĵz2� ¼ 2aJxŜ

in

3 sinðQtÞ
ð3Þ

As evident from equation (3), in the process of propagation the operator Ŝin3 is recorded
onto the operators Ĵy1 2 Ĵy2 and Ĵz1 2 Ĵz2 (the ‘back action’ of light on atoms via the
dynamic Stark effect caused by light17,18), while the operators Ĵy1 þ Ĵy2 and Ĵz1 þ Ĵz2 are left
unchanged. The latter are read out onto Ŝout2 via the Faraday rotation, equation (2).

Canonical variables are defined for the quantum light mode as X̂L ¼
1ffiffiffi
T

p
Ð T

0 ðâ
þðtÞ þ

âðtÞÞcosðQtÞdt; P̂L ¼
iffiffiffi
T

p
Ð T

0 ðâ
þðtÞ2 âðtÞÞcosðQtÞdt; that is, the relevant lightmode involves

the Q-sidebands. T is the pulse duration, â(t) is normalized to the photon flux. X̂L and P̂L

(that is, Ŝ2 and Ŝ3) are detected by a polarization state analyser and by lock-in detection of
theQ component of the photocurrent. Note that the cos(Qt) component of light couples to
the ðĴy1 2 Ĵy2Þ; ðĴz1 þ Ĵz2Þ components of atomic storage variables (equations (2), (3)).
The equivalent choice of a sin(Qt) modulation instead would mean the use of ðĴy1 þ

Ĵy2Þ; ðĴz1 2 Ĵz2Þ for the memory. The atomic canonical variables X̂A, P̂A are defined in the
main section. With the above equations and definitions we straightforwardly derive
equations (1) under the assumption QT .. 1: Theoretically, the dimensionless coupling
parameter in (1) is k2 ¼ 1

2a2Jx

Ð
nðtÞdt:

Experimental calibration of the canonical variances for light and atoms
Calculations of the fidelity, the gains, and the variances from the experimental data are
based on the experimental calibration of kdX̂2

Ll¼ kdP̂2
Ll for the coherent (vacuum) state of

light and of kdX̂2
Al¼ kdP̂2

Al for the CSS of atoms. The calibration for light is carried out
along the established procedure of determining the shot noise level for measurements of

Ŝ2, Ŝ3 with the quantum field in a vacuum state5,17. Variances and mean values for light are
thenmeasured in units of this shot noise level. The calibration for the atomic CSS variance
is carried out with extreme care, and has shown excellent reproducibility (see
Supplementary Methods). As stated in the main text, as soon as the vacuum (shot) noise
level for light is established and the atoms are in a CSS, the parameter k2 (equations (1)),
important for calculations of atomic variances and fidelity, is easily determined as
k2 ¼ 2 dXout

L

� �2
21: In the experiment, this is equivalent to k2 ¼

dSout2

� �2
2 dSin2
� �2� �

= dSin2
� �2

:

Fidelity and the state overlap
To calculate the fidelity of the transfer of an input coherent state into an output gaussian
state6, we first define an overlap function between an input state with mean values x1, p1

and the output state with the mean values and variances x2, p2, j
2
x ; j2p: Straightforward

integration yields:

O{x1;x2;p1;p2}¼ 2expð2ðx1 2 x2Þ
2=ð1þ 2j2xÞ

2 ðp1 2 p2Þ
2=ð1þ 2j2pÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2j2x
� �

1þ 2j2p

� �r

The fidelity of the transfer for a set of coherent states with mean amplitudes between a1

and a2 can then be found as an average overlap:

F ¼ p21 a2
2 2a2

1

� �21
ð2p
0

df

ða2

a1

O{a}ada

For classical recording from light onto atoms with gain g, the overlap between the input
coherent state with the mean amplitude a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ p2

p
and the output state is given by

O{a}¼ ð1þ g2Þ21exp 2 1
2 ð12 gÞ2a2ð1þ g2Þ21

� �
: The classical fidelity is then given by:

Fclass ¼ ðn2 2 n1Þ
21ð12 gÞ22{expð2ð12 gÞ2n1ð1þ g2Þ21Þ

2 expð2ð12 gÞ2n2ð1þ g2Þ21Þ}

where we have introduced the mean photon number n ¼ 1
2a

2: F class ! 50% for arbitrary
coherent states when g ! 1. If a restricted class of coherent states is chosen as the input,
F class . 50% can be obtained with a suitable choice of g. For a set of states analysed in the
main text, {âinput} ¼ {n ¼ 0 ! 8}, the maximum classical fidelity of 55.4% is achieved
with a gain of 0.809.
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In a strongly nonlinear discrete system, the spatial size of an
excitation can become comparable to, and influenced by, the
lattice spacing. Such intrinsic localized modes (ILMs)—also
called ‘discrete breathers’ or ‘lattice solitons’—are responsible
for energy localization in the dynamics of discrete nonlinear
lattices1–5. Their energy profiles resemble those of localized
modes of defects in a harmonic lattice but, like solitons, they
can move (although, unlike solitons, some energy is exchanged
during collisions between them). The manipulation of these
localized energy ‘hotspots’ has been achieved in systems as
diverse as annular arrays of coupled Josephson junctions6,7,
optical waveguide arrays8, two-dimensional nonlinear photonic
crystals9 and micromechanical cantilever arrays10. There is also
some evidence for the existence of localized excitations in atomic
lattices11–15, although individual ILMs have yet to be identified.
Here we report the observation of countable localized excitations
in an antiferromagnetic spin lattice by means of a nonlinear
spectroscopic technique. This detection capability permits the
properties of individual ILMs to be probed; the disappearance of
each ILM registers as a step in the time-dependent signal, with
the surprising result that the energy staircase of ILM excitations
is uniquely defined.
Rod-shaped samples of the quasi-one-dimensional antiferro-

magnet, (C2H5NH3)2CuCl4, are used in this study13,16–18 so that
the antiferromagnetic resonance (AFMR) frequency occurs at the
bottom of the spin-wave manifold. Mesoscale, high spin-precession
amplitude, magnetic ILMs can then be produced in the gap below
this band because of the soft nonlinearity of the spin lattice. As
outlined in Fig. 1a, there are four fundamental sequential time steps
required for these energy localization experiments: (1) a uniform
spin wave mode of the biaxial antiferromagnet is driven to a large
precession amplitude by an initial microwave pulse (frequency f1);
(2) after an incubation period, the modulational instability of the
large amplitude uniformmode takes hold, producingmany ILMs in a
broad frequency band19; (3) a few of these ILMs are then locked20,21 to
the continuous wave (c.w.) middle power source f2; and, finally, (4)
the experiment of interest, where a c.w. low power source f3 is used to
produce a mixing signal that depends on the number of ILMs in the
lattice. After a spin-lattice relaxation time of T1 ¼ 1.5ms, the
number of ILMs is determined by a quasi-steady state involving the
f2 driver and the nonequilibrium AFMR13, and this number is
expected to decrease as this frequency difference increases.

Because the number of spins in an ILM is too small to be seen in
absorption, a nonlinear energy magnetometer has been developed,
which automatically handles the four time steps for this low
temperature ILM production and detection experiment. It relies
on the third-order nonlinearity xð3Þ of the antiferromagnet22–24 to
make observable in nonlinear emission the small number of ILMs
that remain locked to the f2 driver, as illustrated in Fig. 1b. Non-
linear and linear excitations in the same sample give very different
nonlinear responses: the signal produced by ILMs is enhanced,
while that produced by the small precession amplitude extended
plane wave states, which are nearly harmonic, is suppressed. This
nonlinear discrimination feature of the instrument brings the few
nanoscale ILMs out of the background of plane wave states for
experimental exploration.

Presented in Fig. 2a is the power spectrum produced at f3, where
2f2 2 f3 ¼ fdet, and both f3 and fdet, the narrow band detector
frequency, are scanned in tandem. Typical frequency positions for
f1, f2 and the near-equilibrium AFMR are identified at the top of
Fig. 2. The strong emission peak from the locked ILMs (see arrow) is
observed shifted to slightly lower frequencies from the f2 locking
oscillator (about 4MHz), while a somewhat weaker peak is shifted
up in frequency. (These sidebands represent a form of cross phase
modulation for the ILMs.) The logarithmic plot shown in Fig. 2b
displays more clearly the other weaker spectral features, as well as
the excellent signal to noise level for these measurements. The weak
peak observed at 1.362GHz (see top right arrow) occurs when f3
matches the AFMR frequency in a resonant four wave mixing
process at T < 2ms. This weak feature at long times is independent
of whether or not the f1 pulse is applied and, hence, is a property of
the homogeneous solid. When ILMs are produced, they encompass
states originally associated with the spin wave band; however,
because of the small number of ILMs studied (that is, only a few
ILMs remain locked), 99.999% of the spins are in the low amplitude
homogeneous state. Figure 2b demonstrates that although the AFMR
involves many spins, off resonance it is a very weak nonlinear mixer.

     

 

 

Figure 1 Schematic diagrams of the experimental procedure and the nonlinear process.

a, The chronological timing in the nonlinear energy magnetometer is shown for the

production and measurement of intrinsic localized modes (ILMs). AFMR,

antiferromagnetic resonance. b, Nonlinear mixing output for uniform excitations and for

ILMs. Large filled circles represent ILMs. Although small in number because of locking,

these strong nanoscale third order mixing elements dominate the output signal. Two

inputs are from the locking driver field H(f 2) and the remainder is from the probe field

H(f 3), giving a maximum output at 2f 2 2 f 3. Each ILM generates a nonlinear field H (3).

As the mixed signal power depends on the square of the total field, the square root of the

power is proportional to the number of ILMs.
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